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• Our findings demonstrate that the maintenance systems of repABC replicons extend beyond the canonical repABC module. We identified 
additional elements, located distantly from the module, that may play important roles in the segregation of the A. ampelinum chromid.

• The RepB protein was shown to bind both consensus and degenerate parS sequences, particularly those retaining second half 
of the consensus motif. These interactions, previously not described for RepB proteins, may enhance segregation efficiency and/or serve 
regulatory role under conditions of RepB overproduction.

• We present the first ChIP-seq analysis of the RepC protein of a RepABC-type replicon. Our results indicate that DNA replication of 
the chromid and A. ampelinum chromosome is synchronized. The chromid RepC protein may play a key role in this synchronization process.
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The secondary chromosome (chromid) of Allorhizobium ampelinum S4 belongs to the repABC replicon 
family, widely distributed among Alphaproteobacteria. The repABC operons contain three genes: (i-ii) 
repAB – encoding proteins involved in the active partitioning of newly duplicated replicon copies into 
daughter cells, and (iii) repC – encoding replication initiator1 and containing origin of replication
within its coding sequence2 (Fig. 1). The proper functioning of the modules also depends on the 
presence of several required cis-acting sequences. The partitioning process relies on short parS motifs, 
primarily located within the repABC modules2. After replication, the parS sites are bound by the RepB 
protein, and the resulting RepB-parS complexes are actively partitioned to opposite cell poles by the 
RepA protein, thereby positioning the origin regions in both daughter cells (Fig. 2). 

Interestingly, the repABC module of A. ampelinum S4 chromid does not contain any predicted parSs3. 
However, several motifs matching the parS consensus sequence have been identified within two 
intergenic (igs) regions far downstream of repC – one parS site approximately 18 kb downstream of 
repC and additional two parSs about 35 kb downstream of repC3. 

For some extrachromosomal replicons (but not of those of the repABC family), it has been shown that binding
of the chromosomal replication initiator DnaA can enhance the efficiency of the replication initiation4.
Notably, the repABC module of A. ampelinum chromid (unlike typical repABC replicons) contains two
predicted DnaA binding sites (DnaA-boxes) within an unusually long igs between repB and repC genes (about
950 bp-long whereas in other repABC replicons it ranges from 150 to 200 bp3).

Fig. 1. Genetic organization of repABC module Fig. 2. Plasmid DNA segregation into dividing cells
mediated by the partition system

Chip-Seq analysis of RepB, RepC and DnaA interactions with A. ampelinum S4 chromid DNA 

Figure 3. (A) The genetic organisation of the A. ampelinum S4 chromid repABC module with marked interactions of DnaA, RepB and RepC proteins detected by ChiP-seq analysis. (B) Strong RepB binding to 12 
chromid regions containing consensus and degenerate parS sites. (C) Experimental verification of RepB-6His interactions with parS sequences using EMSA assays.
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Chip-Seq analysis of RepB, RepC and DnaA interactions with A. ampelinum S4 chromosome DNA 

The analysis revealed that:

• RepB binds strongly to parS sites matching the canonical repABC consensus, confirming their role in 
chromid segregation. RepC binds with high affinity within repC, indicating the replication origin. DnaA 
shows weak binding in the repB–repC intergenic region (Fig. 3).

• RepB also binds degenerate parS with a conserved 8-nt half-motif, a feature not seen in other RepB 
proteins, potentially enhancing replicon segregation (Fig. 3BC).

• EMSA confirmed strong RepB-6His binding to parS1–parS3, supporting their role in chromid maintenance. 
Just 5 pmol of protein fully bound 1 pmol of these sites. Under higher concentration, RepB-6His also bound 
degenerate parS motifs with a conserved second half (Fig. 3C).
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Figure 4. 
(A) Genome-wide map showing binding sites of RepB, RepC, and DnaA proteins across the primary chromosome.
(B) MFA results indicating the replication direction of the main chromosome and chromid during exponential growth.
(C) Proposed model of replication termination synchronization between the chromosome and chromid.

The analysis revealed that:

• A strong RepC binding signal was detected in the chromosome within an ORF 
encoding a PAS domain-containing protein, around position 2787 kb (Fig. 4A).

• Marker frequency analysis (MFA) indicated that the chromid replicates 
unidirectionally. Its replication initiates later than that of the primary 
chromosome, ensuring synchronized termination of replication of both 
replicons within the cell cycle (Fig. 4B).

• Based on these findings, we hypothesize that the identified RepC binding site 
plays a key role in synchronizing replication termination. DNA replication 
through this checkpoint site enables RepC to dissociate and subsequently bind 
to the chromid origin, triggering its replication (Fig. 4C).
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Diagram legend. Color intensity reflects binding strength
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This project aimed to explore the maintenance systems of the A. ampelinum S4 chromid using 
chromatin immunoprecipitation-sequencing (ChIP-seq), a method for genome-wide identification of 
protein–DNA interactions. As a first step, we mapped binding motifs for RepB, RepC and DnaA
proteins both within the repABC module and the entire A. ampelinum chromid.
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In addition to the above observations, ChIP-seq analysis also revealed interesting data on the interactions of RepC, RepB, 
and DnaA with the A. ampelinum chromosome.
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