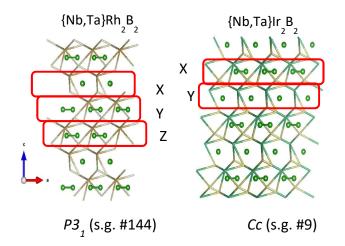


## KONWERSATORIUM INSTYTUTU FIZYKI UMCS

12.10.2023 r., (czwartek) godz. 11<sup>15</sup>, Aula IF im. St. Ziemeckiego


## Prof. dr hab. inż. Tomasz Klimczuk

Faculty of Applied Physics and Mathematics and Advanced Materials Centre, Gdansk University of Technology, Gdańsk, Poland.

## Searching for new superconducting materials - from synthesis through crystal structure to properties

There are more than 1000 reported compounds in the full Heusler family and only about 40 reveal superconductivity [1,2]. Here we present details of the synthesis and physical properties (resistivity, magnetization, and heat capacity) of MgPd<sub>2</sub>Sb [2] and the recently reported Libased ternary intermetallic superconductors LiGa<sub>2</sub>Ir [3] and LiPd<sub>2</sub>Ge [4]. The first compound, together with isoelectronic LiGa<sub>2</sub>Rh [5], is one of the only two superconductors known in this system with valence electron count (VEC) = 16. The experiments confirm bulk superconductivity with  $T_c$  = 2.95 K and suggest that LiGa<sub>2</sub>Ir is a weak-coupling type-II superconductor. The second compound was synthesized together with LiPd<sub>2</sub>Si and LiPd<sub>2</sub>Sn. Superconductivity above 1.7 K was found only in LiPd<sub>2</sub>Ge ( $T_c$  = 1.96 K) but theoretical studies suggest that LiPd<sub>2</sub>Si and LiPd<sub>2</sub>Sn should also reveal superconducting behavior. We propose that the enhanced electron-phonon coupling in LiPd<sub>2</sub>Ge is due to presence of the soft phonon modes. Surprisingly, LiPd<sub>2</sub>Ge is a type-I superconductor, which is very rare among ternary intermetallic compounds.

In the second part of the lecture, we will present a new class of non-centrosymmetric superconductors (NCS). The boride compounds with  $MRh_2B_2$  and  $MIr_2B_2$  (M = Nb, Ta) stoichiometry were first reported by Carnicom, et al. [6] and Górnicka, et al. [7], respectively. They form in the brand-new crystal structure types, both noncentrosymmetric, presented in the figure below.  $MRh_2B_2$  is found in the chiral space group  $P3_1$  whereas isoelectronic  $MIr_2B_2$  crystallizes in the monoclinic Cc space group. Common features of these subfamilies are boron dimers and repeating units marked as X, Y, Z shown in the figure.



[6] E. Carnicom, et al., Sci. Adv. 4, eaar7969 (2018).

[7] K. Górnicka, et al., Adv. Funct. Mater. 31, 2007960 (2021).

The highest superconducting critical temperature is observed in NbRh<sub>2</sub>B<sub>2</sub> and NbIr<sub>2</sub>B<sub>2</sub> with  $T_c$  = 7.6 K and 7.2 K, respectively. Slightly lower  $T_c$  is observed for TaRh<sub>2</sub>B<sub>2</sub> (5.8 K) and TaIr<sub>2</sub>B<sub>2</sub> (5.2 K).

The derived superconducting parameters show that MRh<sub>2</sub>B<sub>2</sub> and MIr<sub>2</sub>B<sub>2</sub> (M = Nb, Ta) are type II BCS moderately coupled superconductors with the upper critical field  $\mu_0H_{c2}(0)$  exceeding the Pauli limit  $\mu_0H_{c2}$  for the all studies superconductors.

This project is supported by a National Science Centre (Poland) project: 2017/27/B/ST5/03044.

- [1] T. Klimczuk, et al., Phys. Rev. B, 85, 174505 (2012).
- [2] M.J. Winiarski, et al., Phys. Rev. B, 103, 214501 (2021).
- [3] K. Górnicka, et al., Scientific Reports, 11, 16517 (2021).
- [4] K. Górnicka, et al., Phys. Rev. B, 102, 024507 (2020).
- [5] E. Carnicom, et al., Chem. Mater. **31**, 2164–2173 (2019).