Liebmann technical documentation

1

2

3	Laplace equation 2D (ZR)
4	
5	relaxation scheme explained.
6	(5 - point star)
7	author: Marcin Kulbaka
8	email: mkulbaka@onet.pl
9	project homepage: http://marcinkulbaka.prv.pl/Liebmann/index_en.html
10	license: GNU General Public License v.3.0+
11	version 12
12	2024.09.03

¹³ University of Maria Curie - Skłodowska in Lublin, Poland

14 Contents

15	1	Liebmann technical documentation series	4
16	2	Versions of this document	4
17	3	Solving Laplace equation using relaxation method	5
18	4	Explanation of symbols in calculations	6
19	5	Mesh ZR - type A (on axis)	7
20	6	Mesh ZR - type B (on axis)	8
21	7	Mesh ZR - type C (on axis)	9
22	8	Mesh ZR - type D (on axis)	10
23	9	Example of A-type mesh in ANSI C (on axis)	11
24	10	Example of B-type mesh in ANSI C (on axis)	14
25	11	Example of C-type mesh in ANSI C (on axis)	15
26	12	Example of D-type mesh in ANSI C (on axis)	17
27 28 29 30 31 32 33 34 35 36	13	Partial derivatives on Oz axis13.1 Personal note13.2 Nodes numbering (on axis O_z)13.3 Taylor expansion of $V_{(z,r)}$ function in cylindrical coordinates13.4 Laplace operator in rotationally symmetrical systems13.5 Value of first partial derivative of V with respect to r on axis Oz 13.6 Value of second partial derivative of V with respect to r on axis Oz 13.7 Value of first partial derivative of V with respect to r divided by r on axis Oz 13.8 Value of second partial derivative of V with respect to z on axis Oz	 18 18 18 19 19 20 21
27 28 30 31 32 33 34 35 36 35 36 37 38 39 40 41 42 43	13	Partial derivatives on Oz axis13.1 Personal note13.2 Nodes numbering (on axis O_z)13.3 Taylor expansion of $V_{(z,r)}$ function in cylindrical coordinates13.4 Laplace operator in rotationally symmetrical systems13.5 Value of first partial derivative of V with respect to r on axis Oz 13.6 Value of second partial derivative of V with respect to r on axis Oz 13.7 Value of first partial derivative of V with respect to r on axis Oz 13.8 Value of second partial derivative of V with respect to z on axis Oz 13.8 Value of second partial derivative of V with respect to z on axis Oz 13.8 Value of second partial derivative of V with respect to z on axis Oz 14.1 Personal note14.2 Nodes numbering in Liebmann mesh (off axis O_z)14.3 Taylor expansion of $V_{(z,r)}$ function in cylindrical coordinates14.4 Laplace operator in rotationally symmetrical systems14.5 Value of second partial derivative of V with respect to r off axis Oz 14.6 Value of first partial derivative of V with respect to r divided by r	 18 18 18 18 18 19 19 20 21 22 22 22 22 23 23 23

46	15 Relaxation formula for node P1 (on axis Oz)	24
47	15.1 Node description	24
48	15.2 Calculation of relaxation formula	24
49	15.3 Final forms of relaxation formula	25
50	15.3.1 zrLV_RELAX5_P1_ON_A	25
51	15.3.2 zrLV_RELAX5_P1_ON_B	25
52	15.3.3 zrLV_RELAX5_P1_ON_C	25
53	15.3.4 zrLV_RELAX5_P1_ON_D	25
54	16 Relaxation formula for node P2 (on axis Oz)	26
55	16.1 Node description	26
56	16.2 Calculation of relaxation formula	26
57	16.3 Final forms of relaxation formula	27
58	16.3.1 zrLV_RELAX5_P2_ON_A	27
59	16.3.2 zrLV_RELAX5_P2_ON_B	27
60	16.3.3 zrLV_RELAX5_P2_ON_C	27
61	16.3.4 zrLV_RELAX5_P2_ON_D	27
62	17 Relaxation formula for node P3 (on axis Oz)	28
63	17.1 Node description	28
64	17.2 Calculation of relaxation formula	28
65	17.3 Final forms of relaxation formula	29
66	17.3.1 zrLV RELAX5 P3 ON A	29
67	17.3.2 zrLV RELAX5 P3 ON B	29
68	17.3.3 zrLV RELAX5 P3 ON C	29
69	17.3.4 zrLV_RELAX5_P3_ON_D	29
70	18 Relaxation formula for node P4	30
71	18.1 Node description	30
72	18.2 Calculation of relaxation formula	30
73	18.3 Final forms of relaxation formula	31
74	18.3.1 zrLV RELAX5 P4 A	31
75	18.3.2 zrLV RELAX5 P4 B	31
76	18.3.3 zrLV RELAX5 P4 C	31
77	18.3.4 zrLV_RELAX5_P4_D	31
78	19 Relaxation formula for node P5	32
79	19.1 Node description	32
80	19.2 Calculation of relaxation formula	32
81	19.3 Final forms of relaxation formula	33
82	19.3.1 zrLV RELAX5 P5 A	33
83	19.3.2 zrLV RELAX5 P5 B	33
84	19.3.3 zrLV RELAX5 P5 C	33
85	19.3.4 zrLV RELAX5 P5 D	33
		-

86	20 Relaxation formula for node P6	34
87	20.1 Node description	34
88	20.2 Calculation of relaxation formula	34
89	20.3 Final forms of relaxation formula	35
90	20.3.1 zrLV_RELAX5_P6_A	35
91	20.3.2 zrLV_RELAX5_P6_B	35
92	20.3.3 zrLV_RELAX5_P6_C	35
93	20.3.4 zrLV_RELAX5_P6_D	35
94	21 Relaxation formula for node P7	36
95	21.1 Node description	36
96	21.2 Calculation of relaxation formula	36
97	21.3 Final forms of relaxation formula	37
98	21.3.1 zrLV_RELAX5_P7_A	37
99	21.3.2 zrLV_RELAX5_P7_B	37
100	21.3.3 zrLV_RELAX5_P7_C	38
101	21.3.4 zrLV_RELAX5_P7_D	38
102	22 Relaxation formula for node P8	39
102 103	22 Relaxation formula for node P8 22.1 Node description	39 39
102 103 104	22 Relaxation formula for node P8 22.1 Node description 22.2 Calculation of relaxation formula	39 39 39
102 103 104 105	22 Relaxation formula for node P822.1 Node description22.2 Calculation of relaxation formula22.3 Final forms of relaxation formula	39 39 39 40
102 103 104 105 106	22 Relaxation formula for node P8 22.1 Node description 22.2 Calculation of relaxation formula 22.3 Final forms of relaxation formula 22.3.1 zrLV_RELAX5_P8_A	39 39 39 40 40
102 103 104 105 106 107	22 Relaxation formula for node P8 22.1 Node description 22.2 Calculation of relaxation formula 22.3 Final forms of relaxation formula 22.3.1 zrLV_RELAX5_P8_A 22.3.2 zrLV_RELAX5_P8_B	39 39 40 40 40
102 103 104 105 106 107 108	22 Relaxation formula for node P8 22.1 Node description 22.2 Calculation of relaxation formula 22.3 Final forms of relaxation formula 22.3.1 zrLV_RELAX5_P8_A 22.3.2 zrLV_RELAX5_P8_B 22.3.3 zrLV_RELAX5_P8_C	39 39 40 40 40 40
102 103 104 105 106 107 108 109	22 Relaxation formula for node P8 22.1 Node description 22.2 Calculation of relaxation formula 22.3 Final forms of relaxation formula 22.3.1 zrLV_RELAX5_P8_A 22.3.2 zrLV_RELAX5_P8_B 22.3.3 zrLV_RELAX5_P8_C 22.3.4 zrLV_RELAX5_P8_D	39 39 40 40 40 40 41
102 103 104 105 106 107 108 109	22 Relaxation formula for node P8 22.1 Node description 22.2 Calculation of relaxation formula 22.3 Final forms of relaxation formula 22.3.1 zrLV_RELAX5_P8_A 22.3.2 zrLV_RELAX5_P8_B 22.3.3 zrLV_RELAX5_P8_C 22.3.4 zrLV_RELAX5_P8_D	 39 39 40 40 40 40 41 42
102 103 104 105 106 107 108 109 111	 22 Relaxation formula for node P8 22.1 Node description	 39 39 40 40 40 40 41 42 42
102 103 104 105 106 107 108 109 110 111	 22 Relaxation formula for node P8 22.1 Node description	 39 39 40 40 40 41 42 42 42
102 103 104 105 106 107 108 109 111 111 112 113	 22 Relaxation formula for node P8 22.1 Node description 22.2 Calculation of relaxation formula 22.3 Final forms of relaxation formula 22.3.1 zrLV_RELAX5_P8_A 22.3.2 zrLV_RELAX5_P8_B 22.3.3 zrLV_RELAX5_P8_C 22.3.4 zrLV_RELAX5_P8_D 23.4 zrLV_RELAX5_P8_D 23.1 Node description 23.2 Calculation of relaxation formula 23.3 Final forms of relaxation formula 	 39 39 40 40 40 41 42 42 42 43
102 103 104 105 106 107 108 109 111 112 113 114	 22 Relaxation formula for node P8 22.1 Node description	 39 39 40 40 40 41 42 42 43 43
102 103 104 105 106 107 108 109 110 111 112 113 114 115	 22 Relaxation formula for node P8 22.1 Node description	 39 39 40 40 40 41 42 42 42 43 43
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116	 22 Relaxation formula for node P8 22.1 Node description	 39 39 40 40 40 41 42 42 42 43 43 43 44

118 1 Liebmann technical documentation series

- Wyznaczanie rozkładu pola elektrostatycznego w próżni metodą relaksacyjną Liebmanna. (Polish version / wersja polska)
- Determination of electrostatic field distribution by using Liebmann relaxation method. (English version / wersja angielska)
- 3. Graphics. Mapping voltages to colours. (colormaps)
- Laplace equation 2D (XY). (Cartesian coordinates). Relaxation scheme explained. (5 - point star)
- 5. Laplace equation 2D (ZR) (Cylindrical coordinates). Relaxation scheme
 explained. (5 point star)
- 6. Liebmann source sode. (ANSI C programming language)

2 Versions of this document

- 130 1. version 1 2023.11.03
- 131 2. version 2 2023.01.04
- 3. version 3 2024.02.02
- 133 4. version 4 2024.04.02
- ¹³⁴ 5. version 5 2024.05.18
- 135 6. version 6 2024.05.23
- ¹³⁶ 7. version 7 2024.05.24
- 137 8. version 8 2024.06.06 (complete $P_1..P_9$)
- 138 9. version 9 2024.06.09
- 139 10. version 10 2024.07.17
- 140 11. version 11 2024.07.18
- 141 12. version 12 2024.09.03

3 Solving Laplace equation using relaxation method

I tried to solve Laplace equation using mainly information from Pierre Grivet's
 book (Electron Optics) - [1].

There are few editions of this book (1965, 1972). Second edition (1972) contains explanation of relaxation method (page 38).

More generalized approaches has been drafted by James R. Nagel - [2]. https://my.ece.utah.edu/~ece6340/LECTURES/Feb1/ (visited 2023-03-01).

Taylor expansion in cylindrical coordinates has been found on the Internet: [3].

152

There are also publications edited by Albert Septier: Focusing of Charged Particles [4] and Applied Charged Particle Optics (part A). [5].

I have also found some ideas in publication of D W O Heddle: Electrostatic
 Lens Systems [6] (especially using PC computers to solve electrostatic prob lems).

I have also found (brief) description of by - hand solving of Laplace equa tion by Bohdan Paszkowski - [7] (Polish edition). English translation of this book
 also exists - [8].

161

I would like to thank many people, who helped me with this challenge. Espe-162 cially prof. dr hab. Mieczysław Jałochowski (supervisor of my master's thesis), 163 who enabled me to use SIMION and MATLAB software while writing master's 164 thesis about electron optical systems at University of Maria Curie - Skłodowska 165 in Lublin in 2008. I would also thank to prof. Marcin Turek for fruitful discus-166 sion about numerical methods. What is more, my colleague Bartosz in 2012 167 had explained me general problems with software efficiency. So he had also 168 contributed significantly to the idea of Liebmann software (especially using C 169 language). 170

4 Explanation of symbols in calculations

- P_i *i*-th mesh node
- V_i value of electrostatic potential at node P_i . Unit [V]
- *h* mesh step (for example h_x mesh step in *x* direction). Unit [mm]
- $g_{i+/-}$ gradient in direction i (for example $g_{1z-} = \frac{V_1 V_{1z-}}{h_z}$. Unit $\left[\frac{V}{mm}\right]$
- i_{row} index of row in mesh. Values of $i_{row} = 1, 2, ..., \text{size_row}$
- i_{col} index of column in mesh. Values of $i_{col} = 1, 2, ..., \text{size_col}$
- p in book: [1] $r = ph_r$, so for off axis point we have: $p = (i_{row} 1)$
- ¹⁷⁹ Symbols in final relaxation formulae
- ¹⁸⁰ zrLV_RELAX5_P1_A
- zr coordinates (2D, cylindrical)
- LV Laplace equation in vacuum (no dielectrics)
- RELAX_5 5- point relaxation method
- P1 relaxation scheme for point P1 (in general P1 .. P9)
- A mesh type A (in general A .. D)

¹⁸⁶ 5 Mesh ZR - type A (on axis)

187 $h_z eq h_r$

188 gradient V outside a mesh exists

Figure 1: Mesh ZR type A

6 Mesh ZR - type B (on axis) 189

- 190
- $$\label{eq:hz} \begin{split} h_z \neq h_r \\ \text{gradient } V \text{ outside a mesh does not exist} \end{split}$$
 191

Figure 2: Mesh ZR type B

¹⁹² 7 Mesh ZR - type C (on axis)

193 $h_z = h_r = h$

194 gradient V outside a mesh exists

Figure 3: Mesh ZR type C

195 8 Mesh ZR - type D (on axis)

```
196 h_z = h_r = h
```

197 gradient V outside a mesh does not exist

Figure 4: Mesh ZR type D

¹⁹⁸ 9 Example of A-type mesh in ANSI C (on axis)

Example of A- type mesh in ANSI C program. The mesh is represented by 2 dimensional array of double precision numbers. Rows and columns in mesh are numbered from 1 (this was my choice) instead of default 0 (as usual in C language). This choice nas pros and cons. Is is easier to calculate mesh size (size_row * size_col). Access to each node can be also more intuitive, but logic in each library function must contain this shift between node ordering styles.

Figure 5: ANSI C - mesh XY type A

Note. This is more general example of "off-axis" mesh. If bottom egde of mesh lies on axis Oz, then gradient g_{r-} does not exist.

- $g_{z-} \equiv \texttt{double*} \ \texttt{ptr}_gZ_minus$
- $g_{z+} \equiv \texttt{double*} \ \texttt{ptr}_gZ_plus$
- 209 $g_{r-} \equiv \texttt{double*} \ \texttt{ptr}_g\texttt{R}_minus$
- $_{210}$ $g_{r+} \equiv \texttt{double* ptr_gR_plus}$

211	• $V \equiv \texttt{double*} \ \texttt{ptr}_\texttt{V}$
212	• unsigned int size_row == 4
213	• unsigned int size_col == 6
214	• unsigned int i_row == 1, 2,, 4
215	• unsigned int i_col == 1,2,, 6
216	• double h_z == 1.0 [mm]
217	• double h r == 2.0 [mm]

The following picture describes analogous version of ptr_V mesh, which can be dynamically allocated on heap by pointer metod. The mesh is represented by single block of memory. The numbers or rows and columns are also known, so each node can be also accessed by appropriate index (memory address).

The following picture describes analogous version of mesh, which can be easily dynamically allocated on heap by pointer metod. The mesh is represented by single block of memory. The numbers or rows and columns are also known, so each node can be also accessed by appropriate index (memory address).

Figure 6: ANSI C - mesh ZR type D

Each mesh point has its unique index (let's say icp - (index of central point)), which can be determined, if we know indices of row and column (i_row, i_col).

 $icp == (i_row - 1) * size_col + i_col - 1$ (9.1)

For example for each point of a mesh indices of row and column have values:

Also for any relaxation formula for off - axis case the p symbol appears. This symbol is connected with r cylindrical coordinate of given node:

$$r = ph_r \tag{9.3}$$

236 SO:

$$p == (i_row - 1)$$
 (9.4)

10 Example of B-type mesh in ANSI C (on axis)

Example of B- type mesh in ANSI C program. The mesh is analogous to A type mesh. There are no electric field gradients on mesh borders.

Figure 7: ANSI C - mesh XY type B

```
V ≡ double* ptr_V
unsigned int size_row == 4
unsigned int size_col == 6
unsigned int i_row == 1, 2, ..., 4
unsigned int i_col == 1,2, ..., 6
double h_z == 1.0 [mm]
double h_r == 2.0 [mm]
```

²⁴⁷ 11 Example of C-type mesh in ANSI C (on axis)

Example of C- type mesh in ANSI C program. The mesh is analogous to A type mesh. Just mesh mesh step $h_x = h_y = h$.

Figure 8: ANSI C - mesh XY type C

Note. This is more general example of "off-axis" mesh. If bottom egde of mesh lies on axis Oz, then gradient g_{r-} does not exist.

- $g_{z-} \equiv \texttt{double* ptr_gZ_minus}$
- $g_{z+} \equiv \texttt{double*} \ \texttt{ptr}_g\texttt{Z_plus}$
- $g_{r-} \equiv \texttt{double*} \ \texttt{ptr}_g\texttt{R}_minus$
- 255 $g_{r+} \equiv \texttt{double* ptr_gR_plus}$
- $V \equiv \texttt{double* ptr_V}$
- unsigned int size_row == 4

• unsigned int size_col == 6

- unsigned int i_row == 1, 2, ..., 4
- unsigned int i_col == 1,2, ..., 6
- double h == 1.0 [mm]

12 Example of D-type mesh in ANSI C (on axis)

Example of D- type mesh in ANSI C program. The mesh is analogous to B type mesh. Just $h_x = h_y = h$.

Figure 9: ANSI C - mesh ZR type D

```
V = double* ptr_V
unsigned int size_row == 4
unsigned int size_col == 6
unsigned int i_row == 1, 2, ..., 4
unsigned int i_col == 1,2, ..., 6
double h == 1.0 [mm]
```

$_{271}$ 13 Partial derivatives on Oz axis

272 13.1 Personal note

This is my presonal interpretation. I cannot guarantee correctness of this ap-proach

13.2 Nodes numbering (on axis O_z)

We will try to work with P_2 point (determine approximations of aprtial derivatives for point P_2 , which lies on axis O_z). Nodes numbering on axis O_z differs from numbering convention in Pierre Grivet's book.

Figure 10: Nodes on axis Oz

Point P_2 is situated on O_z axis. It has 2 neighbours on axis O_z : P_1 and P_3 . Node P_5 lies above P_2 node. The mesh step in r direction is h_r . The mesh step in z direction is h_z .

13.3 Taylor expansion of $V_{(z,r)}$ function in cylindrical coordinates

Taylor expansion of $V_{(z,r)}$ function in cylindrical coordinates [3]:

$$V_{(z,r)} = V_{(z_0,r_0)} + \left(\frac{\partial V}{\partial z}\right)_{(z_0,r_0)} (z - z_0) + \left(\frac{\partial V}{\partial r}\right)_{(z_0,r_0)} (r - r_0) + \frac{1}{2!} \left(\frac{\partial^2 V}{\partial z^2}\right)_{(z_0,r_0)} (z - z_0)^2 + \dots$$
(13.1)

13.4 Laplace operator in rotationally symmetrical systems

Laplace operator in cylindrical coordinates (cylindrical symmetry) consist of 3 elements [1] (on page 42):

$$\nabla^{2} \left(V_{(z,r)} \right) = \left(\frac{\partial^{2} V}{\partial r^{2}} \right) + \frac{1}{r} \left(\frac{\partial V}{\partial r} \right) + \frac{1}{r} \left(\frac{\partial^{2} V}{\partial z^{2}} \right)$$
(13.2)

²⁸⁷ In this chapter we will try to determine approximation of each term.

13.5 Value of first partial derivative of V with respect to r on axis Oz

In cylindrically symmetrical field first partial derivative of V (by r) on axis Ozequals zero (because $V_{(+dr)} = V_{(-dr)}$)

$$\left(\frac{\partial V}{\partial r}\right)_{(z,r=0)} = 0 \tag{13.3}$$

13.6 Value of second partial derivative of V with respect to r on axis Oz

²⁹⁴ In this subchapter we will try to determine the first term of equation 13.2

In our case there is node P_2 on axis Oz. The nearest neihgbour of P_2 is node P_5 , which lies "over Oz axis". The distance between P_2 and P_5 is h_r . When we " walk away" axis Oz in r direction (from point P_2 to point P_5), the electric potential V_5 can be determined from truncated Taylor expansion 13.1 by expression:

$$V_5 \approx V_2 + \left(\frac{\partial V}{\partial r}\right)_{P_2} \cdot h_r + \frac{1}{2!} \left(\frac{\partial^2 V}{\partial r^2}\right)_{P_2} \cdot h_r^2$$
(13.4)

We want to determine the second derivative:

$$\left(\frac{\partial^2 V}{\partial r^2}\right)_{P_2} = ? \tag{13.5}$$

³⁰¹ We solve equation 13.4 (using relation 13.3).

$$\left(\frac{\partial^2 V}{\partial r^2}\right)_{P_2} \approx \frac{2! \left(V_5 - V_2\right)}{h_r^2} = \frac{2 \left(V_5 - V_2\right)}{h_r^2}$$
(13.6)

This is final form of approximation of the second derivative of V with respect to r on axis Oz. It will help us to determine Laplace operator in rotationally symmetrical systems.

13.7 Value of first partial derivative of V with respect to r divided by r on axis Oz

We will try to determine the second term of relation 13.2 When we are on Ozaxis, the second term has to be determined (because it aims to value $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$).

When we ", walk away" axis Oz in r direction, the electric potential $V_{(z_0,r)}$ can be determined from truncated Taylor expansion by:

311

$$V_{(z_0,r)} \approx V_{(z_0,r_0)} + \left(\frac{\partial V}{\partial r}\right)_{(z_0,r_0)} (r - r_0)$$
 (13.7)

312 On Oz axis $r_0 = 0$, so $(r_0 - r) = r$

313

314 Thus we have:

$$V_{(z_0,r)} \approx V_{(z_0,0)} + \left(\frac{\partial V}{\partial r}\right)_{(z_0,0)} \cdot r$$
(13.8)

Now let us differentiate (both sides) of such relation:

$$|\frac{\partial}{\partial r}$$
 (13.9)

316 We get:

$$\left(\frac{\partial V}{\partial r}\right)_{(z_0,r)} \approx \left(\frac{\partial V}{\partial r}\right)_{(z_0,0)} + \left(\frac{\partial^2 V}{\partial r^2}\right)_{(z_0,0)} \cdot r + \left(\frac{\partial V}{\partial r}\right)_{(z_0,0)} \cdot 1 \quad (13.10)$$

On axis Oz we can apply relation 13.3. That's why we can remove these two terms (first and third) from equation 13.10:

319 So we get (if r = 0):

$$\left(\frac{\partial V}{\partial r}\right)_{(z_0,r)} \approx \left(\frac{\partial^2 V}{\partial r^2}\right)_{(z_0,0)} \cdot r \tag{13.11}$$

We can now divide both sides by r.

$$|\cdot\frac{1}{r} \tag{13.12}$$

We have relation, which has been published in Pierre Grivet's book[1].

$$\left(\frac{1}{r}\frac{\partial V}{\partial r}\right)_{(z_0,r)} \approx \left(\frac{\partial^2 V}{\partial r^2}\right)_{(z_0,0)}$$
(13.13)

Approximation of this term on numerical mesh has been already determined in previous subsection (13.6).

13.8 Value of second partial derivative of V with respect to z on axis Oz

The third term of Laplace operator in rotationally symmetrical systems 13.2 takes form (on picture 10):

$$\left(\frac{\partial^2 V}{\partial z^2}\right)_{P_2} \approx \frac{\frac{V_3 - V_2}{h_z} - \frac{V_2 - V_1}{h_z}}{h_z} = \frac{V_1 + V_3 - 2V_2}{h_z^2}$$
(13.14)

Now we have determined all the 3 approximations o partial derivatives of Vin cylindrically symetrical systems (on axis O_z).

$_{330}$ 14 Partial derivatives off Oz axis

331 14.1 Personal note

This is my presonal interpretation. I cannot guarantee correctness of this approach

14.2 Nodes numbering in Liebmann mesh (off axis O_z)

Figure 11: Nodes off axis Oz. Exemplary vector r_5 describes distance from axis O_z to node P_5

Mesh step in *z* direction is h_z . Mesh step in *r* direction is h_r . Sample mesh points P_5 lies off O_z axis. Distance between mesh point P_5 and O_z axis is r_5 . For ANSI C meshes (in Liebmann source code) the following relations have place:

$$r = ph_r \tag{14.1}$$

$$p = i_{row} - 1 \tag{14.2}$$

14.3 Taylor expansion of $V_{(z,r)}$ function in cylindrical coordinates

Taylor expansion of $V_{(z,r)}$ function in cylindrical coordinates [3]:

$$V_{(z,r)} = V_{(z_0,r_0)} + \left(\frac{\partial V}{\partial z}\right)_{(z_0,r_0)} (z - z_0) + \left(\frac{\partial V}{\partial r}\right)_{(z_0,r_0)} (r - r_0) + \frac{1}{2!} \left(\frac{\partial^2 V}{\partial z^2}\right)_{(z_0,r_0)} (z - z_0)^2 + \dots$$
(14.3)

14.4 Laplace operator in rotationally symmetrical systems

Laplace operator in cylindrical coordinates (cylindrical symmetry) consist of 3 elements [1] (on page 42):

$$\nabla^{2} \left(V_{(z,r)} \right) = \left(\frac{\partial^{2} V}{\partial r^{2}} \right) + \frac{1}{r} \left(\frac{\partial V}{\partial r} \right) + \frac{1}{\sqrt{2}} \left(\frac{\partial^{2} V}{\partial z^{2}} \right)$$
(14.4)

In this chapter we will try to determine approximation of each term.

 $_{345}$ 14.5Value of second partial derivative of V with respect to r off $_{346}$ axis Oz

$$\left(\frac{\partial^2 V}{\partial r^2}\right)_{P_5} \approx \frac{\frac{V_8 - V_5}{h_r} - \frac{V_5 - V_2}{h_r}}{h_r} = \frac{V_2 + V_8 - 2V_5}{h_r^2}$$
(14.5)

34714.6Value of first partial derivative of V with respect to r divided348by r off axis Oz

$$\frac{1}{r_5} \left(\frac{\partial V}{\partial r}\right)_{P_5} \approx \frac{1}{r_5} \frac{V_8 - V_2}{2h_r} = \frac{V_8 - V_2}{2r_5h_z}$$
(14.6)

14.7 Value of second partial derivative of V with respect to z off axis Oz

$$\left(\frac{\partial^2 V}{\partial z^2}\right)_{P_5} \approx \frac{\frac{V_6 - V_5}{h_z} - \frac{V_5 - V_4}{h_z}}{h_z} = \frac{V_4 + V_6 - 2V_5}{h_z^2}$$
(14.7)

15 Relaxation formula for node P1 (on axis Oz)

352 15.1 Node description

Left, bottom corner of mesh ZR (on axis Oz).

354 15.2 Calculation of relaxation formula

 $_{355}$ Laplace equation at node P_1

$$\nabla^2 \left(V_{(z,r)} \right)_{P_1} = 0 \tag{15.1}$$

$$\left(\frac{\partial^2 V_{(z,r)}}{\partial r^2}\right)_{P_1} + \left(\frac{1}{r}\frac{\partial V_{(z,r)}}{\partial r}\right)_{P_1} + \left(\frac{\partial^2 V_{(z,r)}}{\partial z^2}\right)_{P_1} = 0$$
(15.2)

Approximation of partial derivatives of $V_{(z,r)}$ at node P_1

$$\left(\frac{\partial^2 V_{(z,r)}}{\partial r^2}\right)_{P_1} \approx \frac{\frac{V_4 - V_1}{h_r} - \frac{V_1 - V_4}{h_r}}{h_r} = \frac{2\left(V_4 - V_1\right)}{h_r^2}$$
(15.3)

$$\left(\frac{1}{r}\frac{\partial V_{(z,r)}}{\partial r}\right)_{P_1} \approx \frac{2\left(V_4 - V_1\right)}{h_r^2} \tag{15.4}$$

$$\left(\frac{\partial^2 V_{(z,r)}}{\partial z^2}\right)_{P_1} \approx \frac{\frac{V_2 - V_1}{h_z} - \frac{V_1 - V_{1z-}}{h_z}}{h_z} = \frac{V_2 - V_1}{h_z^2} - \frac{g_{1z-}}{h_z}$$
(15.5)

Let us substitute approximations to Laplace equation.

$$\frac{2(V_4 - V_1)}{h_r^2} + \frac{2(V_4 - V_1)}{h_r^2} + \frac{V_2 - V_1}{h_z^2} - \frac{g_{1z-}}{h_z} = 0$$
(15.6)

$$\frac{2(V_4 - V_1)}{h_r^2} + \frac{2(V_4 - V_1)}{h_r^2} + \frac{V_2 - V_1}{h_z^2} = \frac{g_{1z-}}{h_z}$$
(15.7)

Let us find V_1

$$V_1 = ?$$
 (15.8)

Let us multiply both sides

$$|\cdot h_z^2 h_r^2 \tag{15.9}$$

360 We obtain

$$2V_4h_z^2 - 2V_1h_z^2 + 2V_4h_z^2 - 2V_1h_z^2 + V_2h_r^2 - V_1h_r^2 = g_{1z} - h_zh_r^2$$
(15.10)

Let us simplify this equation:

$$V_1 \left(2h_z^2 + 2h_z^2 + h_r^2 \right) =$$

$$2V_4 h_z^2 + 2V_4 h_z^2 + V_2 h_r^2 - g_{1z-} h_z h_r^2$$
(15.11)

So we have:

$$V_1 \left(4h_z^2 + h_r^2 \right) = 4V_4 h_z^2 + V_2 h_r^2 - g_{1z-} h_z h_r^2$$
(15.12)

15.3 Final forms of relaxation formula

³⁶⁴ **15.3.1 zrLV_RELAX5_P1_ON_A**

$$h_{z} \neq h_{r}$$

$$g_{1z-} \neq 0$$

$$V_{1} = \frac{4V_{4}h_{z}^{2} + V_{2}h_{r}^{2} - g_{1z-}h_{z}h_{r}^{2}}{4h_{z}^{2} + h_{r}^{2}}$$
(15.13)

³⁶⁵ **15.3.2 zrLV_RELAX5_P1_ON_B**

$$h_{z} \neq h_{r}$$

$$g_{1z-} = 0$$

$$V_{1} = \frac{4V_{4}h_{z}^{2} + V_{2}h_{r}^{2}}{4h_{z}^{2} + h_{r}^{2}}$$
(15.14)

366 15.3.3 zrLV_RELAX5_P1_ON_C

$$h_{z} = h_{r} = h$$

$$g_{1z-} \neq 0$$

$$V_{1} = \frac{4V_{4} + V_{2} - g_{1z-}h}{5}$$
(15.15)

367 15.3.4 zrLV_RELAX5_P1_ON_D

$$h_{z} = h_{r} = h$$

$$g_{1z-} = 0$$

$$V_{1} = \frac{4V_{4} + V_{2}}{5}$$
(15.16)

16 Relaxation formula for node P2 (on axis Oz)

369 16.1 Node description

 $_{370}$ Bottom edge of mesh ZR (on axis Oz).

16.2 Calculation of relaxation formula

 $_{\rm 372}$ $\,$ Laplace equation at node P_2

$$\nabla^2 \left(V_{(z,r)} \right)_{P_2} = 0 \tag{16.1}$$

$$\left(\frac{\partial^2 V_{(z,r)}}{\partial r^2}\right)_{P_2} + \left(\frac{1}{r}\frac{\partial V_{(z,r)}}{\partial r}\right)_{P_2} + \left(\frac{\partial^2 V_{(z,r)}}{\partial z^2}\right)_{P_2} = 0$$
(16.2)

 $_{\rm 373}$ Approximation of partial derivatives of $V_{(z,r)}$ at node P_2

$$\left(\frac{\partial^2 V_{(z,r)}}{\partial r^2}\right)_{P_2} \approx \frac{\frac{V_5 - V_2}{h_r} - \frac{V_2 - V_5}{h_r}}{h_r} = \frac{2\left(V_5 - V_2\right)}{h_r^2}$$
(16.3)

$$\left(\frac{1}{r}\frac{\partial V_{(z,r)}}{\partial r}\right)_{P_2} \approx \frac{2\left(V_5 - V_2\right)}{h_r^2} \tag{16.4}$$

$$\left(\frac{\partial^2 V_{(z,r)}}{\partial z^2}\right)_{P_2} \approx \frac{\frac{V_3 - V_2}{h_z} - \frac{V_2 - V_1}{h_z}}{h_z} = \frac{V_1 + V_3 - 2V_2}{h_z^2}$$
(16.5)

³⁷⁴ Let us substitute approximations to Laplace equation.

$$\frac{2(V_5 - V_2)}{h_r^2} + \frac{2(V_5 - V_2)}{h_r^2} + \frac{V_1 + V_3 - 2V_2}{h_z^2} = 0$$
(16.6)

There are no g expressions to move, to formula 7 has identical form as formula 6. $2(V_5 - V_2) + 2(V_5 - V_2) + V_1 + V_3 - 2V_2$

$$\frac{(V_5 - V_2)}{h_r^2} + \frac{2(V_5 - V_2)}{h_r^2} + \frac{V_1 + V_3 - 2V_2}{h_z^2} = 0$$
(16.7)

Let us find V_2

 $V_2 = ?$ (16.8)

378 Let us multiply both sides

$$|\cdot h_z^2 h_r^2 \tag{16.9}$$

We obtain

$$2V_5h_z^2 - 2V_2h_z^2 + 2V_5h_z^2 - 2V_2h_z^2 + V_1h_r^2 + V_3h_r^2 - 2V_2h_r^2 = 0$$
(16.10)

Let us simplify this equation:

$$V_2 \left(2h_z^2 + 2h_z^2 + 2h_r^2\right) = 2V_5 h_z^2 + 2V_5 h_z^2 + V_1 h_r^2 + V_3 h_r^2$$
(16.11)

So we have:

$$V_2\left(4h_z^2 + 2h_r^2\right) = 4V_5h_z^2 + (V_1 + V_3)h_r^2$$
(16.12)

382 16.3 Final forms of relaxation formula

383 16.3.1 zrLV_RELAX5_P2_ON_A

$$h_z \neq h_r$$

$$V_2 = \frac{4V_5h_z^2 + (V_1 + V_3)h_r^2}{4h_z^2 + 2h_r^2}$$
(16.13)

384 16.3.2 zrLV_RELAX5_P2_ON_B

 $h_z \neq h_r$

$$V_2 = \frac{4V_5h_z^2 + (V_1 + V_3)h_r^2}{4h_z^2 + 2h_r^2}$$
(16.14)

385 16.3.3 zrLV_RELAX5_P2_ON_C

$$h_z = h_r = h$$

$$V_2 = \frac{4V_5 + V_1 + V_3}{6}$$
(16.15)

386 16.3.4 zrLV_RELAX5_P2_ON_D

$$h_z = h_r = h$$

$$V_2 = \frac{4V_5 + V_1 + V_3}{6}$$
(16.16)

$_{387}$ 17 Relaxation formula for node P3 (on axis Oz)

388 17.1 Node description

Right, bottom corner of mesh ZR (on axis Oz).

17.2 Calculation of relaxation formula

³⁹¹ Laplace equation at node P_3

$$\nabla^2 \left(V_{(z,r)} \right)_{P_3} = 0 \tag{17.1}$$

$$\left(\frac{\partial^2 V_{(z,r)}}{\partial r^2}\right)_{P_3} + \left(\frac{1}{r}\frac{\partial V_{(z,r)}}{\partial r}\right)_{P_3} + \left(\frac{\partial^2 V_{(z,r)}}{\partial z^2}\right)_{P_3} = 0$$
(17.2)

392 Approximation of partial derivatives of $V_{(z,r)}$ at node P_3

$$\left(\frac{\partial^2 V_{(z,r)}}{\partial r^2}\right)_{P_3} \approx \frac{\frac{V_6 - V_3}{h_r} - \frac{V_3 - V_6}{h_r}}{h_r} = \frac{2\left(V_6 - V_3\right)}{h_r^2}$$
(17.3)

$$\left(\frac{1}{r}\frac{\partial V_{(z,r)}}{\partial r}\right)_{P_3} \approx \frac{2\left(V_6 - V_3\right)}{h_r^2} \tag{17.4}$$

$$\left(\frac{\partial^2 V_{(z,r)}}{\partial z^2}\right)_{P_3} \approx \frac{\frac{V_{3z+} - V_3}{h_z} - \frac{V_3 - V_2}{h_z}}{h_z} = \frac{V_2 - V_3}{h_z^2} + \frac{g_{3z+}}{h_z}$$
(17.5)

³⁹³ Let us substitute approximations to Laplace equation.

$$\frac{2(V_6 - V_3)}{h_r^2} + \frac{2(V_6 - V_3)}{h_r^2} + \frac{V_2 - V_3}{h_z^2} + \frac{g_{3z+}}{h_z} = 0$$
(17.6)

$$\frac{2(V_6 - V_3)}{h_r^2} + \frac{2(V_6 - V_3)}{h_r^2} + \frac{V_2 - V_3}{h_z^2} = -\frac{g_{3z+1}}{h_z}$$
(17.7)

 $_{
m 394}$ Let us find V_3

$$V_3 = ?$$
 (17.8)

Let us multiply both sides

$$|\cdot h_z^2 h_r^2 \tag{17.9}$$

396 We obtain

$$2V_6h_z^2 - 2V_3h_z^2 + 2V_6h_z^2 - 2V_3h_z^2 + V_2h_r^2 - V_3h_r^2 = -g_{3z+}h_zh_r^2$$
(17.10)

³⁹⁷ Let us simplify this equation:

$$V_3 \left(2h_z^2 + 2h_z^2 + h_r^2\right) =$$

$$2V_6h_z^2 + 2V_6h_z^2 + V_2h_r^2 + g_{3z+}h_zh_r^2$$
(17.11)

So we have:

$$V_3\left(4h_z^2 + h_r^2\right) = 4V_6h_z^2 + V_2h_r^2 + g_{1z-}h_zh_r^2$$
(17.12)

17.3 Final forms of relaxation formula

400 17.3.1 zrLV_RELAX5_P3_ON_A

$$h_{z} \neq h_{r}$$

$$g_{3z+} \neq 0$$

$$V_{3} = \frac{4V_{6}h_{z}^{2} + V_{2}h_{r}^{2} + g_{3z+}h_{z}h_{r}^{2}}{4h_{z}^{2} + h_{r}^{2}}$$
(17.13)

401

402 **17.3.2 zrLV_RELAX5_P3_ON_B**

$$h_{z} \neq h_{r}$$

$$g_{3z+} = 0$$

$$V_{3} = \frac{4V_{6}h_{z}^{2} + V_{2}h_{r}^{2}}{4h_{z}^{2} + h_{r}^{2}}$$
(17.14)

403 17.3.3 zrLV_RELAX5_P3_ON_C

$$h_{z} = h_{r} = h$$

$$g_{3z+} \neq 0$$

$$V_{3} = \frac{4V_{6} + V_{2} + g_{3z+}h}{5}$$
(17.15)

404 17.3.4 zrLV_RELAX5_P3_ON_D

$$h_{z} = h_{r} = h$$

$$g_{3z+} = 0$$

$$V_{3} = \frac{4V_{6} + V_{2}}{5}$$
(17.16)

18 Relaxation formula for node P4

406 **18.1 Node description**

⁴⁰⁷ Left edge of mesh ZR.

18.2 Calculation of relaxation formula

409 Laplace equation at node P_4

$$\nabla^2 \left(V_{(z,r)} \right)_{P_4} = 0 \tag{18.1}$$

$$\left(\frac{\partial^2 V_{(z,r)}}{\partial r^2}\right)_{P_4} + \left(\frac{1}{r}\frac{\partial V_{(z,r)}}{\partial r}\right)_{P_4} + \left(\frac{\partial^2 V_{(z,r)}}{\partial z^2}\right)_{P_4} = 0$$
(18.2)

 $_{\tt 410}$ — Approximation of partial derivatives of $V_{(z,r)}$ at node P_4

411

(note: $r = ph_r$ (such as in Pierre Grivet's book))

$$\left(\frac{\partial^2 V_{(z,r)}}{\partial r^2}\right)_{P_4} \approx \frac{\frac{V_7 - V_4}{h_r} - \frac{V_4 - V_1}{h_r}}{h_r} = \frac{V_1 + V_7 - 2V_4}{h_r^2}$$
(18.3)

$$\left(\frac{1}{r}\frac{\partial V_{(z,r)}}{\partial r}\right)_{P_4} \approx \frac{1}{r}\frac{V_7 - V_1}{2h_r} = \frac{V_7 - V_1}{2ph_r^2}$$
(18.4)

$$\left(\frac{\partial^2 V_{(z,r)}}{\partial z^2}\right)_{P_4} \approx \frac{\frac{V_5 - V_1}{h_z} - \frac{V_4 - V_{4z}}{h_z}}{h_z} = \frac{V_5 - V_4}{h_z^2} - \frac{g_{4z}}{h_z}$$
(18.5)

Let us substitute approximations to Laplace equation.

$$\frac{V_1 + V_7 - 2V_4}{h_r^2} + \frac{V_7 - V_1}{2ph_r^2} + \frac{V_5 - V_4}{h_z^2} - \frac{g_{4z-}}{h_z} = 0$$
(18.6)

$$\frac{V_1 + V_7 - 2V_4}{h_r^2} + \frac{V_7 - V_1}{2ph_r^2} + \frac{V_5 - V_4}{h_z^2} = \frac{g_{4z-}}{h_z}$$
(18.7)

Let us find V_4

$$V_4 = ?$$
 (18.8)

Let us multiply both sides

$$|\cdot 2ph_z^2 h_r^2 \tag{18.9}$$

416 We obtain

$$2pV_1h_z^2 + 2pV_7h_z^2 - 4pV_4h_z^2 + V_7h_z^2 - V_1h_z^2 + + 2pV_5h_r^2 - 2pV_4h_r^2 = 2pg_{4z} - h_zh_r^2$$
(18.10)

Let us simplify this equation:

$$V_4 \left(4ph_z^2 + 2ph_r^2\right) = V_1 (2ph_z^2 - h_z^2) + V_7 (2ph_z^2 + h_z^2) + V_5 2ph_r^2 - 2pg_{4z} - h_z h_r^2$$
(18.11)

418 So we have:

$$V_42p(2h_z^2 + h_r^2) = V_1h_z^2(2p-1) + V_7h_z^2(2p+1) + V_52ph_r^2 - 2pg_{4z} - h_zh_r^2$$
(18.12)

419 18.3 Final forms of relaxation formula

420 18.3.1 zrLV_RELAX5_P4_A

$$\begin{aligned} h_z \neq h_r \\ g_{4z-} \neq 0 \end{aligned}$$

421

$$V_4 = \frac{h_z^2(2p-1)}{2p(2h_z^2 + h_r^2)}V_1 + \frac{h_z^2(2p+1)}{2p(2h_z^2 + h_r^2)}V_7 + \frac{h_r^2}{2h_z^2 + h_r^2}V_5 - \frac{g_{4z-}h_zh_r^2}{2h_z^2 + h_r^2}$$
(18.13)

 $h_z \neq h_r$

422 18.3.2 zrLV_RELAX5_P4_B

423

425

$$g_{4z-} = 0$$

$$V_4 = \frac{h_z^2(2p-1)}{2p(2h_z^2 + h_r^2)}V_1 + \frac{h_z^2(2p+1)}{2p(2h_z^2 + h_r^2)}V_7 + \frac{h_r^2}{2h_z^2 + h_r^2}V_5$$
(18.14)

424 18.3.3 zrLV_RELAX5_P4_C

$$h_{z} = h_{r} = h$$

$$g_{4z-} \neq 0$$

$$V_{4} = \frac{2p-1}{6p}V_{1} + \frac{2p+1}{6p}V_{7} + \frac{1}{3}V_{5} - \frac{g_{4z-}h}{3}$$
(18.15)

426 18.3.4 zrLV_RELAX5_P4_D

$$h_{z} = h_{r} = h$$

$$g_{4z-} = 0$$

$$V_{4} = \frac{2p-1}{6p}V_{1} + \frac{2p+1}{6p}V_{7} + \frac{1}{3}V_{5}$$
(18.16)

19 Relaxation formula for node P5

428 **19.1** Node description

⁴²⁹ Inner node of mesh ZR.

430 19.2 Calculation of relaxation formula

431 Laplace equation at node P_5

$$\nabla^2 \left(V_{(z,r)} \right)_{P_5} = 0 \tag{19.1}$$

$$\left(\frac{\partial^2 V_{(z,r)}}{\partial r^2}\right)_{P_5} + \left(\frac{1}{r}\frac{\partial V_{(z,r)}}{\partial r}\right)_{P_5} + \left(\frac{\partial^2 V_{(z,r)}}{\partial z^2}\right)_{P_5} = 0$$
(19.2)

432 Approximation of partial derivatives of $V_{(z,r)}$ at node P_5

433 434

(note: $r=ph_r$ (such as in Pierre Grivet's book))

$$\left(\frac{\partial^2 V_{(z,r)}}{\partial r^2}\right)_{P_5} \approx \frac{\frac{V_8 - V_5}{h_r} - \frac{V_5 - V_2}{h_r}}{h_r} = \frac{V_2 + V_8 - 2V_5}{h_r^2}$$
(19.3)

$$\left(\frac{1}{r}\frac{\partial V_{(z,r)}}{\partial r}\right)_{P_5} \approx \frac{1}{r}\frac{V_8 - V_2}{2h_r} = \frac{V_8 - V_2}{2ph_r^2}$$
(19.4)

$$\left(\frac{\partial^2 V_{(z,r)}}{\partial z^2}\right)_{P_5} \approx \frac{\frac{V_6 - V_5}{h_z} - \frac{V_5 - V_4}{h_z}}{h_z} = \frac{V_4 + V_6 - 2V_5}{h_z^2}$$
(19.5)

Let us substitute approximations to Laplace equation.

$$\frac{V_2 + V_8 - 2V_5}{h_r^2} + \frac{V_8 - V_2}{2ph_r^2} + \frac{V_4 + V_6 - 2V_5}{h_z^2} = 0$$
 (19.6)

436 We don't need to simplify this equation in step 7:

$$\frac{V_2 + V_8 - 2V_5}{h_r^2} + \frac{V_8 - V_2}{2ph_r^2} + \frac{V_4 + V_6 - 2V_5}{h_z^2} = 0$$
 (19.7)

Let us find V_5

$$V_5 = ?$$
 (19.8)

Let us multiply both sides

$$|\cdot 2ph_z^2 h_r^2 \tag{19.9}$$

439 We obtain

$$2pV_2h_z^2 + 2pV_8h_z^2 - 4pV_5h_z^2 + V_8h_z^2 - V_2h_z^2 + + 2pV_4h_r^2 + 2pV_6h_r^2 - 4pV_5h_r^2 = 0$$
(19.10)

Let us simplify this equation:

$$V_5 \left(4ph_z^2 + 4ph_r^2\right) = V_2 (2ph_z^2 - h_z^2) + V_8 (2ph_z^2 + h_z^2) + + 2ph_r^2 V_4 + 2ph_r^2 V_6$$
(19.11)

441 So we have:

$$V_54p(h_z^2 + h_r^2) = V_2h_z^2(2p - 1) + V_8h_z^2(2p + 1) + V_42ph_r^2 + V_62ph_r^2$$
(19.12)

442 19.3 Final forms of relaxation formula

443 19.3.1 zrLV_RELAX5_P5_A

444

$$V_5 = \frac{h_z^2(2p-1)}{4p(h_z^2 + h_r^2)}V_2 + \frac{h_z^2(2p+1)}{4p(h_z^2 + h_r^2)}V_8 + \frac{h_r^2}{2(h_z^2 + h_r^2)}(V_4 + V_6)$$
(19.13)

 $h_z \neq h_r$

445 19.3.2 zrLV_RELAX5_P5_B

⁴⁴⁶ This formula is identica to formula A:

447

$$V_5 = \frac{h_z^2(2p-1)}{4p(h_z^2 + h_r^2)}V_2 + \frac{h_z^2(2p+1)}{4p(h_z^2 + h_r^2)}V_8 + \frac{h_r^2}{2(h_z^2 + h_r^2)}(V_4 + V_6)$$
(19.14)

 $h_z \neq h_r$

448 19.3.3 zrLV_RELAX5_P5_C

452

$$h_z = h_r = h$$

$$V_5 = \frac{2p - 1}{8p}V_2 + \frac{2p + 1}{8p}V_8 + \frac{1}{4}(V_4 + V_6)$$
(19.15)

450 19.3.4 zrLV_RELAX5_P5_D

⁴⁵¹ This formula is identical to formula C:

$$h_z = h_r = h$$

$$V_5 = \frac{2p - 1}{8p} V_2 + \frac{2p + 1}{8p} V_8 + \frac{1}{4} (V_4 + V_6)$$
(19.16)

20 Relaxation formula for node P6

454 **20.1** Node description

⁴⁵⁵ Right edge of mesh ZR.

456 20.2 Calculation of relaxation formula

457 Laplace equation at node P_6

$$\nabla^2 \left(V_{(z,r)} \right)_{P_6} = 0 \tag{20.1}$$

$$\left(\frac{\partial^2 V_{(z,r)}}{\partial r^2}\right)_{P_6} + \left(\frac{1}{r}\frac{\partial V_{(z,r)}}{\partial r}\right)_{P_6} + \left(\frac{\partial^2 V_{(z,r)}}{\partial z^2}\right)_{P_6} = 0$$
(20.2)

458 Approximation of partial derivatives of $V_{(z,r)}$ at node P_6

459

460 (note: $r = ph_r$ (such as in Pierre Grivet's book))

$$\left(\frac{\partial^2 V_{(z,r)}}{\partial r^2}\right)_{P_6} \approx \frac{\frac{V_9 - V_6}{h_r} - \frac{V_6 - V_3}{h_r}}{h_r} = \frac{V_3 + V_9 - 2V_6}{h_r^2}$$
(20.3)

$$\left(\frac{1}{r}\frac{\partial V_{(z,r)}}{\partial r}\right)_{P_6} \approx \frac{1}{r}\frac{V_9 - V_3}{2h_r} = \frac{V_9 - V_3}{2ph_r^2}$$
(20.4)

$$\left(\frac{\partial^2 V_{(z,r)}}{\partial z^2}\right)_{P_6} \approx \frac{\frac{V_{6z+} - V_6}{h_z} - \frac{V_6 - V_5}{h_z}}{h_z} = \frac{V_5 - V_6}{h_z^2} + \frac{g_{6z+}}{h_z}$$
(20.5)

Let us substitute approximations to Laplace equation.

$$\frac{V_3 + V_9 - 2V_6}{h_r^2} + \frac{V_9 - V_3}{2ph_r^2} + \frac{V_5 - V_6}{h_z^2} + \frac{g_{6z+}}{h_z} = 0$$
(20.6)

$$\frac{V_3 + V_9 - 2V_6}{h_r^2} + \frac{V_9 - V_3}{2ph_r^2} + \frac{V_5 - V_6}{h_z^2} = -\frac{g_{6z+1}}{h_z}$$
(20.7)

Let us find V_6

$$V_6 = ?$$
 (20.8)

Let us multiply both sides

$$|\cdot 2ph_z^2 h_r^2 \tag{20.9}$$

464 We obtain

$$2pV_{3}h_{z}^{2} + 2pV_{9}h_{z}^{2} - 4pV_{6}h_{z}^{2} + V_{9}h_{z}^{2} - V_{3}h_{z}^{2} + + 2pV_{5}h_{r}^{2} - 2pV_{6}h_{r}^{2} = -2pg_{6z+}h_{z}h_{r}^{2}$$
(20.10)

Let us simplify this equation:

$$V_6 \left(4ph_z^2 + 2ph_r^2\right) = V_3 (2ph_z^2 - h_z^2) + V_9 (2ph_z^2 + h_z^2) + V_5 2ph_r^2 + \frac{2pg_{6z+}h_zh_r^2}{2pg_{6z+}h_zh_r^2}$$
(20.11)

466 So we have:

$$V_62p(2h_z^2 + h_r^2) = V_3h_z^2(2p-1) + V_9h_z^2(2p+1) + V_52ph_r^2 + 2pg_{6z+}h_zh_r^2$$
 (20.12)

467 20.3 Final forms of relaxation formula

468 20.3.1 zrLV_RELAX5_P6_A

$$\begin{array}{l} h_z \neq h_r \\ g_{6z+} \neq 0 \end{array}$$

469

$$V_6 = \frac{h_z^2(2p-1)}{2p(2h_z^2 + h_r^2)}V_3 + \frac{h_z^2(2p+1)}{2p(2h_z^2 + h_r^2)}V_9 + \frac{h_r^2}{2h_z^2 + h_r^2}V_5 + \frac{g_{6z+}h_zh_r^2}{2h_z^2 + h_r^2}$$
 (20.13)

 $h_z \neq h_r$

470 20.3.2 zrLV_RELAX5_P6_B

471

$$g_{6z+-} = 0$$

$$V_6 = \frac{h_z^2(2p-1)}{2p(2h_z^2 + h_r^2)}V_3 + \frac{h_z^2(2p+1)}{2p(2h_z^2 + h_r^2)}V_9 + \frac{h_r^2}{2h_z^2 + h_r^2}V_5$$
(20.14)

472 20.3.3 zrLV_RELAX5_P6_C

$$h_z = h_r = h$$
$$g_{6z+} \neq 0$$
$$2n+1$$

473

$$V_6 = \frac{2p-1}{6p}V_3 + \frac{2p+1}{6p}V_9 + \frac{1}{3}V_5 + \frac{g_{6z+h}}{3}$$
(20.15)

474 20.3.4 zrLV_RELAX5_P6_D

475

$$g_{6z+} = 0$$

$$V_4 = \frac{2p-1}{6p}V_3 + \frac{2p+1}{6p}V_9 + \frac{1}{3}V_5$$
(20.16)

 $h_z = h_r = h$

476 21 Relaxation formula for node P7

477 **21.1** Node description

⁴⁷⁸ Left, upper corner of mesh ZR.

479 21.2 Calculation of relaxation formula

480 Laplace equation at node P_7

$$\nabla^2 \left(V_{(z,r)} \right)_{P_7} = 0 \tag{21.1}$$

$$\left(\frac{\partial^2 V_{(z,r)}}{\partial r^2}\right)_{P_7} + \left(\frac{1}{r}\frac{\partial V_{(z,r)}}{\partial r}\right)_{P_7} + \left(\frac{\partial^2 V_{(z,r)}}{\partial z^2}\right)_{P_7} = 0$$
(21.2)

481 Approximation of partial derivatives of $V_{(z,r)}$ at node P_7

482 483

(note: $r = ph_r$ (such as in Pierre Grivet's book))

$$\left(\frac{\partial^2 V_{(z,r)}}{\partial r^2}\right)_{P_7} \approx \frac{\frac{V_{7r+}-V_7}{h_r} - \frac{V_7-V_4}{h_r}}{h_r} = \frac{V_4 - V_7}{h_r^2} + \frac{g_{7r+}}{h_r}$$
(21.3)

$$\left(\frac{1}{r}\frac{\partial V_{(z,r)}}{\partial r}\right)_{P_7} \approx \frac{1}{r}\frac{V_{7r+} - V_4}{2h_r} = \frac{V_7 + g_{7r+}h_r - V_4}{2ph_r^2} = \frac{V_7 - V_4}{2ph_r^2} + \frac{g_{7r+}}{2ph_r}$$
(21.4)

$$\left(\frac{\partial^2 V_{(z,r)}}{\partial z^2}\right)_{P_7} \approx \frac{\frac{V_8 - V_7}{h_z} - \frac{V_7 - V_{7z-}}{h_z}}{h_z} = \frac{V_8 - V_7}{h_z^2} - \frac{g_{7z-}}{h_z}$$
(21.5)

Let us substitute approximations to Laplace equation.

$$\frac{V_4 - V_7}{h_r^2} + \frac{g_{7r+}}{h_r} + \frac{V_7 - V_4}{2ph_r^2} + \frac{g_{7r+}}{2ph_r} + \frac{V_8 - V_7}{h_z^2} - \frac{g_{7z-}}{h_z} = 0$$
(21.6)

$$\frac{V_4 - V_7}{h_r^2} + \frac{V_7 - V_4}{2ph_r^2} + \frac{V_8 - V_7}{h_z^2} = -\frac{g_{7r+}}{h_r} - \frac{g_{7r+}}{2ph_r} + \frac{g_{7z-}}{h_z}$$
(21.7)

Let us find V_7

$$V_7 = ?$$
 (21.8)

Let us multiply both sides

$$|\cdot 2ph_z^2 h_r^2 \tag{21.9}$$

487 We obtain

$$2pV_4h_z^2 - 2pV_7h_z^2 + V_7h_z^2 - V_4h_z^2 + 2pV_8h_r^2 - 2pV_7h_r^2 = -2pg_{7r+}h_z^2h_r - g_{7r+}h_z^2h_r + 2pg_{7z-}h_zh_r^2$$
(21.10)

488 Let us simplify this equation:

$$V_7 \left(2ph_z^2 - h_z^2 + 2ph_r^2 \right) = V_4 (2ph_z^2 - h_z^2) + V_8 (2ph_r^2) + 2pg_{7r+}h_z^2h_r + g_{7r+}h_z^2h_r - 2pg_{7z-}h_zh_r^2$$
(21.11)

489 So we have:

$$V_7((2p-1)h_z^2 + 2ph_r^2) = V_4h_z^2(2p-1) + V_82ph_r^2 + 2pg_{7r+}h_z^2h_r + g_{7r+}h_z^2h_r - 2pg_{7z-}h_zh_r^2$$
(21.12)

490 **21.3** Final forms of relaxation formula

491 21.3.1 zrLV_RELAX5_P7_A

$$h_z \neq h_r$$
$$g_{7z-} \neq 0$$
$$g_{7r+} \neq 0$$

492

$$V_{7} = \frac{h_{z}^{2}(2p-1)}{(2p-1)h_{z}^{2} + 2ph_{r}^{2}}V_{4} + \frac{2ph_{r}^{2}}{(2p-1)h_{z}^{2} + 2ph_{r}^{2}}V_{8} + \frac{(2p+1)g_{7r+}h_{z}^{2}h_{r} - 2pg_{7z-}h_{z}h_{r}^{2}}{(2p-1)h_{z}^{2} + 2ph_{r}^{2}}$$
(21.13)

493 21.3.2 zrLV_RELAX5_P7_B

$$h_{z} \neq h_{r}$$

$$g_{7z-} = 0$$

$$g_{7r+} = 0$$

$$V_{7} = \frac{h_{z}^{2}(2p-1)}{(2p-1)h_{z}^{2} + 2ph_{r}^{2}}V_{4} + \frac{2ph_{r}^{2}}{(2p-1)h_{z}^{2} + 2ph_{r}^{2}}V_{8}$$
(21.14)

494 21.3.3 zrLV_RELAX5_P7_C

$$h_{z} = h_{r} = h$$

$$g_{7z-} \neq 0$$

$$g_{7r+} \neq 0$$

$$V_{7} = \frac{2p-1}{4p-1}V_{4} + \frac{2p}{4p-1}V_{8} + \frac{h((2p+1)g_{7r+} - g_{7z-})}{4p-1}$$
(21.15)

496 21.3.4 zrLV_RELAX5_P7_D

$$h_{z} = h_{r} = h$$

$$g_{7z-} = 0$$

$$g_{7r+} = 0$$

$$V_{7} = \frac{2p-1}{4p-1}V_{4} + \frac{2p}{4p-1}V_{8}$$
(21.16)

497

22 Relaxation formula for node P8

499 22.1 Node description

500 Upper edge of mesh ZR.

501 22.2 Calculation of relaxation formula

⁵⁰² Laplace equation at node P_8

$$\nabla^2 \left(V_{(z,r)} \right)_{P_8} = 0 \tag{22.1}$$

$$\left(\frac{\partial^2 V_{(z,r)}}{\partial r^2}\right)_{P_8} + \left(\frac{1}{r}\frac{\partial V_{(z,r)}}{\partial r}\right)_{P_8} + \left(\frac{\partial^2 V_{(z,r)}}{\partial z^2}\right)_{P_8} = 0$$
(22.2)

503 Approximation of partial derivatives of $V_{(z,r)}$ at node P_8

504 505

(note: $r = ph_r$ (such as in Pierre Grivet's book))

$$\left(\frac{\partial^2 V_{(z,r)}}{\partial r^2}\right)_{P_8} \approx \frac{\frac{V_{8r+} - V_8}{h_r} - \frac{V_8 - V_5}{h_r}}{h_r} = \frac{V_5 - V_8}{h_r^2} + \frac{g_{8r+}}{h_r}$$
(22.3)

$$\left(\frac{1}{r}\frac{\partial V_{(z,r)}}{\partial r}\right)_{P_8} \approx \frac{1}{r}\frac{V_{8r+} - V_5}{2h_r} = \frac{V_8 + g_{8r+}h_r - V_5}{2ph_r^2} = \frac{V_8 - V_5}{2ph_r^2} + \frac{g_{8r+}}{2ph_r}$$
(22.4)

$$\left(\frac{\partial^2 V_{(z,r)}}{\partial z^2}\right)_{P_8} \approx \frac{\frac{V_9 - V_8}{h_z} - \frac{V_8 - V_7}{h_z}}{h_z} = \frac{V_7 + V_9 - 2V_8}{h_z^2}$$
(22.5)

506

Let us substitute approximations to Laplace equation.

$$\frac{V_5 - V_8}{h_r^2} + \frac{g_{8r+}}{h_r} + \frac{V_8 - V_5}{2ph_r^2} + \frac{g_{8r+}}{2ph_r} + \frac{V_7 + V_9 - 2V_8}{h_z^2} = 0$$
(22.6)

$$\frac{V_5 - V_8}{h_r^2} + \frac{V_8 - V_5}{2ph_r^2} + \frac{V_7 + V_9 - 2V_8}{h_z^2} = -\frac{g_{8r+}}{h_r} - \frac{g_{8r+}}{2ph_r}$$
(22.7)

507 Let us find V_8

$$V_8 = ?$$
 (22.8)

508 Let us multiply both sides

$$|\cdot 2ph_z^2h_r^2 \tag{22.9}$$

We obtain 509

$$2pV_5h_z^2 - 2pV_8h_z^2 + V_8h_z^2 - V_5h_z^2 + 2pV_7h_r^2 + 2pV_9h_r^2 - 4pV_8h_r^2 = -2pg_{8r+}h_z^2h_r - g_{8r+}h_z^2h_r$$
(22.10)

Let us simplify this equation: 510

$$V_8 \left(2ph_z^2 - h_z^2 + 4ph_r^2 \right) = V_5 (2ph_z^2 - h_z^2) + (V_7 + V_9)2ph_r^2 + 2pg_{8r+}h_z^2h_r + g_{8r+}h_z^2h_r$$
 (22.11)

So we have: 511

$$V_8((2p-1)h_z^2 + 4ph_r^2) = V_5h_z^2(2p-1) + (V_7 + V_9)2ph_r^2 + 2pg_{8r+}h_z^2h_r + g_{8r+}h_z^2h_r$$
(22.12)

512 22.3 Final forms of relaxation formula

513 22.3.1 zrLV_RELAX5_P8_A

⁵¹⁴

$$\begin{array}{l} h_{z} \neq h_{r} \\ g_{8r+} \neq 0 \\ V_{8} = \frac{h_{z}^{2}(2p-1)}{(2p-1)h_{z}^{2}+4ph_{r}^{2}}V_{5} + \frac{2ph_{r}^{2}}{(2p-1)h_{z}^{2}+4ph_{r}^{2}}(V_{7}+V_{9}) + \\ \frac{(2p+1)h_{z}^{2}h_{r}g_{8r+}}{(2p-1)h_{z}^{2}+4ph_{r}^{2}} \end{array}$$
(22.13)

515 22.3.2 zrLV_RELAX5_P8_B

$$h_{z} \neq h_{r}$$

$$g_{8r+} = 0$$

$$V_{8} = \frac{h_{z}^{2}(2p-1)}{(2p-1)h_{z}^{2} + 4ph_{r}^{2}}V_{5} + \frac{2ph_{r}^{2}}{(2p-1)h_{z}^{2} + 4ph_{r}^{2}}(V_{7} + V_{9})$$
(22.14)

.

22.3.3 zrLV_RELAX5_P8_C 517

$$h_{z} = h_{r} = h$$

$$g_{8r+} \neq 0$$

$$V_{8} = \frac{2p - 1}{6p - 1}V_{5} + \frac{2p}{6p - 1}(V_{7} + V_{9}) + \frac{(2p + 1)hg_{8r+}}{6p - 1}$$
(22.15)

518

516

519 22.3.4 zrLV_RELAX5_P8_D

$$h_{z} = h_{r} = h$$

$$g_{8r+} = 0$$

$$V_{8} = \frac{2p - 1}{6p - 1}V_{5} + \frac{2p}{6p - 1}(V_{7} + V_{9})$$
(22.16)

521 23 Relaxation formula for node P9

522 23.1 Node description

⁵²³ Right, upper corner of mesh ZR.

524 23.2 Calculation of relaxation formula

Laplace equation at node P_9

$$\nabla^2 \left(V_{(z,r)} \right)_{P_9} = 0 \tag{23.1}$$

$$\left(\frac{\partial^2 V_{(z,r)}}{\partial r^2}\right)_{P_9} + \left(\frac{1}{r}\frac{\partial V_{(z,r)}}{\partial r}\right)_{P_9} + \left(\frac{\partial^2 V_{(z,r)}}{\partial z^2}\right)_{P_9} = 0$$
(23.2)

Approximation of partial derivatives of $V_{(z,r)}$ at node P_9

527 528

(note: $r = ph_r$ (such as in Pierre Grivet's book))

$$\left(\frac{\partial^2 V_{(z,r)}}{\partial r^2}\right)_{P_9} \approx \frac{\frac{V_{9r+} - V_9}{h_r} - \frac{V_9 - V_6}{h_r}}{h_r} = \frac{V_6 - V_9}{h_r^2} + \frac{g_{9r+}}{h_r}$$
(23.3)

$$\left(\frac{1}{r}\frac{\partial V_{(z,r)}}{\partial r}\right)_{P_9} \approx \frac{1}{r}\frac{V_{9r+} - V_6}{2h_r} = \frac{V_9 + g_{9r+}h_r - V_6}{2ph_r^2} = \frac{V_9 - V_6}{2ph_r^2} + \frac{g_{9r+}}{2ph_r}$$
(23.4)

$$\left(\frac{\partial^2 V_{(z,r)}}{\partial z^2}\right)_{P_9} \approx \frac{\frac{V_{9z+} - V_9}{h_z} - \frac{V_9 - V_8}{h_z}}{h_z} = \frac{g_{9z-}}{h_z} + \frac{V_8 - V_9}{h_z^2}$$
(23.5)

529 Let us substitute approximations to Laplace equation.

$$\frac{V_6 - V_9}{h_r^2} + \frac{g_{9r+}}{h_r} + \frac{V_9 - V_6}{2ph_r^2} + \frac{g_{9r+}}{2ph_r} + \frac{V_8 - V_9}{h_z^2} + \frac{g_{9z+}}{h_z} = 0$$
(23.6)

$$\frac{V_6 - V_9}{h_r^2} + \frac{V_9 - V_6}{2ph_r^2} + \frac{V_8 - V_9}{h_z^2} = -\frac{g_{9r+}}{h_r} - \frac{g_{9r+}}{2ph_r} - \frac{g_{9z+}}{h_z}$$
(23.7)

Let us find V_9

$$V_9 = ?$$
 (23.8)

Let us multiply both sides

$$|\cdot 2ph_z^2 h_r^2 \tag{23.9}$$

532 We obtain

$$2pV_6h_z^2 - 2pV_9h_z^2 + V_9h_z^2 - V_6h_z^2 + 2pV_8h_r^2 - 2pV_9h_r^2 = -2pg_{9r+}h_z^2h_r - g_{9r+}h_z^2h_r - 2pg_{9z+}h_zh_r^2$$
(23.10)

Let us simplify this equation:

$$\frac{V_9\left(2ph_z^2 - h_z^2 + 2ph_r^2\right) = V_6(2ph_z^2 - h_z^2) + V_8(2ph_r^2) + 2pg_{9r+}h_z^2h_r + g_{9r+}h_z^2h_r + 2pg_{9z+}h_zh_r^2}{2pg_{9r+}h_z^2h_r + 2pg_{9z+}h_zh_r^2}$$
(23.11)

534 So we have:

$$V_{9}((2p-1)h_{z}^{2}+2ph_{r}^{2}) = V_{6}h_{z}^{2}(2p-1) + V_{8}2ph_{r}^{2} + (2p+1)g_{9r+}h_{z}^{2}h_{r} + 2pg_{9z+}h_{z}h_{r}^{2}$$
(23.12)

535 23.3 Final forms of relaxation formula

536 23.3.1 zrLV_RELAX5_P9_A

$$h_z \neq h_r$$
$$g_{9z-} \neq 0$$
$$g_{9r+} \neq 0$$

537

$$V_{9} = \frac{h_{z}^{2}(2p-1)}{(2p-1)h_{z}^{2} + 2ph_{r}^{2}}V_{6} + \frac{2ph_{r}^{2}}{(2p-1)h_{z}^{2} + 2ph_{r}^{2}}V_{8} + \frac{(2p+1)g_{9r+}h_{z}^{2}h_{r} + 2pg_{9z+}h_{z}h_{r}^{2}}{(2p-1)h_{z}^{2} + 2ph_{r}^{2}}$$
(23.13)

538 23.3.2 zrLV_RELAX5_P9_B

$$h_{z} \neq h_{r}$$

$$g_{9z-} = 0$$

$$g_{9r+} = 0$$

$$V_{9} = \frac{h_{z}^{2}(2p-1)}{(2p-1)h_{z}^{2} + 2ph_{r}^{2}}V_{6} + \frac{2ph_{r}^{2}}{(2p-1)h_{z}^{2} + 2ph_{r}^{2}}V_{8}$$
(23.14)

539 23.3.3 zrLV_RELAX5_P9_C

$$h_{z} = h_{r} = h$$

$$g_{9z-} \neq 0$$

$$g_{9r+} \neq 0$$

$$V_{9} = \frac{2p-1}{4p-1}V_{6} + \frac{2p}{4p-1}V_{8} + \frac{h((2p+1)g_{9r+} + g_{9z+})}{4p-1}$$
(23.15)

541 23.3.4 zrLV_RELAX5_P9 D

$$h_{z} = h_{r} = h$$

$$g_{9z-} = 0$$

$$g_{9r+} = 0$$

$$V_{9} = \frac{2p-1}{4p-1}V_{6} + \frac{2p}{4p-1}V_{8}$$
(23.16)

542

540

543 **References**

- [1] P. Grivet, *Electron Optics, Second (revised) English edition*. Pergamon
 Press Ltd., 1972.
- J. R. Nagel, "Solving the generalized poisson equation using the fi nite difference method (fdm).." https://my.ece.utah.edu/~ece6340/
 LECTURES/Feb1/, 2012. [Online; accessed 2-February-2023].
- [3] kryomaxim, "taylor expansion in cylindrical coordinates."
 https://math.stackexchange.com/questions/1133311/
- taylor-expansion-in-cylindrical-coordinates, 2015. [Online;
 accessed 9-May-2023].
- ⁵⁵³ [4] A. Septier(ed.), *Focusing of Charged Paticles. Volume I.* New York and ⁵⁵⁴ London, Academic Press, 1967.
- ⁵⁵⁵ [5] A. Septier(ed.), *Applied Charged Paticle Optics, part A*. New York and London, Academic Press, 1980.
- [6] D. W. O. Heddle, *Electrostatic Lens Systems. Second Edition*. Institute of
 Physics Publishing, Bristol and Philadelphia, 2000.
- ⁵⁵⁹ [7] B. Paszkowski, *Optyka Elektronowa, wydanie II, poprawione i uzupełnione.* ⁵⁶⁰ Państwowe Wydawnictwa Naukowo Techniczne, Warszawa, 1965.
- ⁵⁶¹ [8] B. Paszkowski, *Electron Optics [by] B.Paszkowski. Translated from the Pol-*⁵⁶² *ish by George Lepa. English translation edited by R. C. G. Leckey.* London,
- ⁵⁶³ Iliffe; New York, American Elsevier Publishing Company Inc., 1968.