Liebmann technical documentation

1

2

3	Laplace equation 2D (XY)
4	(Cartesian coordinates)
5	relaxation scheme explained
6	(5 - point star)
7	author: Marcin Kulbaka
8	email: mkulbaka@onet.pl
9	project homepage: http://marcinkulbaka.prv.pl/Liebmann/index_en.html
10	license: GNU General Public License v.3.0+
11	version 10
12	2024.09.03

¹³ University of Maria Curie - Skłodowska in Lublin, Poland

14 Contents

15	1	Liebmann technical documentation series	4
16	2	Versions of this document	4
17	3	Solving Laplace equation using relaxation method	4
18	4	Explanation of symbols in calculations	5
19	5	Mesh XY - type A	6
20	6	Mesh XY - type B	7
21	7	Mesh XY - type C	8
22	8	Mesh XY - type D	9
23	9	Example of A-type mesh in ANSI C	10
24	10	Example of B-type mesh in ANSI C	12
25	11	Example of C-type mesh in ANSI C	13
26	12	Example of D-type mesh in ANSI C	15
27 28 29 30 31 32 33 34	13	Relaxation formula for node P113.1 Node description13.2 Calculation of relaxation formula13.3 Final forms of relaxation formula13.3.1 xyLV_RELAX5_P1_A13.3.2 xyLV_RELAX5_P1_B13.3.3 xyLV_RELAX5_P1_C13.3.4 xyLV_RELAX5_P1_D	16 16 17 17 17 17 17
35	14	Relaxation formula for node P2	18
36		14.1 Noue description	10
37		14.2 Galculation of relaxation formula	10 19
39		14.3.1 xvLV RELAX5 P2 A	19
40		14.3.2 xyLV RELAX5 P2 B	19
41		14.3.3 xyLV_RELAX5_P2_C	19
42		14.3.4 xyLV_RELAX5_P2_D	19

43	15 Relaxation formula for node P3	20
44	15.1 Node description	20
45	15.2 Calculation of relaxation formula	20
46	15.3 Final forms of relaxation formula	21
47	15.3.1 xyLV_RELAX5_P3_A	21
48	15.3.2 xyLV_RELAX5_P3_B	21
49	15.3.3 xyLV_RELAX5_P3_C	21
50	15.3.4 xyLV_RELAX5_P3_D	21
51	16 Relaxation formula for node P4	22
52	16.1 Node description	22
53	16.2 Calculation of relaxation formula	22
54	16.3 Final forms of relaxation formula	23
55	16.3.1 xvLV BELAX5 P4 A	23
56	16.3.2 xvLV RELAX5 P4 B	23
57	16.3.3 xvLV RELAX5 P4 C	23
58	16.3.4 xyLV_RELAX5_P4_D	23
50	17 Belayation formula for node P5	24
59	17 1 Node description	24
60	17.2 Calculation of relaxation formula	24
61	17.2 Galculation of relaxation formula	24
62		25
63	17.3.2 vvlV RELAX5_P5_R	25
64	17.3.2 XyLV_112LAX5_15_D	25
65	17.3.4 VIV RELAX5_P5_D	25
66		20
67	18 Relaxation formula for node P6	26
68	18.1 Node description	26
69	18.2 Calculation of relaxation formula	26
70	18.3 Final forms of relaxation formula	27
71	18.3.1 xyLV_RELAX5_P6_A	27
72	18.3.2 xyLV_RELAX5_P6_B	27
73	18.3.3 xyLV_RELAX5_P6_C	27
74	18.3.4 xyLV_RELAX5_P6_D	27
75	19 Relaxation formula for node P7	28
76	19.1 Node description	28
77	19.2 Calculation of relaxation formula	28
78	19.3 Final forms of relaxation formula	29
79	19.3.1 xyLV_RELAX5_P7_A	29
80	19.3.2 xyLV_RELAX5_P7_B	29
81	19.3.3 xyLV_RELAX5_P7_C	29
82	19.3.4 xyLV_RELAX5_P7_D	29

83	20 Relaxation formula for node P8	30
84	20.1 Node description	30
85	20.2 Calculation of relaxation formula	30
86	20.3 Final forms of relaxation formula	31
87	20.3.1 xyLV_RELAX5_P8_A	31
88	20.3.2 xyLV_RELAX5_P8_B	31
89	20.3.3 xyLV_RELAX5_P8_C	31
90	20.3.4 xyLV_RELAX5_P8_D	31
91	21 Relaxation formula for node P9	32
91 92	21 Relaxation formula for node P9 21.1 Node description	32 32
91 92 93	21 Relaxation formula for node P9 21.1 Node description21.2 Calculation of relaxation formula	32 32 32
91 92 93 94	21 Relaxation formula for node P9 21.1 Node description21.2 Calculation of relaxation formula21.3 Final forms of relaxation formula	32 32 32 33
91 92 93 94 95	21 Relaxation formula for node P9 21.1 Node description 21.2 Calculation of relaxation formula 21.3 Final forms of relaxation formula 21.3.1 xyLV_RELAX5_P9_A	32 32 32 33 33
91 92 93 94 95 96	21 Relaxation formula for node P9 21.1 Node description 21.2 Calculation of relaxation formula 21.3 Final forms of relaxation formula 21.3.1 xyLV_RELAX5_P9_A 21.3.2 xyLV_RELAX5_P9_B	32 32 33 33 33 33
91 92 93 94 95 96 97	21 Relaxation formula for node P9 21.1 Node description 21.2 Calculation of relaxation formula 21.3 Final forms of relaxation formula 21.3.1 xyLV_RELAX5_P9_A 21.3.2 xyLV_RELAX5_P9_B 21.3.3 xyLV_RELAX5_P9_C	 32 32 33 33 33 33

I Liebmann technical documentation series

- Wyznaczanie rozkładu pola elektrostatycznego w próżni metodą relaksacyjną Liebmanna. (Polish version / wersja polska)
- Determination of electrostatic field distribution by using Liebmann relax ation method. (English version / wersja angielska)
- ¹⁰⁴ 3. Graphics. Mapping voltages to colours (colormaps).
- 4. Laplace equation 2D (XY). (Cartesian coordinates). Relaxation scheme explained. (5 - point star)
- 5. Laplace equation 2D (ZR) (Cylindrical coordinates). Relaxation scheme
 explained. (5 point star)
- 6. Liebmann source sode. (ANSI C programming language)

110 2 Versions of this document

- 111 1. version 1 2023.11.03
- 112 2. version 2 2024.01.26
- 113 3. version 3 2024.02.02
- 4. version 4 2024.02.05
- ¹¹⁵ 5. version 5 2024.05.18
- 116 6. version 6 2024.05.23
- 117 7. version 7 2024.05.24
- 118 8. version 8 2024.07.17
- ¹¹⁹ 9. version 9 2024.07.18
- 120 10. version 10 2024.09.03

3 Solving Laplace equation using relaxation method

- I tried to solve Laplace equation using mainly information from Pierre Grivet's
 book (Electron Optics) [1].
- There are few editions of this book (1965, 1972). Second edition (1972) con-
- tains explanation of relaxation method (page 38).

More generalized approaches has been drafted by James R. Nagel - [2]. https://my.ece.utah.edu/~ece6340/LECTURES/Feb1/ (visited 2023-03-01).

There are also publications edited by Albert Septier: Focusing of Charged
 Particles [3] and Applied Charged Particle Optics (part A). [4].

I have also found some ideas in publication of D W O Heddle: Electrostatic
 Lens Systems [5] (especially using PC computers to solve electrostatic problems).

I have also found (brief) description of by - hand solving of Laplace equa tion by Bohdan Paszkowski - [6] (Polish edition). English translation of this book
 also exists - [7].

137

I would like to thank many people, who helped me with this challenge. Espe-138 cially prof. dr hab. Mieczysław Jałochowski (supervisor of my master's thesis), 139 who enabled me to use SIMION and MATLAB software while writing master's 140 thesis about electron optical systems at University of Maria Curie - Skłodowska 141 in Lublin in 2008. I would also thank to prof. Marcin Turek for fruitful discus-142 sion about numerical methods. What is more, my colleague Bartosz in 2012 143 had explained me general problems with software efficiency. So he had also 144 contributed significantly to the idea of Liebmann software (especially using C 145 language). 146

4 Explanation of symbols in calculations

- P_i *i*-th mesh node
- V_i value of electrostatic potential at node P_i . Unit [V]
- h mesh step (for example h_x mesh step in x direction). Unit [mm]
- $g_{i+/-}$ gradient in direction i (for example $g_{1x-} = rac{V_1 V_{1x-}}{h_x}$. Unit $\left[rac{V}{\mathrm{mm}}\right]$
- i_{row} index of row in mesh. Values of $i_{row} = 1, 2, .., \text{size_row}$
- i_{col} index of column in mesh. Values of $i_{col} = 1, 2, ..., \text{size_col}$
- ¹⁵⁴ Symbols in final relaxation formulae
- 155 xyLV_RELAX5_P1_A
- xy coordinates (2D, planar)
- LV Laplace equation in vacuum (no dielectrics)
- RELAX_5 5- point relaxation method
- P1 relaxation scheme for point P1 (in general P1 .. P9)
- A mesh type A (in general A .. D)

5 Mesh XY - type A 161

162

 $h_x \neq h_y$ gradient V outside a mesh exists 163

Figure 1: Mesh XY type A

6 Mesh XY - type B 164

```
165
```

 $h_x \neq h_y$ gradient V outside a mesh does not exist 166

Figure 2: Mesh XY type B

167 7 Mesh XY - type C

168 $h_x = h_y = h$

169 gradient V outside a mesh exists

Figure 3: Mesh XY type C

8 Mesh XY - type D 170

```
171
```

 $h_x = h_y = h$ gradient *V* outside a mesh does not exist 172

Figure 4: Mesh XY type D

9 Example of A-type mesh in ANSI C

Example of A- type mesh in ANSI C program. The mesh is represented by 2 dimensional array of double precision numbers. Rows and columns in mesh are numbered from 1 (this was my choice) instead of default 0 (as usual in C language). This choice nas pros and cons. Is is easier to calculate mesh size (size_row * size_col). Access to each node can be also more intuitive, but logic in each library function must contain this shift between node ordering styles.

Figure 5: ANSI C - mesh XY type A

180	•	$g_{x-} \equiv \texttt{doub}$	le*	ptr_	gX_	_minus

181 •
$$g_{x+} \equiv \texttt{double* ptr_gX_plus}$$

182 •
$$g_{y-} \equiv \texttt{double* ptr_gY_minus}$$

183 •
$$g_{y+} \equiv \texttt{double* ptr_gY_plus}$$

184 • $V \equiv \texttt{double* ptr_V}$

185 • unsigned int size_row == 4

186 • unsigned int size_col == 6

187 • unsigned int i_row == 1, 2, ..., 4

- 188 unsigned int i_col == 1,2, ..., 6
- double h_x == 1.0 [mm]
- double h_y == 2.0 [mm]

The following picture describes analogous version of ptr_V mesh, which can be dynamically allocated on heap by pointer metod. The mesh is represented by single block of memory. The numbers or rows and columns are also known, so each node can be also accessed by appropriate index (memory address).

196

Each mesh point has its unique index (let's say icp - (index of central point)), which can be determined, if we know indices of row and column (i_row, i_col).

For example for each point of a mesh indices of row and column have values:

202 10 Example of B-type mesh in ANSI C

Example of B- type mesh in ANSI C program. The mesh is analogous to A type mesh. There are no electric field gradients on mesh borders.

Figure 6: ANSI C - mesh XY type B

```
205  • V ≡ double* ptr_V
206  • unsigned int size_row == 4
207  • unsigned int size_col == 6
208  • unsigned int i_row == 1, 2, ..., 4
209  • unsigned int i_col == 1,2, ..., 6
210  • double h_x == 1.0 [mm]
211  • double h_y == 2.0 [mm]
```

212 11 Example of C-type mesh in ANSI C

Example of C- type mesh in ANSI C program. The mesh is analogous to A type mesh. Just mesh mesh step $h_x = h_y = h$.

Figure 7: ANSI C - mesh XY type C

215	• $g_{x-} \equiv \texttt{double*} \ \texttt{ptr}_\texttt{gX}_\texttt{minus}$
216	• $g_{x+} \equiv \texttt{double*} \ \texttt{ptr}_\texttt{gX_plus}$
217	• $g_{y-}\equiv \texttt{double*}$ ptr_gY_minus
218	• $g_{y+} \equiv \texttt{double*} \ \texttt{ptr_gY_plus}$
219	• $V \equiv \texttt{double*} \ \texttt{ptr}_\texttt{V}$
220	• unsigned int size_row == 4
221	• unsigned int size_col == 6
222	• unsigned int i_row == 1, 2,,

4

• unsigned int i_col == 1,2, ..., 6

• double h == 1.0 [mm]

225 12 Example of D-type mesh in ANSI C

Example of D- type mesh in ANSI C program. The mesh is analogous to B - type mesh. Just $h_x = h_y = h$.

Figure 8: ANSI C - mesh XY type D

228	• $V \equiv \texttt{double*} \ \texttt{ptr_V}$
229	• unsigned int size_row == 4
230	• unsigned int size_col == 6
231	• unsigned int i_row == 1, 2,, 4
232	• unsigned int i_col == 1,2,, 6
233	• double h == 1.0 [mm]

13 Relaxation formula for node P1

235 13.1 Node description

Left, bottom corner of mesh XY.

237 13.2 Calculation of relaxation formula

²³⁸ Laplace equation at node P_1

$$\nabla^2 \left(V_{(x,y)} \right)_{P_1} = 0 \tag{13.1}$$

$$\left(\frac{\partial^2 V_{(x,y)}}{\partial x^2}\right)_{P_1} + \left(\frac{\partial^2 V_{(x,y)}}{\partial y^2}\right)_{P_1} = 0$$
(13.2)

239 Approximation of partial derivatives of $V_{(x,y)}$ at node P_1

$$\left(\frac{\partial^2 V_{(x,y)}}{\partial x^2}\right)_{P_1} \approx \frac{\frac{V_2 - V_1}{h_x} - \frac{V_1 - V_{1y-}}{h_x}}{h_x} = \frac{V_2 - V_1}{h_x^2} - \frac{g_{1x-}}{h_x}$$
(13.3)

$$\left(\frac{\partial^2 V_{(x,y)}}{\partial y^2}\right)_{P_1} \approx \frac{\frac{V_4 - V_1}{h_y} - \frac{V_1 - V_{1y-}}{h_y}}{h_y} = \frac{V_4 - V_1}{h_y^2} - \frac{g_{1y-}}{h_y}$$
(13.4)

Let us substitute approximations to Laplace equation.

$$\frac{V_2 - V_1}{{h_x}^2} - \frac{g_{1x-}}{{h_x}} + \frac{V_4 - V_1}{{h_y}^2} - \frac{g_{1y-}}{{h_y}} = 0$$
(13.5)

Let us find V_1

$$V_1 = ?$$
 (13.6)

$$\frac{V_2 - V_1}{h_x^2} + \frac{V_4 - V_1}{h_y^2} = \frac{g_{1x-}}{h_x} + \frac{g_{1y-}}{h_y}$$
(13.7)

Let us multiply both sides

$$|\cdot h_x^2 h_y^2 \tag{13.8}$$

$$V_2h_y^2 - V_1h_y^2 + V_4h_x^2 - V_1h_x^2 = g_{1x-}h_xh_y^2 + g_{1y-}h_x^2h^y$$
(13.9)

$$V_1(h_x^2 + h_y^2) = V_2h_y^2 + V_4h_x^2 - g_{1x-}h_xh_y^2 - g_{1y-}h_x^2h_y$$
(13.10)

245 13.3.1 xyLV_RELAX5_P1_A

246

$$h_{x} \neq h_{y}$$

$$g_{1x-}, g_{1y-} \neq 0$$

$$V_{1} = \frac{V_{2}h_{y}^{2} + V_{4}h_{x}^{2} - g_{1x-}h_{x}h_{y}^{2} - g_{1y-}h_{x}^{2}h_{y}}{h_{x}^{2} + h_{y}^{2}}$$
(13.11)

247 13.3.2 xyLV_RELAX5_P1_B

$$h_{x} \neq h_{y}$$

$$g_{1x-}, g_{1y-} = 0$$

$$V_{1} = \frac{V_{2}h_{y}^{2} + V_{4}h_{x}^{2}}{h_{x}^{2} + h_{y}^{2}}$$
(13.12)

²⁴⁸ 13.3.3 xyLV_RELAX5_P1_C

$$h_{x} = h_{y} = h$$

$$g_{1x-}, g_{1y-} \neq 0$$

$$V_{1} = \frac{V_{2} + V_{4} - g_{1x-}h - g_{1y-}h}{2}$$
(13.13)

249 13.3.4 xyLV_RELAX5_P1_D

$$h_{x} = h_{y} = h$$

$$g_{1x-}, g_{1y-} = 0$$

$$V_{1} = \frac{V_{2} + V_{4}}{2}$$
(13.14)

250 14 Relaxation formula for node P2

251 14.1 Node description

252 Bottom edge of mesh XY.

253 14.2 Calculation of relaxation formula

Laplace equation at node P_2

$$\nabla^2 \left(V_{(x,y)} \right)_{P_2} = 0 \tag{14.1}$$

$$\left(\frac{\partial^2 V_{(x,y)}}{\partial x^2}\right)_{P_2} + \left(\frac{\partial^2 V_{(x,y)}}{\partial y^2}\right)_{P_2} = 0$$
(14.2)

Approximation of partial derivatives of $V_{(x,y)}$ at node P_2

$$\left(\frac{\partial^2 V_{(x,y)}}{\partial x^2}\right)_{P_2} \approx \frac{\frac{V_3 - V_2}{h_x} - \frac{V_2 - V_1}{h_x}}{h_x} = \frac{V_1 + V_3 - 2V_2}{h_x^2}$$
(14.3)

$$\left(\frac{\partial^2 V_{(x,y)}}{\partial y^2}\right)_{P_2} \approx \frac{\frac{V_5 - V_2}{h_y} - \frac{V_2 - V_{2y-}}{h_y}}{h_y} = \frac{V_5 - V_2}{h_y^2} - \frac{g_{2y-}}{h_y}$$
(14.4)

Let us substitute approximations to Laplace equation.

$$\frac{V_1 + V_3 - 2V_2}{{h_x}^2} + \frac{V_5 - V_2}{{h_y}^2} - \frac{g_{2y-}}{h_y} = 0$$
(14.5)

Let us find V_2

$$V_2 = ?$$
 (14.6)

$$\frac{V_1 + V_3 - 2V_2}{h_x^2} + \frac{V_5 - V_2}{h_y^2} = \frac{g_{2y-}}{h_y}$$
(14.7)

Let us multiply both sides

$$|\cdot h_x^2 h_y^2 \tag{14.8}$$

$$V_1h_y^2 + V_3h_y^2 - 2V_2h_y^2 + V_5h_x^2 = g_{2y-}h_x^2h_y$$
(14.9)

$$V_2\left(h_x^2 + h_y^2\right) = \left(V_1 + V_3\right)h_y^2 + V_5h_x^2 - g_{2y-}h_x^2h_y$$
(14.10)

261 14.3.1 xyLV_RELAX5_P2_A

$$h_x \neq h_y$$

$$g_{2y-} \neq 0$$

$$V_2 = \frac{(V_1 + V_3)h_y^2 + V_5h_x^2 - g_{2y-}h_x^2h_y}{h_x^2 + h_y^2}$$
(14.11)

262 14.3.2 xyLV_RELAX5_P2_B

$$h_{x} \neq h_{y}$$

$$g_{2y-} = 0$$

$$V_{2} = \frac{(V_{1} + V_{3})h_{y}^{2} + V_{5}h_{x}^{2}}{h_{x}^{2} + h_{y}^{2}}$$
(14.12)

²⁶³ 14.3.3 xyLV_RELAX5_P2_C

$$h_{x} = h_{y} = h$$

$$g_{2y-} \neq 0$$

$$V_{2} = \frac{V_{1} + V_{3} + V_{5} - g_{2y-}h}{3}$$
(14.13)

264 14.3.4 xyLV_RELAX5_P2_D

$$h_x = h_y = h$$

$$g_{2y-} = 0$$

$$V_2 = \frac{V_1 + V_3 + V_5}{3}$$
(14.14)

15 Relaxation formula for node P3

266 **15.1 Node description**

²⁶⁷ Right, bottom corner of mesh XY.

268 15.2 Calculation of relaxation formula

 $_{269}$ Laplace equation at node P_3

$$\nabla^2 \left(V_{(x,y)} \right)_{P_3} = 0 \tag{15.1}$$

$$\left(\frac{\partial^2 V_{(x,y)}}{\partial x^2}\right)_{P_3} + \left(\frac{\partial^2 V_{(x,y)}}{\partial y^2}\right)_{P_3} = 0$$
(15.2)

Approximation of partial derivatives of $V_{(x,y)}$ at node P_3

$$\left(\frac{\partial^2 V_{(x,y)}}{\partial x^2}\right)_{P_3} \approx \frac{\frac{V_{3x+} - V_3}{h_x} - \frac{V_3 - V_2}{h_x}}{h_x} = \frac{g_{3x+}}{h_x} + \frac{V_2 - V_3}{h_x^2}$$
(15.3)

$$\left(\frac{\partial^2 V_{(x,y)}}{\partial y^2}\right)_{P_3} \approx \frac{\frac{V_6 - V_3}{h_y} - \frac{V_3 - V_{3y-}}{h_y}}{h_y} = \frac{V_6 - V_3}{h_y^2} - \frac{g_{3y-}}{h_y}$$
(15.4)

Let us substitute approximations to Laplace equation.

$$\frac{g_{3x+}}{h_x} + \frac{V_2 - V_3}{h_x^2} + \frac{V_6 - V_3}{h_y^2} - \frac{g_{3y-}}{h_y} = 0$$
(15.5)

Let us find V_3

$$V_3 = ?$$
 (15.6)

$$\frac{V_2 - V_3}{h_x^2} + \frac{V_6 - V_3}{h_y^2} = \frac{g_{3y-}}{h_y} - \frac{g_{3x+}}{h_x}$$
(15.7)

Let us multiply both sides

$$|\cdot h_x^2 h_y^2 \tag{15.8}$$

$$V_2h_y^2 - V_3h_y^2 + V_6h_x^2 - V_3h_x^2 = g_{3y-}h_x^2h_y - g_{3x+}h_xh_y^2$$
(15.9)

$$V_3\left(h_x^2 + h_y^2\right) = V_2h_y^2 + V_6h_x^2 + g_{3x+}h_xh_y^2 - g_{3y-}h_x^2h_y$$
(15.10)

276 15.3.1 xyLV_RELAX5_P3_A

$$h_{x} \neq h_{y}$$

$$g_{3x+}, g_{3y-} \neq 0$$

$$V_{3} = \frac{V_{2}h_{y}^{2} + V_{6}h_{x}^{2} + g_{3x+}h_{x}h_{y}^{2} - g_{3y-}h_{x}^{2}h_{y}}{h_{x}^{2} + h_{y}^{2}}$$
(15.11)

277 15.3.2 xyLV_RELAX5_P3_B

$$h_{x} \neq h_{y}$$

$$g_{3x+}, g_{3y-} = 0$$

$$V_{3} = \frac{V_{2}h_{y}^{2} + V_{6}h_{x}^{2}}{h_{x}^{2} + h_{y}^{2}}$$
(15.12)

278 15.3.3 xyLV_RELAX5_P3_C

$$h_{x} = h_{y} = h$$

$$g_{3x+}, g_{3y-} \neq 0$$

$$V_{3} = \frac{V_{2} + V_{6} + g_{3x+}h - g_{3y-}h}{2}$$
(15.13)

279 15.3.4 xyLV_RELAX5_P3_D

$$h_{x} = h_{y} = h$$

$$g_{3x+}, g_{3y-} = 0$$

$$V_{3} = \frac{V_{2} + V_{6}}{2}$$
(15.14)

16 Relaxation formula for node P4

281 16.1 Node description

Left edge of mesh XY.

283 16.2 Calculation of relaxation formula

Laplace equation at node P_4

$$\nabla^2 \left(V_{(x,y)} \right)_{P_4} = 0 \tag{16.1}$$

$$\left(\frac{\partial^2 V_{(x,y)}}{\partial x^2}\right)_{P_4} + \left(\frac{\partial^2 V_{(x,y)}}{\partial y^2}\right)_{P_4} = 0$$
(16.2)

Approximation of partial derivatives of $V_{(x,y)}$ at node P_4

$$\left(\frac{\partial^2 V_{(x,y)}}{\partial x^2}\right)_{P_4} \approx \frac{\frac{V_5 - V_4}{h_x} - \frac{V_4 - V_{4x-}}{h_x}}{h_x} = \frac{V_5 - V_4}{h_x^2} - \frac{g_{4x-}}{h_x}$$
(16.3)

$$\left(\frac{\partial^2 V_{(x,y)}}{\partial y^2}\right)_{P_4} \approx \frac{\frac{V_7 - V_4}{h_y} - \frac{V_4 - V_1}{h_y}}{h_y} = \frac{V_1 + V_7 - 2V_4}{h_y^2}$$
(16.4)

Let us substitute approximations to Laplace equation.

$$\frac{V_5 - V_4}{h_x^2} - \frac{g_{4x-}}{h_x} + \frac{V_1 + V_7 - 2V_4}{h_y^2} = 0$$
(16.5)

Let us find V_4

$$V_4 = ?$$
 (16.6)

$$\frac{V_5 - V_4}{h_x^2} + \frac{V_1 + V_7 - 2V_4}{h_y^2} = \frac{g_{4x-}}{h_x}$$
(16.7)

Let us multiply both sides

$$|\cdot h_x^2 h_y^2 \tag{16.8}$$

$$V_5h_y^2 - V_4h_y^2 + V_1h_x^2 + V_7h_x^2 - 2V_4h_x^2 = g_{4x-}h_xh_y^2$$
(16.9)

$$V_4\left(2h_x^2 + h_y^2\right) = \left(V_1 + V_7\right)h_x^2 + V_5h_y^2 - g_{4x-}h_xh_y^2$$
(16.10)

²⁹¹ 16.3.1 xyLV_RELAX5_P4_A

$$h_{x} \neq h_{y}$$

$$g_{4x-} \neq 0$$

$$V_{4} = \frac{(V_{1} + V_{7})h_{x}^{2} + V_{5}h_{y}^{2} - g_{4x-}h_{x}h_{y}^{2}}{2h_{x}^{2} + h_{y}^{2}}$$
(16.11)

²⁹² 16.3.2 xyLV_RELAX5_P4_B

$$h_{x} \neq h_{y}$$

$$g_{4x-} = 0$$

$$V_{2} = \frac{(V_{1} + V_{7})h_{x}^{2} + V_{5}h_{y}^{2}}{2h_{x}^{2} + h_{y}^{2}}$$
(16.12)

²⁹³ 16.3.3 xyLV_RELAX5_P4_C

$$h_{x} = h_{y} = h$$

$$g_{4x-} \neq 0$$

$$V_{4} = \frac{V_{1} + V_{5} + V_{7} - g_{4x-}h}{3}$$
(16.13)

²⁹⁴ 16.3.4 xyLV_RELAX5_P4_D

$$h_{x} = h_{y} = h$$

$$g_{4x-} = 0$$

$$V_{4} = \frac{V_{1} + V_{5} + V_{7}}{3}$$
(16.14)

17 Relaxation formula for node P5

296 17.1 Node description

²⁹⁷ Node inside a mesh XY.

298 17.2 Calculation of relaxation formula

²⁹⁹ Laplace equation at node P_5

$$\nabla^2 \left(V_{(x,y)} \right)_{P_5} = 0 \tag{17.1}$$

$$\left(\frac{\partial^2 V_{(x,y)}}{\partial x^2}\right)_{P_5} + \left(\frac{\partial^2 V_{(x,y)}}{\partial y^2}\right)_{P_5} = 0$$
(17.2)

300 Approximation of partial derivatives of $V_{(x,y)}$ at node P_5

$$\left(\frac{\partial^2 V_{(x,y)}}{\partial x^2}\right)_{P_5} \approx \frac{\frac{V_6 - V_5}{h_x} - \frac{V_5 - V_4}{h_x}}{h_x} = \frac{V_4 + V_6 - 2V_5}{h_x^2}$$
(17.3)

$$\left(\frac{\partial^2 V_{(x,y)}}{\partial y^2}\right)_{P_5} \approx \frac{\frac{V_8 - V_5}{h_y} - \frac{V_5 - V_2}{h_y}}{h_y} = \frac{V_2 + V_8 - 2V_5}{h_y^2}$$
(17.4)

³⁰¹ Let us substitute approximations to Laplace equation.

$$\frac{V_4 + V_6 - 2V_5}{h_x^2} + \frac{V_2 + V_8 - 2V_5}{h_y^2} = 0$$
(17.5)

Let us find V_5

$$V_5 = ?$$
 (17.6)

$$\frac{V_4 + V_6 - 2V_5}{h_x^2} + \frac{V_2 + V_8 - 2V_5}{h_y^2} = 0$$
(17.7)

Let us multiply both sides

$$|\cdot h_x^2 h_y^2 \tag{17.8}$$

$$V_4h_y^2 + V_6h_y^2 - 2V_5h_y^2 + V_2h_x^2 + V_8h_x^2 - 2V_5h_x^2 = 0$$
 (17.9)

$$2V_5 \left(h_x^2 + h_y^2\right) = \left(V_2 + V_8\right) h_x^2 + \left(V_4 + V_6\right) h_y^2 \tag{17.10}$$

306 17.3.1 xyLV_RELAX5_P5_A

 $h_x \neq h_y$

No gradients g inside mesh are considered.

$$V_5 = \frac{(V_2 + V_8)h_x^2 + (V_4 + V_6)h_y^2}{2(h_x^2 + h_y^2)}$$
(17.11)

308 17.3.2 xyLV_RELAX5_P5_B

$$h_x \neq h_y$$

Relaxation formula is the same as xyLV_RELAX5_P5_A

$$V_5 = \frac{(V_2 + V_8)h_x^2 + (V_4 + V_6)h_y^2}{2(h_x^2 + h_y^2)}$$
(17.12)

310 17.3.3 xyLV_RELAX5_P5_C

$$h_x = h_y = h_y$$

No gradients g inside mesh are considered.

The formula simplifies, so no g and h terms are necessary.

$$V_5 = \frac{V_2 + V_4 + V_6 + V_8}{4} \tag{17.13}$$

313 17.3.4 xyLV_RELAX5_P5_D

$$h_x = h_y = h$$

The formula also simplifies.

315

Relaxation formula is the same as xyLV_RELAX5_P5_C

$$V_5 = \frac{V_2 + V_4 + V_6 + V_8}{4} \tag{17.14}$$

317 18 Relaxation formula for node P6

318 18.1 Node description

³¹⁹ Right edge of mesh XY.

320 18.2 Calculation of relaxation formula

 $_{
m 321}$ Laplace equation at node P_6

$$\nabla^2 \left(V_{(x,y)} \right)_{P_6} = 0 \tag{18.1}$$

$$\left(\frac{\partial^2 V_{(x,y)}}{\partial x^2}\right)_{P_6} + \left(\frac{\partial^2 V_{(x,y)}}{\partial y^2}\right)_{P_6} = 0$$
(18.2)

322 Approximation of partial derivatives of $V_{(x,y)}$ at node P_6

$$\left(\frac{\partial^2 V_{(x,y)}}{\partial x^2}\right)_{P_6} \approx \frac{\frac{V_{6x+} - V_6}{h_x} - \frac{V_6 - V_5}{h_x}}{h_x} = \frac{g_{6x+}}{h_x} + \frac{V_5 - V_6}{h_x^2}$$
(18.3)

$$\left(\frac{\partial^2 V_{(x,y)}}{\partial y^2}\right)_{P_6} \approx \frac{\frac{V_9 - V_6}{h_y} - \frac{V_6 - V_3}{h_y}}{h_y} = \frac{V_3 + V_9 - 2V_6}{h_y^2}$$
(18.4)

Let us substitute approximations to Laplace equation.

$$\frac{g_{6x+}}{h_x} + \frac{V_5 - V_6}{h_x^2} + \frac{V_3 + V_9 - 2V_6}{h_y^2} = 0$$
(18.5)

Let us find V_6

$$V_6 = ?$$
 (18.6)

$$\frac{V_5 - V_6}{h_x^2} + \frac{V_3 + V_9 - 2V_6}{h_y^2} = -\frac{g_{6x+}}{h_x}$$
(18.7)

Let us multiply both sides

$$|\cdot h_x^2 h_y^2 \tag{18.8}$$

$$V_5h_y^2 - V_6h_y^2 + V_3h_x^2 + V_9h_x^2 - 2V_6h_x^2 = -g_{6x+}h_xh_y^2$$
(18.9)

$$V_6 \left(2h_x^2 + h_y^2\right) = \left(V_3 + V_9\right)h_x^2 + V_5h_y^2 + g_{6x+}h_xh_y^2$$
(18.10)

328 18.3.1 xyLV_RELAX5_P6_A

$$h_{x} \neq h_{y}$$

$$g_{6x+} \neq 0$$

$$V_{6} = \frac{(V_{3} + V_{9})h_{x}^{2} + V_{5}h_{y}^{2} + g_{6x+}h_{x}h_{y}^{2}}{2h_{x}^{2} + h_{y}^{2}}$$
(18.11)

329 18.3.2 xyLV_RELAX5_P6_B

$$h_{x} \neq h_{y}$$

$$g_{6x+} = 0$$

$$V_{6} = \frac{(V_{3} + V_{9})h_{x}^{2} + V_{5}h_{y}^{2}}{2h_{x}^{2} + h_{y}^{2}}$$
(18.12)

330 18.3.3 xyLV_RELAX5_P6_C

$$h_{x} = h_{y} = h$$

$$g_{6x+} \neq 0$$

$$V_{6} = \frac{V_{3} + V_{5} + V_{9} + g_{6x+}h}{3}$$
(18.13)

331 18.3.4 xyLV_RELAX5_P6_D

$$h_{x} = h_{y} = h$$

$$g_{6x+} = 0$$

$$V_{6} = \frac{V_{3} + V_{5} + V_{9}}{3}$$
(18.14)

332 19 Relaxation formula for node P7

333 19.1 Node description

Left, upper corner of mesh XY.

19.2 Calculation of relaxation formula

 $_{336}$ Laplace equation at node P_7

$$\nabla^2 \left(V_{(x,y)} \right)_{P_7} = 0 \tag{19.1}$$

$$\left(\frac{\partial^2 V_{(x,y)}}{\partial x^2}\right)_{P_7} + \left(\frac{\partial^2 V_{(x,y)}}{\partial y^2}\right)_{P_7} = 0$$
(19.2)

 $_{\tt 337}$ — Approximation of partial derivatives of $V_{(x,y)}$ at node P_7

$$\left(\frac{\partial^2 V_{(x,y)}}{\partial x^2}\right)_{P_7} \approx \frac{\frac{V_8 - V_7}{h_x} - \frac{V_7 - V_{7x-}}{h_x}}{h_x} = \frac{V_8 - V_7}{h_x^2} - \frac{g_{7x-}}{h_x}$$
(19.3)

$$\left(\frac{\partial^2 V_{(x,y)}}{\partial y^2}\right)_{P_7} \approx \frac{\frac{V_{7y+} - V_7}{h_y} - \frac{V_7 - V_4}{h_y}}{h_y} = \frac{V_4 - V_7}{h_y^2} + \frac{g_{7y+}}{h_y}$$
(19.4)

Let us substitute approximations to Laplace equation.

$$\frac{V_8 - V_7}{h_x^2} - \frac{g_{7x-}}{h_x} + \frac{V_4 - V_7}{h_y^2} + \frac{g_{7y+}}{h_y} = 0$$
(19.5)

Let us find V_7

$$V_7 = ?$$
 (19.6)

$$\frac{V_8 - V_7}{h_x^2} + \frac{V_4 - V_7}{h_y^2} = \frac{g_{7x-}}{h_x} - \frac{g_{7y+}}{h_y}$$
(19.7)

Let us multiply both sides

$$|\cdot h_x^2 h_y^2 \tag{19.8}$$

$$V_8h_y^2 - V_7h_y^2 + V_4h_x^2 - V_7h_x^2 = g_{7x} - h_xh_y^2 - g_{7y} + h_x^2h_y$$
(19.9)

$$V_7 \left(h_x^2 + h_y^2 \right) = V_4 h_x^2 + V_8 h_y^2 - g_{7x-} h_x h_y^2 - g_{7y+} h_x^2 h_y$$
(19.10)

343 19.3.1 xyLV_RELAX5_P7_A

$$h_{x} \neq h_{y}$$

$$g_{7x-}, g_{7y+} \neq 0$$

$$V_{7} = \frac{V_{4}h_{x}^{2} + V_{8}h_{y}^{2} - g_{7x-}h_{x}h_{y}^{2} + g_{7y+}h_{x}^{2}h_{y}}{(h_{x}^{2} + h_{y}^{2})}$$
(19.11)

344 19.3.2 xyLV_RELAX5_P7_B

$$h_{x} \neq h_{y}$$

$$g_{7x-}, g_{7y+} = 0$$

$$V_{7} = \frac{V_{4}h_{x}^{2} + V_{8}h_{y}^{2}}{h_{x}^{2} + h_{y}^{2}}$$
(19.12)

345 19.3.3 xyLV_RELAX5_P7_C

$$h_{x} = h_{y} = h$$

$$g_{7x-}, g_{7y+} \neq 0$$

$$V_{7} = \frac{V_{4} + V_{8} - g_{7x-}h + g_{7y+}h}{2}$$
(19.13)

³⁴⁶ **19.3.4 xyLV_RELAX5_P7_D**

$$h_{x} = h_{y} = h$$

$$g_{7x-}, g_{7y+} = 0$$

$$V_{7} = \frac{V_{4} + V_{8}}{2}$$
(19.14)

347 20 Relaxation formula for node P8

348 20.1 Node description

³⁴⁹ Upper edge of mesh XY.

350 20.2 Calculation of relaxation formula

 $_{351}$ Laplace equation at node P_8

$$\nabla^2 \left(V_{(x,y)} \right)_{P_8} = 0 \tag{20.1}$$

$$\left(\frac{\partial^2 V_{(x,y)}}{\partial x^2}\right)_{P_8} + \left(\frac{\partial^2 V_{(x,y)}}{\partial y^2}\right)_{P_8} = 0$$
(20.2)

Approximation of partial derivatives of $V_{(x,y)}$ at node P_8

$$\left(\frac{\partial^2 V_{(x,y)}}{\partial x^2}\right)_{P_8} \approx \frac{\frac{V_9 - V_8}{h_x} - \frac{V_8 - V_7}{h_x}}{h_x} = \frac{V_7 + V_9 - 2V_8}{h_x^2}$$
(20.3)

$$\left(\frac{\partial^2 V_{(x,y)}}{\partial y^2}\right)_{P_8} \approx \frac{\frac{V_{8y+} - V_8}{h_y} - \frac{V_8 - V_5}{h_y}}{h_y} = \frac{V_5 - V_8}{h_y^2} + \frac{g_{8y+}}{h_y}$$
(20.4)

Let us substitute approximations to Laplace equation.

$$\frac{V_7 + V_9 - 2V_8}{h_x^2} + \frac{V_5 - V_8}{h_y^2} + \frac{g_{8y+}}{h_y} = 0$$
(20.5)

Let us find V_8

$$V_8 = ?$$
 (20.6)

$$\frac{V_7 + V_9 - 2V_8}{h_x^2} + \frac{V_5 - V_8}{h_y^2} = -\frac{g_{8y+}}{h_y}$$
(20.7)

Let us multiply both sides

$$|\cdot h_x^2 h_y^2 \tag{20.8}$$

$$V_7h_y^2 + V_9h_y^2 - 2V_8h_y^2 + V_5h_x^2 - V_8h_x^2 = -g_{8y+}h_x^2h_y$$
(20.9)

$$V_8\left(h_x^2 + 2h_y^2\right) = \left(V_7 + V_9\right)h_y^2 + V_5h_x^2 + g_{8y+}h_x^2h_y$$
(20.10)

358 20.3.1 xyLV_RELAX5_P8_A

$$h_{x} \neq h_{y}$$

$$g_{8y+} \neq 0$$

$$V_{8} = \frac{V_{5}h_{x}^{2} + (V_{7} + V_{9})h_{y}^{2} + g_{8y+}h_{x}^{2}h_{y}}{h_{x}^{2} + 2h_{y}^{2}}$$
(20.11)

359 20.3.2 xyLV_RELAX5_P8_B

$$h_{x} \neq h_{y}$$

$$g_{8y+} = 0$$

$$V_{8} = \frac{V_{5}h_{x}^{2} + (V_{7} + V_{9})h_{y}^{2}}{h_{x}^{2} + 2h_{y}^{2}}$$
(20.12)

360 20.3.3 xyLV_RELAX5_P8_C

$$h_{x} = h_{y} = h$$

$$g_{8y+} \neq 0$$

$$V_{8} = \frac{V_{5} + V_{7} + V_{9} + g_{8y+}h}{3}$$
(20.13)

361 20.3.4 xyLV_RELAX5_P8_D

$$h_{x} = h_{y} = h$$

$$g_{8y+} = 0$$

$$V_{8} = \frac{V_{5} + V_{7} + V_{9}}{3}$$
(20.14)

362 21 Relaxation formula for node P9

363 21.1 Node description

³⁶⁴ Right, upper corner of mesh XY.

365 21.2 Calculation of relaxation formula

 $_{
m 366}$ Laplace equation at node P_9

$$\nabla^2 \left(V_{(x,y)} \right)_{P_9} = 0 \tag{21.1}$$

$$\left(\frac{\partial^2 V_{(x,y)}}{\partial x^2}\right)_{P_9} + \left(\frac{\partial^2 V_{(x,y)}}{\partial y^2}\right)_{P_9} = 0$$
(21.2)

 $_{
m 367}$ Approximation of partial derivatives of $V_{(x,y)}$ at node P_9

$$\left(\frac{\partial^2 V_{(x,y)}}{\partial x^2}\right)_{P_9} \approx \frac{\frac{V_{9x+} - V_9}{h_x} - \frac{V_9 - V_8}{h_x}}{h_x} = \frac{V_8 - V_9}{h_x^2} + \frac{g_{9x+}}{h_x}$$
(21.3)

$$\left(\frac{\partial^2 V_{(x,y)}}{\partial y^2}\right)_{P_9} \approx \frac{\frac{V_{9y+} - V_9}{h_y} - \frac{V_9 - V_6}{h_y}}{h_y} = \frac{V_6 - V_9}{h_y^2} + \frac{g_{9y+}}{h_y}$$
(21.4)

Let us substitute approximations to Laplace equation.

$$\frac{V_8 - V_9}{h_x^2} + \frac{g_{9x+}}{h_x} + \frac{V_6 - V_9}{h_y^2} + \frac{g_{9y+}}{h_y} = 0$$
(21.5)

Let us find V_9

$$V_9 = ?$$
 (21.6)

$$\frac{V_8 - V_9}{h_x^2} + \frac{V_8 - V_9}{h_x^2} = -\frac{g_{9x+}}{h_x} - \frac{g_{9y+}}{h_y}$$
(21.7)

Let us multiply both sides

$$|\cdot h_x^2 h_y^2 \tag{21.8}$$

$$V_8h_y^2 - V_9h_y^2 + V_6h_x^2 - V_9h_x^2 = -g_{9x+}h_xh_y^2 - g_{9y+}h_x^2h_y$$
(21.9)

$$V_9\left(h_x^2 + h_y^2\right) = V_6h_x^2 + V_8h_y^2 + g_{9x+}h_xh_y^2 + g_{9y+}h_x^2h_y$$
(21.10)

373 21.3.1 xyLV_RELAX5_P9_A

$$h_{x} \neq h_{y}$$

$$g_{9x+}, g_{9y+} \neq 0$$

$$V_{9} = \frac{V_{6}h_{x}^{2} + V_{8}h_{y}^{2} + g_{9x+}h_{x}h_{y}^{2} + g_{9y+}h_{x}^{2}h_{y}}{h_{x}^{2} + h_{y}^{2}}$$
(21.11)

374 21.3.2 xyLV_RELAX5_P9_B

$$h_{x} \neq h_{y}$$

$$g_{9x+}, g_{9y+} = 0$$

$$V_{9} = \frac{V_{6}h_{x}^{2} + V_{8}h_{y}^{2}}{h_{x}^{2} + h_{y}^{2}}$$
(21.12)

375 21.3.3 xyLV_RELAX5_P9_C

$$h_{x} = h_{y} = h$$

$$g_{9x+}, g_{9y+} \neq 0$$

$$V_{9} = \frac{V_{6} + V_{8} + g_{9x+}h + g_{9y+}h}{2}$$
(21.13)

376 21.3.4 xyLV_RELAX5_P9_D

$$h_{x} = h_{y} = h$$

$$g_{9x+}, g_{9y+} = 0$$

$$V_{9} = \frac{V_{6} + V_{8}}{2}$$
(21.14)

377 References

- ³⁷⁸ [1] P. Grivet, *Electron Optics, Second (revised) English edition*. Pergamon
 ³⁷⁹ Press Ltd., 1972.
- [2] J. R. Nagel, "Solving the generalized poisson equation using the finite difference method (fdm).," 2012.
- [3] A. Septier(ed.), *Focusing of Charged Paticles. Volume I.* New York and
 London, Academic Press, 1967.
- ³⁸⁴ [4] A. Septier(ed.), *Applied Charged Paticle Optics, part A*. New York and London, Academic Press, 1980.
- [5] D. W. O. Heddle, *Electrostatic Lens Systems. Second Edition*. Institute of
 Physics Publishing, Bristol and Philadelphia, 2000.
- [6] B. Paszkowski, *Optyka Elektronowa, wydanie II, poprawione i uzupełnione.* Państwowe Wydawnictwa Naukowo Techniczne, Warszawa, 1965.
- 390 [7] B. Paszkowski, Electron Optics [by] B. Paszkowski. Translated from the Pol-
- ish by George Lepa. English translation edited by R. C. G. Leckey. London,
- ³⁹² Iliffe; New York, American Elsevier Publishing Company Inc., 1968.