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Preface from the author

The present dissertation is a kind of half-finished compendium of ideas and represen-
tations of the description of the properties of the atomic nucleus and its fission process.
It presents well-known approaches and methods used in nuclear fission theory, taken from
textbooks and review articles, as well as compilations from the author’s articles. Of course,
the work also includes unpublished material of the author that has not been included in
publications or has been developed in the last year.

Despite the enormous amount of work that has been done, the thesis may contain
typos, errors, and difficult to understand parts of the text due to translation difficulties.
Thinking in the native language was a very heavy obstacle in writing this text. It is also
possible that the reader may not be able to understand the logic of the narrative, caused
by the overabundance or, on the contrary, the lack of some important details that were
omitted in the processes of narration. The reason for this is the inability to cover all the
discussed areas of the subject even in a two hundred page research. Nevertheless, the
author would be grateful for any questions and suggestions for the improvement of the
present work.
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Absrtact

This dissertation is devoted to the study of the dynamics of induced and spontaneous
fission in heavy and superheavy nuclei. Despite tremendous progress in theoretical nu-
clear physics, the fission process still contains many unsolved problems, the ignorance of
which leads to incomplete and/or inaccurate interpretation of the available experimentally
measured properties.

In the brief review of available theoretical methods and approaches presented here, an
effective model based on the solution of a three-dimensional stochastic system of Langevin
equations coupled to the Master equation is developed, which provides a description of
the evolution of the surface of a compound nucleus in a three-dimensional deformation
space containing the elongation, mass asymmetry, and constriction parameters. The main
purpose of the calculations was to obtain and compare with available experimental data the
distributions of masses, charges and total kinetic energy of fission fragments. The overall
agreement between the empirical and theoretical data allowed us to assess the applicability
of the hypotheses put forward in this work.

The geometry of the nuclear surface was defined using a recently proposed Fourie shape
parameterization, while the potential energy surfaces were calculated using the well-known
macroscopic-microscopic approach.

The extensive discussions in the pages of this thesis focused mainly on the dependence
of the obtained distributions on the excitation energy and the broadly understood boundary
conditions. The model was then generalized to take into account the charge equilibration
between the fission fragments and the particle evaporation mechanisms from the compound
nucleus and the two fission fragments formed after fission. The master equation for neutron
width is represented by a Weisskopf-type expression.

The fission characteristics obtained by the developed approach are in satisfactory
agreement with available empirical data for nuclei with Z € [92,104], indicating, in general,
a correct treatment of the fission phenomenon.

Keywords: Nuclear fission, induced fission, spontaneous fission, fission characteristics,
Langevin equation approach, nuclear temperature, Fourier parameterization, potential en-
ergy surface half-lives, potential energy surfaces, particle emission.
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1 Introduction 1

Chapter 1

Introduction

1.1 Motivation of my research

In December 2023, it will be 85 years since two german physicists, Otto Hahn and Fritz
Strassmann, during neutron irradiation of uranium, were surprised to discover that instead
of an even heavier element, the irradiated samples contained an impurity of barium, which
was not present in the original samples and whose sequence number was about half that
of uranium.

To understand the context of the researchers’ surprise, it is necessary to go back a few
years in the timeline to 1933, when the discovery of the neutron by Chadwick’s group took
place. It completed Rutherford’s search for the missing piece of the atomic nucleus. It also
provided a new source of radiation for understanding the structure of the nucleus. Using it,
a group led by Enrico Fermi noticed that when a neutron-deficient (A, Z) nucleus absorbs
a neutron, the system transforms into an (A + 1,7 + 1) system that emits an electron,
meaning the nucleus undergoes [f~-decay. This brought physicists to the idea that in
the case of irradiation of a very heavy nucleus (uranium at that time) from the chain of
transformation can be obtained the next element in the Periodic Table of Mendeleev. What
and began to do, in advanced laboratories throughout Europe.

At the same time, attempts were made to describe theoretically the characteristics
of atomic nuclei, more precisely, their masses and why they are lower than the sum of
the masses of protons and neutrons. The answer has the same roots as the well-known
qualitative school problem: "How does the mass of a brick of 5 kg change when it is broken
into two halves of 2.5 kg? The two halves are slightly heavier than 5 kg because of the
broken bonds between them. Obviously, more energy must be expended for the nucleus
than between the molecules or atoms of the brick. Assuming that the atomic nucleus has
the properties of a liquid droplet, calculations have been made which show that heavy
nuclei have lower bond energies than light nuclei. This is why heavier elements are not
observed on Earth, which is about 4.5 billion years old-they have long since decayed into
more stable elements. However, uranium could absorb a neutron and the system would
simply undergo one of the already known decays.

Back to the discovery of Hahn and Strassmann. The strange result and repeated
experiments with a detailed study of the chemical composition of the preparation led Hahn
to the idea that, in addition to the known decays, there is a process by which the nucleus
splits into lighter elements. With these data in hand, their colleagues Lisa Meitner and
Otto Frisch proposed [1] that the nucleus "splits" as a cell into approximately two identical
fission fragments, which was indeed shown in the experiment. They made a very simple
estimate of the energy released by such a process. About 200 MeV! Colossal energy.
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Soon, Bohr and Wheeler [2], and independently of them, Frenkel [3] were established
the basis of the nuclear fission theory. It was based on the previously mentioned drop
model of the nucleus. Nuclear and electrostatic forces act on the nucleons in the atomic
nucleus, the latter tending to break the system. Deformation of the nucleus disturbs the
equilibrium, and forces similar to the surface tension of a drop of liquid appear, tending
to return the nucleus to the shape of the ground state. The deformation of the nucleus
during fission is accompanied by an increase in its surface area and, like a drop of liquid,
the surface tension forces increase and prevent further deformation. The lower the fission
barrier, the shorter the period of spontaneous fission.

Thus began a new era, and with it the race to acquire nuclear weapons that changed
our world forever. Astounding weapons, capable of instantly killing tens of thousands and
painfully killing hundreds of thousands of people—all this is the result of the uncontrolled
nuclear fission reaction of a few kilograms of uranium or plutonium, developed by American
nuclear physicists !. Nevertheless, scientists looked for ways to contain this phenomenon
for peaceful purposes. And they found it in the form of nuclear reactors, which do not
store 29Pu (aka weaponized), but rather burn out ?*U smoothly (although until recently
combined-type reactors were used, the latter being discontinued in 2015). The boom in
nuclear power that began in the 1960s gave humanity hope of a cleaner, larger energy
source. It’s about time we had unlimited power in our hands. Enough for big cities and
small remote settlements alike. And progress is indeed being made. The leaders in nuclear
power generation are the U.S., France, China, Russia, and South Korea. Satellites in space
use heat from the decay of heavy isotopes as a power source, the most obvious being
Voyager-1(or 2). Floating nuclear power plants that can power distant coastal cities and
settlements, etc.

However, the man-made disasters at Three Mile Island in 1979, Chernobyl in 1986,
and the relatively "fresh" Fukushima-1 in 2011 have dispelled any optimism that existed at
the dawn of nuclear power, and in its place public opinion is filled with fear. This shows
that, unfortunately, progress in the field of nuclear power has been achieved at the expense
of many human lives and natural resources. The very long calculation and careful safety
in building more powerful reactors is slowing down the whole nuclear industry.

Currently, the main source of energy in the nuclear industry is the fission reaction
2357 by thermal neutrons, that is, when a neutron has a kinetic energy Ej;, = 0.025 eV.
However, this reaction has some nuances.

Problem #1: 23U is very small®2. In nature it is about 0.7%, so there are only a few
centers in the world capable of enriching uranium to the required 4 — 4.5% on an industrial
scale. The dependence on the quality of the uranium ore and the small number of facilities
seriously limits the capabilities of the entire industry.

Problem #2: waste. Yes, nuclear power plants are environmentally friendly, the whole
process is worked out to the smallest detail and improved every year. The heat generated
by cooling the third circuit is released into the atmosphere. However, this does not include
the problem of radioactive waste disposal. The fission products 23U are both toxic and
very active. The Chernobyl accident is an example of how dangerous they are. The extent
of the contamination caused much more problems than after the bombs exploded in the
sky over Japan in August 45. And the liquidation of the consequences of the explosion of
the reactor of the fourth power unit required colossal efforts even within the framework of
the state with a population of 280 million people!

Physicists, of course, are trying to find a way out of this situation. The first promising

Istrictly speaking, a very large group of scientists from both the Old and the New World
2about 200 years at the current level of energy consumption
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option is to use the fission of another uranium isotope — 2**U, not by thermal neutrons, but
by fast neutrons, where Fj;,, ~ 1 MeV. Moreover, the fission products of this reaction can
also be used in repeated cycles to produce new fuel. Currently, the new successful pilot
project of the fast neutron reactor is underway at the Beloyarsk NPP, for which russian
specialists have been preparing for almost 15 years. Another similar option is the use of
thorium, which is largely unused by mankind, but its reserves are very large.

Another option is the use of various admixtures of already available nuclear waste,
the so-called MOX fuel, which has long been realized in Russia, but the problem of waste
treatment does not disappear. On the contrary, very complex questions arise, such as
how to separate the waste in the best possible way, which isotopes can be used and which
cannot, in what quantities, etc. This also requires serious calculations.

Finally, let us return to the experiments that took place 80 — 90 years ago. Their main
purpose is to search for new elements in the Periodic Table of Mendeleev. During this
time, 26 new elements were discovered, filling the actinide series and continuing into the
so-called superheavy elements with Z > 104, ending with an element with ordinal number
118 in the form of a single isotope oganesson 2%*Og. Ironically, physicists then hit a ceiling.
It is now assumed that in the neighborhood of an element with Z > 120, the shell effects
of proton (and neutron) shells will produce relatively stable nuclei, which has been called
the "stability island". Obviously, the search for new elements located in this region of the
atomic nucleus diagram will bring nuclear physics to a new qualitative level and attract a
new wave of researchers.

The reasons for the problems mentioned above are the same — insufficient knowledge
of the process of nuclear fission, which the physics community around the world is trying
to overcome. A clear understanding of the processes occurring inside the nucleus will allow
to accurately predict the products of fusion of heavy target nuclei, for the synthesis of new
isotopes, and the behavior of nuclear fuel combustion. This will allow mankind to develop
more rationally and productively not only on the home planet, but also in new homes.
This is a serious motivation for this study.

The purpose of the present work is to take a small step (on the shoulders of giants) in
the development of a simple tool, which with further modification to improve our under-
standing of the processes of fission of atomic nuclei, or at least try to make this step.

1.2 The current state of nuclear fission theory and its
challenges

Very briefly, the current understanding is well described by figs. 1.1 and 1.2, which
schematically show the evolution of the nuclear fission process, the formation of pre-
fragments, the separation into two primary fragments, which subsequently appear in de-
tectors as fission fragments, which then diverge at an accelerated rate.

They also show that fission is a time-dependent process that proceeds in several stages
with characteristic time scales. A nucleus from an initial state undergoes a change followed
by fission, usually into two excited fragments. They then undergo a sequence of rapid
and/or delayed decay excitations leading to the ground or isomeric excited states.

As can be seen from Fig. 1.1, the elongation of the fissile nucleus plays an essential
role, starting from the equilibrium form and evolving through different forms with diffusion
behavior. Initially, the strain corresponds to the equilibrium shape of the parent nucleus,
but during fission it changes due to the diffusive nature of the process. Eventually, the
system is beyond the outer saddle point and evolves toward fission, forming an elongated
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system of two fission pre-fragments.

In the experiments of Hahn and Strassmann, the barium isotopes were produced by
induced fission, which results from a reaction or decay process in which energy is supplied
from outside. It can be induced in a variety of ways, of which there are now many.
In addition to neutron capture, it can be induced by electron capture and beta decay,
photofission, reactions involving charged light particles or heavy ions. In all these processes,
the fissile nucleus is in an excited state, which can be above or below the fission barrier.

However, relatively soon after the discovery of forced fission, it was discovered that the
nucleus, can undergo spontaneous fission (SF). It occurs mainly from the ground state, but
is also possible from isomeric states. This type of fission is one of the main decay modes
of superheavy nuclei and is therefore of great interest for their experimental search. From
the basic ideas described by Bohr and Wheeler, the relatively long lifetime is due to the
existence of a potential barrier that must be overcome. Spontaneous fission is therefore,
strictly speaking, a quantum process. In this context, the dependence of this phenomenon
on the parity of the nucleus has been observed: in odd nuclei, it is usually hindered by
several orders of magnitude compared to its even-even neighbors. It is probable that it is
even more complicated for odd-odd nuclei, but it is not exact.

In theoretical descriptions of fission, it is very convenient to use Bohr’s notion of
compound nucleus formation at a given thermal excitation energy. And this is really
useful for low energy fission. Today, however, there are discussions that this representation
may be unreasonable for fast probes, where the nuclear system may not have time to cool
down before fission begins. There is the possibility of emission of one or more nucleons
before equilibrium is reached. Moreover, as the excitation energy of the compound nucleus
increases, the competition between neutron evaporation and fission increases, so that one or
more neutrons may be evaporated before fission occurs (so-called multichance fission). And
so the use of temperature to determine the energy of the whole system is also questioned.

1.2.1 Important observable parameters

Of course, there is now a considerable set of quantities of interest that can be measured
directly or modeled theoretically. Using the classification of the paper [| [Bertsch et al.
(2015)], we will identify the most important of these:

— Spontaneous fission half-lives Tgr from 107% to 10 s.

— Total and differential fission cross sections. For example, the neutron-induced
fission cross section o(n, f) and its energy and angle dependence, or the threshold
fission energy observed in the photofission cross section, which is closely related to
the fission barrier height.

— The distributions F(A), F(Z), F(Z,A) (yields Y(A), Y(Z), Y(Z,A)). They
characterize the probabilities of forming fission fragments of a given mass and/or
charge.

— Fission spectrum. This includes the average number of neutrons per fragment
and their energies, the average number of photons per fragment and their energies,
multiplicity distributions, angular correlations, etc.

— Total Kinetic Energy (TKE). Kinetic energy of fission fragments after accelera-
tion, its distribution and dependence on fragment mass.
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— Beta decay spectrum of fission products. Particularly important for the fun-
damental theory of beta decay and includes the neutrino spectrum.

Correlations between the above quantities (e.g., between the mass of the fragment
and the TKE) and with other quantities (e.g., the spin of the fission nucleus) are also
important. These quantities can be obtained from experiments. However, even with the
great progress in nuclear physics, one must realize that these "experimental quantities" are
often the result of indirect changes. In them, the quantity of interest is extracted from
measurements by means of some model or model-dependent assumptions.

It should also be realized that most of the quantities operated on in nuclear physics
are unobservable, i.e. they cannot be observed directly. The most prominent examples are
the fission barrier and the concept of the compound nucleus. For example, the height of
the fission barrier can be theoretically defined as the energy difference between the ground
state and the highest saddle point on the calculated potential energy surface (PES) that has
the lowest energy for all possible paths leading from the ground state to fission. And the
concept of a compound nucleus is based on a model that assumes complete thermalization of
the system and ignores pre-equilibrium processes. Other useful but unobservable quantities
include the fission point at which the nucleus splits into primary fragments, the shell energy
on the way to fission, the mating energy at the barrier, the pre-fission fragments formed
in the pre-fission region, etc.

1.2.2 The main approaches of fission theory

As was noted earlier, the theory of nuclear fission does not have a general formalism
that could successfully describe all of the above features. Here we will spend only a small
list of available methods and approaches with a short explanation.

But before giving a brief summary of the available models and approaches, it is neces-
sary to touch upon a very frequently used term in the theory of nuclear fission, namely the
notion of adiabaticity. Now, in nuclear physics, the term "adiabatic" has several meanings.
For example, it can mean that the collective motion passes through a sequence of local
ground states, each of which corresponds to a system bounded by a given set of collec-
tive coordinates and quantum eigenvalues. Alternatively, the notion of adiabatic motion
means that the time-dependent wave function acquires collective kinetic energy through
infinitesimal admixtures of local excited states, while non-adiabatic corrections correspond
to significant admixtures. An obvious example [4] would be the representation of dissipa-
tive motion used in this study, which refers to a constant irreversible flow of energy from
a local ground state. In the context of the time-depend Hartree-Fock method (TDHF) or
DFT, adiabaticity denotes a very specific approximation of the time-dependent one-body
density matrix, i.e. it is only valid for sufficiently slow motion. Another commonly used
definition of adiabaticity involves the separation of variables into slow and fast coordinates.
It is in the order of magnitude of the norm to use this notion from splitting theory to divide
degrees of freedom into "collective' and "non-collective".

Adiabaticity is linked to time intervals, which vary with fission stage dependence. For
example, fission through a compound nucleus is delayed by the lifetime of the compound
nucleus, which is much longer than the time scales of the dynamics. At excitation energies
below the fission barrier, the fission lifetime depends strongly on the tunneling probability
and can vary by many orders of magnitude. Then there is the collective motion time from
the outer turning point to fission, as shown in Fig. 1.2. The slower this motion is, the more
accurate the diffusion and statistical modeling of the dynamics will be. The time to fission
(descent from the fission barter) plays a special role, affecting in particular the excitation
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energies of the fragments or the TKE.

For experimental studies, the determination of fission timescales is an extremely diffi-
cult problem because they affect the early stages of fission dynamics. They are generally
not available for direct study, but must be inferred from the analysis of products at later
stages of fission. To date, there are experiments measuring fission times published in
Refs. [5-8]. However, they need to be combined with model description of e.g. the emitted
neutrons and their dependence on angular momentum or excitation energy. As a result,
it is likely that different experimental methods will yield different characterizations of the
fission time distribution.

Mean-Field Theory The mean-field approximation is the basis of microscopic nuclear
theory for all but the lightest nuclei. In the context of nuclear fission, a major advantage
of mean-field theory is that it is formulated directly in the body-fixed reference frame of
the nucleus, in which the notion of the deformed shape of the nucleus and its dynamical
evolution is naturally present.

The self-consistent many-body wave functions are directly or indirectly composed of
Slater determinants of orbitals, where orbitals are computed as eigenstates of the mean-field
potential of a body. When the mean-field potential is determined by the expectation of
the Hamiltonian in the Slater determinant, the solution is performed in the Hartree-Fock
(HF) approximation. When the coupling field is included, the Hartree-Fock-Bogoliubov
(HFB) approximation is used.

Another widely used approach is the macroscopic-microscopic method, which avoids
the subtle problems of constructing an HFB that reproduces the systematic properties of
heavy nuclei. Here, the basic properties of a nucleus are determined from its size and shape,
expressed in some surface parameterization. The orbitals are constructed using a potential
derived from the surface shape of the nucleus, and their energy is calculated using a liquid
drop model together with shell corrections determined by the orbital energies. This is the
method used in the present study (see Chapter 2).

In this approach, the potential energy surface (PES) is the lowest possible energy of
an evolving system that corresponds to given values of the collective variables. The PES
is usually multidimensional. Although the PES alone is not sufficient for the prediction
of dynamical evolution, it is nevertheless very useful because its topography allows us to
understand and anticipate the main features of the dynamics. Local minima, saddle points,
and fission surface — key features that often allow us to predict isomeric properties, thresh-
old energies, and fission fragment yields. For a given point in collective space, either by
minimizing the total energy within the constrained HF (CHF) or HFB (CHFB) framework,
or by calculating the macroscopic-microscopic energy for a given shape, the potential en-
ergy of the corresponding nuclear configuration and its internal structure can be obtained.
The former method produces an optimized shape within the given constraints. The latter
method may not consider aspects of the shape beyond the given shape parameterization.

Some approaches require energy in the presence of internal excitations, whereas the
standard PES describes a configuration with no excited orbitals or quasiparticle excitations.
In the macroscopin-microscopic method, a temperature-dependent DFT formalism can
be used, while the self-consistent method requires the calculation of shell and pairwise
corrections for finite excitations. In the CHF and CHFB framework, the PES is usually
represented as a function of several multipole moments. However, the multipole moments
have little control over the shape and do not provide sufficient discrimination between
internal configurations at large strains.
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Time-dependent DFT The time-dependent version of the DFT is an established ap-
proach in nuclear dynamics, and has been widely used to model heavy ion collisions [9, 10].
In principle, it can be easily generalized to the HFB approximation, but it is only now
reaching the computational power to perform calculations without introducing artificial
constraints and approximations [11-15]. These approaches have the important property
that they observe energy and expectation conservation for conserved one-body observables,
such as the number of particles. Their strength is that they usually provide a good de-
scription of the average behavior of the system under study. Its weakness is that since the
TDHF equations arise as a classical field theory for interacting single-particle fields [16],
the TDDFT approach cannot describe either the motion of the system in the classically
forbidden part of the collective space or quantum fluctuations. As a consequence, the
real-time TD approach cannot be applied to spontaneous fission.

Dissipative dynamics Although the self-consistent dynamics of the DFT is very power-
ful, it largely ignores the internal degrees of freedom, which can lead to large fluctuations in
the observed parameters and energy dissipation [17, 18]. There are several ways to account
for the additional degrees of freedom in the equation of motion. The simple leading diffu-
sion equation assumes first-order time derivatives. This approach has been very successful
in describing mass and charge yields in [19].

More generally, time-dependent models can be considered. These models combine
even-time inertial dynamics with odd-time dissipative dynamics. The multidimensional
Langevin equation [20-23] is a common classical formulation. In this approach, the dissi-
pative energy is transferred to a thermal reservoir characterized by the temperature.

Quantum tunneling The tunneling motion in SF is usually considered by means of a
quasi-classical one-dimensional formula for the action integral, which is based on two basic
quantities that can be derived in the nuclear DFT: the PES and the collective inertia (or
mass) tensor. The fission trajectory is computed in a reduced multidimensional space.
Two to five collective coordinates are used to describe the shape and conjugation of the
nuclei. The assumption of slow, nearly adiabatic motion is required for the mass tensor.
The pairing gap makes this assumption most plausible for even-numbered nuclei, but even
in such systems one can expect non-adiabatic effects due to the level crossing [24-26]. In
order to make progress in NF research, the following questions are relevant

+ Generalized fission trajectories Usually, the trajectories of HFs in the collective
space are defined by considering several coordinates that bound the shape. It is
better to assume that the collective motion occurs in a large space parameterized
by a Tuless matrix characterizing the state of the HFB. An approach to define the
collective trajectory in this way has been proposed in [27, 28]. There, the equations of
motion have a canonical form (involving coordinates and moments) and the boundary
operators are dynamically defined.

e The multidimensional WKB formula The current methodology for barrier pen-
etration is based on minimizing the collective action along one-dimensional trajecto-
ries, although our experience with fission evolution above the barrier shows that it is
important to use multiple degrees of freedom. It may be possible to generalize the
one-dimensional quasi-classical WKB-like formulation to a more general solution of
the tunneling problem in several dimensions [29)].

« Nonadiabatic effects The admixture of non-adiabatic states can be crucial for
understanding the fission barrier in odd nuclei. Excitations to higher configurations

8
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can be caused by single-particle level crossing and Coriolis coupling.

The above list of representations represents only a fraction of the available spectrum
in nuclear physics. The failure to describe more than three types of fission charectiristics
presented in 1.2.1 is certainly striking. Moreover, some of them are of a phenomenological
nature, which obviously has to be dealt with. In fact, as one of the main authors of the
work [4] pointed out, it is necessary to move in the direction of generalization. However, as
again correctly pointed out, even in spite of the present possibilities, the choice of methods
and approximations still cause many problems. Including computational ones. Obviously,
the creation of a unified fission model is a medium- or even long-term task.

Nevertheless, the use of combined methods, such as the coupling of dynamical dissi-
pation method and the mean-field approach, can, in the author’s opinion, shed light on
obtaining new models allowing to describe as many fission characteristics of atomic nuclei
as possible.

1.3 Research highlights of the thesis

This work represents PhD research devoted to the properties of the atomic nucleus and
its fission process. The approaches and methods widely used in the theory of nuclear fission
are reviewed here, although their development is attempted. In the author’s opinion, for
the understanding of the details of the study, the following paragraphs must be included
in the later chapters:

1. Definition of the details of the macroscopic-microscopic approach, which methods
and formalism lay the foundation for the study:
o A brief overview of the concepts and properties of nuclear forces.
» Concept of binding energy and its phenomenology from macroscopic parameters.

o Representations of the liquid drop model and its further development to the
present day.

o Choice of the macroscopic model to be used.

o The Hartree-Fock and Hartree-Fock-Bogoliubov approximations for calculating
the energy states of nucleons.

o The Mean-field approach and Yukawa-folding procedure. Calculation of the
Coulomb potential in the HFB method

o Application of harmonic oscillator potentials in calculations of the structure of
deformed nuclei.

o Strutinsky’s method as a basis for the macroscopic-microscopic approach.

2. Parameterizations of atomic nuclei surface and related macro-characteristics, knowl-
edge of which is necessary to account for the dynamics of the fission process:

« Anthology of commonly used parameterizations.

« Highlighting the most suitable type of parameterization for the problem consid-
ered in this paper.

e The hydrodynamic method for determining the inertia of the nucleus. Werner-
Wheeler approximation.
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o Techniques for determining the friction tensor of the nucleus:

— "Wall" formula;
— "Window" formula;
— "Wall-Window" formula.

3. Stochastic methods describing fission dynamics:

o Langevin equation formalism.
o Fokker-Planck equation formalism.

» Relationship and comparison of the above formalisms.
4. The generalized description of evaporation of light particles from nuclei.

The first point corresponds to the Chapter 2 of this dissertation. The second point
corresponds to the Chapter 3. The last two paragraphs were decided to combine into one
Chapter 4. It is connected with the fact that these formalisms are either mutual (of course
we are talking about the Langevin and Fokker-Planck equations) or complementary to the
physical picture of the process.

Chapter 5 stands apart. Unlike the previous ones, it includes the author’s complete
study of the dynamics of nuclear fission. More precisely even-even heavy and superheavy
nuclei, i.e., in the range of order number Z € [90,116] and mass number A € [222,294].
Chapter includes model building based on numerical solution of the multidimensional sys-
tem of Langevin equations and searching for optimal model parameters. Different hypothe-
ses and assumptions are investigated. The model’s liquidity is tested first by fission of the
compound nucleus 236U, which is extended further to other nuclei. Here are some of the
points that will be addressed within this chapter:

o Behaviors and effects of temperature on fission system parameters
o Influence of initial conditions on the fission process

o Criteria for trajectory termination in fission modeling

o Characteristics of nuclear fission at the fission point

« Neutron evaporation process and its influence on characteristics

e The process of light particle emission from a compound fissile system

The last chapter summarizes the results obtained in this thesis. In addition, a brief
critical review of the problems that should be addressed both when using the model devel-
oped in this work and when using the stochastic formalism to describe nuclear fission in
general is carried out. Possible ways to improve the existing model and its future prospects

will be identified.

10
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Chapter 2

Description of the atomic nucleus
properties with using of the
macroscopic-microscopic method

As mentioned in the Introduction, there are several approaches to describe the fission
of atomic nuclei, which are still under active development to strengthen their predictive
power and cover a larger number of possible nuclei. The most advanced at present are
microscopic approaches based on the formalism of quantum mechanics, such as the method
of density functions for protons and neutrons, or the Hartree-Fock-Bogolyubov method,
which includes pair effects. These ideological heirs of the shell model are quite good at
describing the internal structure of the nucleus, including the deformed ones. However,
when we talk about dynamic calculations, these models face the problem of the bulky
nature of these calculations, even on modern computers. Therefore, the range of studies of
nuclear fission by microscopic approach could be much higher and is limited by considering
spontaneous or low-energy fission, where excitations of nucleons are small. Almost all of
the excitation energy is used to overcome the barrier. Therefore, the generalized method
that appeared in the mid-1960s, combining elements of both macroscopic and microscopic
approaches, remains relevant and will be discussed further in this section.

2.1 Retrospective of macroscopic models

First of all, there was the question of the interaction of these particles. After it was
discovered in the early 1930s that the atomic nucleus is composed of positively charged
protons and zero charged neutrons, the question of revising the description of the structure
of the nucleus was seriously raised. Experiments have shown that these forces have the
following properties:

o Attractive.
o Short-range (at r, =~ 1 fm repulsion, disappears at 2r,).
« High intensity (high magnitude E oc 105 eV).

o Charge independent (except for the Coulomb force, the interaction is considered the
same for p—p, n—n, n—p).

« Dependent on the relative distance of two nucleons (Vis = V (|r2]) ).

11



2.1.1 Liquid drop model 12

» Saturated (as the number of nucleons A increases, the binding energy rises sharply
and quickly reaches its limit).

2.1.1 Liquid drop model

This last point historically predates the first attempt to describe the atomic nucleus.
In 1935, Weizsédcker and Bethe independently used two assumptions peculiar to the liquid
droplet:

1. Uniform density of nuclear matter;
2. Average binding energy is the same for all nucleons forming the nucleus;

proposed [30, 31] to calculate the binding energy by the simple semi-empirical expression
B = bvol A— bsurf A2/3 - ECoul (21)

The first term corresponds to the constant nuclear energy per nucleon. The next term
accounts for the nuclear surface tension effect, which reduces the total energy and is pro-
portional to the surface area of the drop. The last term in the equation is the Coulomb
repulsion between the protons. This results from the leptodermous expansion of the total
energy, a power series in the term A3,

Green and Bethe proposed a further modification of the basic version in 1953 with the
introduction of the symmetry-energy term, the appearance of which is due to the Fermi
gas model. In this model [32], taking into account the Pauli principle and the laws of
conservation of energy and momentum, it turned out that the motion of nucleons has an
independent character. Therefore, the additional term in the equation (2.1) should be
proportional to %—jé, which is usually called nuclear reduced isospin I. This introduced an
additional dependence of the energy on the difference between the number of protons and
neutrons in the nucleus. This more advanced Liquid Drop (LD) formula for the binding
energy has the form
Z%e* 1 (N - 2)?

by (2.2)

B= ELD = bvolA - bsurfA42/3 - bCoulm - 9 sym A

where the parameters have been fitted to experimentally measured masses and have the
following values:

byt = 15.56 MeV,
beut = 17.23 MoV,

2
bt = S = 0.697 MoV,
5 To
beymn = 46.57 MoV,
ro = 1.24 fm.

2.1.2 Deformation dependence of binding energy

Soon it became clear that the atomic nucleus not only deformed during fission, but
also had a non-spherical shape in the ground state. This was observed in studies of the
scattering of gamma rays on nuclei. Consequently, the binding energy of the nucleus, which
depends on surface effects, also depends on the degree of deformation of the nuclear shape.

12
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This means that the surface and Coulomb terms in the LD formula (2.2) must be multiplied
by the following factors

Buut(def) = Sé?(f)f), (2.3)

where S(0) and Ecow(0) denote the values calculated for the spherical case for all other

unchanged parameters.
The LD formula (2.2) then has the form

3 722 1 (N—2)
5chou]<def> —=b _.

B(Z, N, def) = byglA — bau A3 Bye(def) — Sham=——

(2.5)
Of course, the definition of the deformation of the nucleus touches on the question of how
to describe its surface. The introduction of additional deformation parameters into the
particle coordinates is always associated with an artificial increase of the degrees of freedom
of the nucleons in the nucleus, which is associated with the danger of obtaining unreliable
information, such as false excited states in the nucleus. However, the macroscopic approach,
which proved to be the most suitable for the description of atomic nuclei shapes, made such
models very popular for a long time, until today. The most popular and convenient types
of parameterization are discussed in Chapter 3, and the most fundamental of all types is
presented below.

Spherical harmonic expansion

The first and most common way to represent the atomic surface is, of course, to
decompose it into an infinite series of spherical functions

) A
R(W, @) = Ro ({ax,}) |1+ > > anYou(?,9) (2.6)

A=0 p=—X\

where Ry is obtained from the volume conservation condition of the deformed nucleus, the
coefficients a), describe all possible shape variants. Even values of the A index, for example,
describe bodies with mirror symmetry. On the other hand, the index with p = 0 describes
forms with axial symmetry. Their combination gives the following forms, asg — quadrupole
deformed nucleus, azy — octupole deformed, pear-shaped forms, asg — hexadecapole, and
so on. The series (2.6) is limited to the listed variants and ends or, in connection with
simplifying the calculations, some set of combinations of parameters ay, is used. Consider
the simplest example of a nuclear surface near an axially symmetric spheroid described by
a quadrupole deformation with A = 2 and p = 0. The surface equation is of the form

R(0) = Ro(B) [1 + SY20(V)], (2.7)

where 8 = ayg is a quadrupole deformation parameter. For non-axial cases, but with mirror
symmetry with respect to each major axis, one has A = 2, and p = 0, +2, and the surface
of the nucleus is described by

R0, ) = Ro ({az,}) |1+ 3 agYau(¥,9) | - (2.8)

u=—2,0,2

13
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Then one can introduce [33] the Bohr parametrization 3, , where

L.
Aoy = /BCOS Y, A9y = A9_9 = ﬁﬁ S 7. (29)

As you can see, the equation (2.9) has no term with z = 1 because the axes of the coordinate
system coincide with the major axes of the ellipsoid.

If we use the parameter «, the value of the global deformation of the nucleus, intro-
duced by Myers and Swiatecki in 1966 [34], which is a measure of the relative deviation of
the deformed surface from the sphere.

02 // [R(V, ) — 20] dcosddp _ ™ (ar)? (2.10)

2
0
and consider the case of quadrupole deformed nuclei, where
o = ay + ay, + a3, = (2.11)

The shape-dependent functions Bs and B. in the parameterization egs. (2.7) and (2.10)
can be treated as

2 4

Byut(a,v) =1+ 5a2 — ﬁag cosy + 0 (044) (2.12)
1 4

Beoou(a,vy) =1 — 5042 — 1—050;’ cosy+0 <a4) (2.13)

Fissility of atomic nuclei

Then, knowing the analytical form of the surface change, we can estimate the potential
barrier of the system, since in the LD representation the potential barrier appears when
the surface energy increases faster than the Coulomb interaction decreases, i.e. to satisfy
the following inequality

2 ARGk
2/3 2
bsurtA : 504 > bcoulm : E (2~14)
or B 72
QEOUIfA <1 (2.15)

The left value in (2.15) is usually defined as z, the fissility parameter of the nucleus.

BCoulZ2 i 22
2Bt A  49A°

x = (2.16)
which, in the liquid drop model, describes the properties of the nuclei as a result of fission.
For example, for nuclei with a high potential fission barrier, the parameter x < 0.7, as
for the heaviest stable isotope of lead 2°®Pb, the fission parameter is 0.66, but for the
spontaneously fissioning ?4°Pu, the fission parameter is already 0.75. For the isotope of the
superheavy element 2?Lv, the parameter x ~ 0.94 reaches a value close to 1.

It should be noted, however, that the fisslity parameter only affects the macroscopic
part of the barrier. In addition, there is a microscopic part. This is the sum of shell and
pairing effects, which act in a specific way when the nuclear surface changes, i.e. when
symmetries are broken. This will be discussed in the next sections of this chapter.

14
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2.1.3 Myers—Swiatecki liquid drop formula

In parallel to the deformation studies, it was noticed that LD cannot correctly describe
the experimental values of the binding energies of nuclei where the number of protons or
neutrons takes on the values N = 2,8, 20, 28,50, 82,126, 184 (the last two currently only
for neutrons), the so-called magic nuclei, which have a very strong connection. This result
suggested [35] to Jensen and Goeppert-Mayer that nucleons form shells inside the nucleus,
like electrons in an atom. This led to the emergence of explicit quantum mechanical models
describing the structure of the atomic nucleus from a point of view that can generally be
classified as a microscopic approach.

However, due to the problem of computing power in the middle of the last century, the
calculation of the wave functions of all nucleons was a very non-trivial task, and in most
cases approximate methods were used. It is therefore not surprising that a macroscopic-
microscopic approach to the calculation of the binding energy was proposed, in which it
was suggested to expand E into a sum:

B=FEip+ 5Eshella (217)

where the last term 0 Ey,q is a shell correction.
The correction comes from the quantum effects of the shell in the nucleus, which is
defined as the difference between the sum of the single-particle energies e, of the occupied

levels and the energy of the nucleus without the shell structure F, i.e. with smoothed
single-particle levels e,

A
5Eshell = Z €y — E. (218)
v=1
Instead of solving Schpodinger’s equation within some arbitrary mean single-particle po-
tential at certain levels |v) with energies e,,, Myers and Swiatecki used the general results of
the Fermi gas model. They obtained the correction (2.18) by creating a discrete spectrum
from the continuous energy spectrum E(n), grouping the single-particle states of protons
and neutrons into shells corresponding to their magic numbers.
The logic was as follows. The Fermi energy for N particles of one type is

R (32N

where M is the reduced mass, €2 is the volume of space. Thus, the energy of the level
occupied by the nth particle can be estimated as

B (3r2n\*? n\2/3

Then, assuming that the average energy é(n) changes according to the formula (2.20) and
dividing the continuous energy spectrum by the difference between the filling levels of the
shells V;, i.e. e.g. N; — N1 =2,6,12,8,22,32,44, ... for 1 = 1,2, 3, ..., the total energy
of the nucleon in the i-th partition has the form

B [ emydn = 55 [ p2rgy -
i_//\/ile(n)n_NQ/S//\/iln n =

3
= S VP = ™.

(2.21)
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2.1.3 Myers-Swiatecki liquid drop formula 16

In this case, the average energy per nucleon in the i-th region is

E 3 e <M5/3—M5/i”)

T Ni—Nioi 5N\ N, — N,

e; (2.22)

The obtained energies e; are substituted into Eq. (2.18) and when replacing the operation
of summation by integration, the shell correction takes the form

N e [3 (AT
5Eshell :/0 (Gi_e) dn:/o N2/3 |:5 (/\/;—/\/1_1 —n dn. (223)

It is convenient to replace the first term in the integrand in Eq. (2.23) with function f(n)

3 (Nf“ —Nf/f)

filn) = (2.24)

5\ Ni—Nin

which has the character of a step function and is shown in Fig. 2.1 with successive values
determined in the "centers of gravity" of the shells. Thus, the shell correction could be
expressed as a function

PN = [ [~ n) = () (V- N - S (V) e2s)

here N;_1 < N < N; due to integral has a non-zero value only on the last interval.

[N)
Ut
T
\
1
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1
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1

Figure 2.1: The single particle energies f(n) in the discrete and degenerated spectrum by
Myers-Swiatecki (blue solid line) as a function of particle numbers compared to the Fermi
gas energies n?/3 (dashed line).

Then the so-called "flattening" of the function (2.25), i.e. its averaging around a certain
curve n?/3, is performed. This requires dropping f; by about ¢N/2%/3, since n?/® and f(n)
must be very close to each other for the shell correction to fluctuate around zero. In this
case, the total shell correction for the nucleus is the sum of the corrections obtained from
neutrons and protons

el
0 Eghenn = N§/3 (F(N) - %

cN ep cZ
) - <F(Z) - 22/3> . (2.26)
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2.1.3 Myers-Swiatecki liquid drop formula 17

Assuming that eb ~ el = ep valid for nuclei close to S-stability Myers and Swiatecki shell
correction Eq. (2.26) can be written as

er cA

0 Eghen = (A)2)2/ {F(N> +F(Z) - 22/3} - (2.27)
FIN)+F(Z)  apl |

“er\ A} =2,

Before summarizing all elements of Eq. (2.17), it should be noted that the barrier height
depends significantly on the deformation of the nucleus, which destroys the shell structure
due to the symmetry breaking. This leads to a reduction of the shell correction energy,
so the dependence of the shell correction S on the deformation parameter « (2.10) can be
expressed in exponential form:

S(Z,N,a) =S8(Z,N)exp <—Zz> ‘ (2.28)

where « is a phenomenological parameter adjusted over experimentally determined barrier
heights. Nuclei with nucleon numbers far from the magic number have a positive shell
correction, which creates a minimum at non-zero deformation «. On the other hand,
nuclei with magic or near-magic nucleon numbers have a higher fission barrier and are
more stable because they have a negative value, which, together with the drop energy,
deepens the spherical minimum. It should also be noted that highly deformed nuclei can
retain a strong shell structure in the case of isomeric forms.
Finally, the Myers-Swiatecki formula for the binding energy (2.17), taking into account
the deformation of the nucleus, has the following form
Z2
B(Z,N,a,v) =ChA — CyA*? Byys(a, ) — C3m300u1(047 v)

2 (2.29)

Z
+ i = 8(Z, N)e~ /20 _ §E,.0(Z, N).
As seen in Eq. (2.29), in addition to the known first three terms and shell corrections, there
are two more. The C;Z?/A term is a correction of the Coulomb energy of the nucleus due to
the smooth surface charge density. Another 0 E,,;, describes the pairing energy correction,
which can be written as

1—1Me\/ for Z, N odd,

VA
0 Epain(Z,N) = 0MeV for A odd, (2.30)

11
——=MeV for Z, N even.

VA

Unlike the modified Bethe-Weizsécker formula (2.2), the symmetry energy is implicit and
hidden in the coefficients of the volume C] and surface C5 terms

Cr=a (1-rk1%),
(2.31)
CQ = A2 (1—/'{[2) .

where [ = %.

Therefore, there are seven freely adjustable parameters in the formula (2.29). Based on

17



2.1.4 Droplet model 18

their classic work [34] Myers and Swigtecki, using the then available experimental data of
1200 nuclear masses, 40 fission barriers, and 240 quadrupole moments, obtained this set of
parameters

a; = 15.4941 MeV, ay = 17.9439 MeV, C5 = 0.7053 MeV,

ro = 1.2249 fm, Cy = 1.21129 MeV, k = 1.7826,

er = 5.8 MeV, c = 0.26, ag = 0.27.

The error in the predictions of this formula was as high as 2 MeV, which at the time
allowed the masses of the elements to be described and predicted very accurately. However,
without the addition of shell and pairing corrections, the error reached up to 12 MeV in some
cases, indicating the importance of these components. This rather simple phenomenological
model became the basis of the so-called microscopic-macroscopic approach, which we will
discuss later.

2.1.4 Droplet model

The Droplet Model (DM) provides a more sophisticated and accurate description of
the average binding energy than the pure liquid droplet approach mentioned in the pre-
vious subsections. This model, like LD, attempts to incorporate surface curvature, which
significantly improves the behavior of the macroscopic energy in deformed states, directly
influencing it in the form of fission barriers. It also takes into account the nature of the
decreasing nuclear density of the inner region of the nucleus upon deformation, since some
of the nucleons that were in this region tend to occupy the increasing surface region. There-
fore, the surface term proportional to I2A%3 in the Myers-Swiatecki formula (2.29) can be
interpreted as a factor of increasing binding energy, which arises when an excess of neutrons
forms the nuclear surface during deformation. Of course, we should not forget that this
increase is compensated by the surface tension.

In this case, we can conclude that, in contrast to LD, the droplet model rejects the
assumption of a uniform density of nucleons as well as protons and neutrons. Therefore,
it has been proposed [36] to introduce the following additional parameters:

e t — thickness of the neutron skin,

e 0 — relative excess of neutron density,

o ¢ — relative deviation of density from its nuclear matter value py,

e Y — the effective nuclear surface area between the proton and neutron. distributions.

The neutron skin phenomenon has an obvious origin in the symmetry properties of
nuclear matter, which tries to maintain an equal number of protons and neutrons. Thus,
in real nuclei, where usually N > Z, there is a force that pushes excess neutrons to the
surface. The Coulomb interaction of the protons reduces this tendency by trying to expand
the region where they are located. However, this force competes with the surface tension,
which also tends to hold the parity of the two types of nucleons, i.e. to eliminate the
neutron skin. In this case, the neutron skin is understood as the distance ¢ between the
locations of the proton and neutron diffusion surface profiles, i.e. the shift required to place
one profile on top of the other. It allows some neutrons to be added to the surface layer.
Then the force responsible for the formation of the surface neutron skin can be expressed

as follows
. §T’0 JI

SRR

(2.32)
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2.1.4 Droplet model 19

where 7 is the constant radius of nuclear matter, J is the nuclear symmetry energy coef-
ficient, and () is the effective surface stiffness coefficient.
Then, taking into account the electrostatic energy for protons £
force JI leads to

3e

A1 /3, decreasing the given

_3 JI — Ly ZA7Y3

Further considerations lead to the modification of the denominator of this expression”:

3 JI— e ZzA

= — 2.4
2T0 Q+%JA*1/3 ) ( 3)

where ¢; = 3e%/5rg ~ 0.7322 MeV. Such a neutron skin correctly predicts that for an
uncharged nucleus @) tends to zero and all excess neutrons are pushed into the surface
(t = tmaz = 2/3RoI). For a nucleus of arbitrary shape, ¢ has the form

t=1t+t,

where

3 JI - *Cle 1/3( vol/Bsqu) f 37“ e( 5)
o ,

"0 Q + JTAV3B, ’ 8°Q

where v is the deviation from the electrostatic potential v produced by a uniformly dis-
tributed charge Ze, ¥, is the value of ¥ at the surface, and ¥ is the surface average of
Vs

The macroscopic binding energy in the Droplet Model is then expressed in the following
form [36]:

t=

1 1 -
B(A,Z,def)z(—a1+J(52—2K§2+2M54>A

4 <a2 n Z ‘22 52) A2 B (def) + ag AMP By (def)

+¢; Z* A7V3 Begu(def) — ¢y Z% AY? B,(def)

7? Z
3 A Cq \3/5
where the factors Bgut, Beurvs Bcoouw, Br, By, and B, are functionals depending on the
shape of the nucleus. They describe the relative change of: nucleus surface area, curvature,

Coulomb energy and its inhomogeneous spatial distribution with respect to the deviation
of the Coulomb potential W (r) from its mean value

- 1
W == W’/\/W(T)dT

both inside and on the surface of the nucleus. These coefficients can be calculated by

(2.35)

— ¢5 77 By(def) — ¢ + Bwig,
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2.1.4 Droplet model 20

integrating over volume V', or the S nucleus surface:

1
Bsur = /d
P anRr? Js ?
1

BCoul = W/\/W(T)dT

curv: = —)d
87TR/< + )0

(2.36)

B, = / W(r) — W|%d
15757T2R7 i) Fdr
1 .
By——— _
= T L) - Wido
_ ]' 2

All integrals (2.36) obtained for the deformed nucleus are divided by integrals calculated
analytically for the spherical nucleus. The last in Eq. (2.35) component Eyy;, is the Wigner
term, which has the form [34]

Ewig(A, Z) = —10 - exp(—42|1]/10). (2.37)
The variables 6 and & are the averages ¢, € over the effective area ¥ and are equal to:

T4 3agzA2Bf(def)

5= 108 2.38
1+ZéA_1/3Bsurf ’ ( )
1 _
e= |- 20 A7V f(def) + L6* + CLZ2A™Y3g(def)|, (2.39)
All coefficients ¢; can be expressed as follows:
3e?
o= 22
! 5 To
c? (1 N 18)
Co=—|—-4+—
27336 \J K/’
5 b
€3 = 54 ) (2.40)
5 3 2/3
=70 (5)
1 c
s =—0e1 | =
e\ 0

and coefficients entering the egs. (2.32) and (2.40), which were fitted to the experimentally
known masses and fission barriers at that time, have the following values [36]:

as = 20.69 MeV, K =240MeV,
L =100MeV, ro = 1.18fm
J = 36.8 MeV, @ = 17MeV,
e? = 1.44MeV - fm, = 1fm
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2.1.5 Lublin-Strasbourg Drop formula 21

2.1.5 Lublin-Strasbourg Drop formula

In the almost 90 years that have passed since the appearance of the main idea of
Weizsécker and Bethe, the expression for the average binding energy in the nucleus has
been supplemented with new terms, including the microscopic properties of nucleons. At
the same time, the basic concept of the charged liquid drop is still valid. Therefore,
the terms in the phenomenological formula related to the surface properties have been
studied and identified. For example, as Hill and Wheeler [32] concluded, based on the
aforementioned Fermi gas model, that the liquid drop energy function should include a
curvature-dependent term proportional to A'/3. This term was later well studied [37], and
its value was corrected according to the experimental data known at that time.

Since the classical model of the liquid drop does not explicitly use the surface curvature
energy term, it is likely that its use only corrects the observed values. Surprisingly, the
drop model formula is significantly improved by such an imperceptible modification. The
starting point of the analysis here is the introduction [34] of extra curvature terms in a
well-known expression MS-LD (2.29). This model overestimates the fission barrier heights
in light nuclei up to about 12 MeV, although it is quite successful in reproducing the
nuclear masses. Also, the MS-LD barriers are higher than Sierk [38] estimated within the
macroscopic Yukawa folding framework, an improved version of DM. The final result of this
analysis was the Lublin-Strasburg Drop (LSD) formula [39] — one of the most recent and
advanced models for binding energy, combining elements of MS-LD and DM approaches,
defined as

B(Za N7 def) = bvol (]— - K’VOIIQ) A— bsurf (]- - Hsurf]2) A2/3 Bsurf<def)

3 e2z? 72 (2.41)

- bcurv (1 - "fcurv]2> A1/3 Bcurv(def) - EW BCoul<def> + C14 i EWig‘
0

A

where the deformation dependent coefficients Bguf, Beurv and Beou are calculated in the
same way as in (2.36).
The parameters of the LSD formula fitted to the 3760 experimental masses of nuclei are

as follows:
Qyol = —15.4920 MeV Kol = 1.8601

Aot = 16.9707 MeV Kot = 2.2038
Goury = 3.8602 MeV Keury = —2.3764
réh = 1.21725 fm C, = 0.9181 MeV

After the inclusion of the microscopic (shell and pairing) energy corrections, this formula
reproduces all the available nuclear masses with an r.m.s. deviation equal to (M) = 0.69
MeV in comparison to 0.698 MeV with MS-LD, which is not significant. Nerveless it also
gives fission barrier heights close [39-41] to the experimental values known at present. For
example, for nuclei with Z > 70, (6Vg) = 0.88 MeV versus 5.58 MeV for MS-LD. It must
be emphasized that none of the LSD parameters were fitted to the barrier heights. The
simplicity and the relatively small number of adjustable LSD parameters give hope for a
reliable prediction of properties even for yet undiscovered nuclei. These advantages make
the LSD formula a good tool for the development of nuclear fission studies, especially in
the macroscopic-microscopic method that will be used later.

This section may be summed up as follows. Here has been an attempt at a restrospec-
tive view of the atomic nucleus from the point of view of semi-classical (macroscopic)
physics. According to this view, the atomic nucleus is a one body with the proper-
ties of charged liquid drop, which is reflected in Bethe-Weisecker’s phenomenological for-
mula (2.2). Pioneering researchers were able to foresee its basic components by operating
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2.2 Microscopic approach 22

on fundamental principles. However, it took a long time for such an approach to describe
the more detailed structure of the atomic nucleus, introducing a more sophisticated view of
the nucleon shells and deformations. The next iteration, in the form of the Myers-Swiatecki
Liquid Drop Model (2.29), was able to bring these representations together, allowing a large
number of nuclear masses to be described, but also giving rise to a "race" to improve the
macroscopic approach. Modern representatives of this are for DM, such as the work on the
Finite Range Droplet Model developed by Moller’s group [42], or improved LD, such as
the previously mentioned Lublin-Strasbourg Model (2.41) and the works of Moretto [43].

We will return to other macroscopic parameters of the nucleus that depend on the
deformation of the fissile nucleus in later chapters of this work. For now, we will focus on
the determination of the energies of the nuclei, whose single-particle energies are necessary
for the determination of the generalized potential of the system.

2.2 Microscopic approach

Although the macroscopic approach allows us to describe general properties of the
nucleus such as mass, charge, radius, etc., detailed knowledge of its internal structure is
required. This has already been shown indirectly in advanced droplet models, where there
are shell corrections calculated from single-particle states of the nucleons, albeit to a rough
approximation (see 2.1.3). Nevertheless, this quantity is a microscopic (quantum) property
of the particle determined within the single-particle approach. Therefore, it is necessary
to consider the methods and formalisms used in this approach, which will form the basis
of a generalized model describing the properties of the nucleus in the most complete way.

The nucleus consists of a finite number of protons and neutrons that actively interact
with each other through the strong interaction that holds this quantum system together.
That is, from the point of view of theoretical physics, it is a finite multinuclear fermi-system
described by the formalism of quantum mechanics based on solutions of the Schrodinger
equations. These solutions allow us to obtain information about the energy of particles,
spins, their distribution in the nucleus and other quantum properties. Therefore, to deter-
mine the energy we will use the well-known Hartree-Fock method.

2.2.1 Hartree-Fock method

Let’s define the Hamiltonian of many-body system consisting from A nucleons

H—

h2 A A
— Z A, + Z V(r, — T 0O TnTor ) (2.42)
2A]\/[nucl n=1 nn'in<n/
where the two-particle interaction (r; — ro; 0109, T172) consists of long-range Coulomb in-
teraction between protons and short-range, spin and isospin-dependent, effective nuclear

interaction Vog = V' (r; — o) A (ﬁ’a, ]%au) whereas the operator
A=W+ BP, —HP, — MP,P, (2.43)

represents the standard dependence of the central part of the effective two-body potential
on the spin and isospin exchange-operators P, = 2 (14 0103) and P, = 2 (14 77) with
empirical parameters W, B, H, and M, which are the strength parameters of the Wigner,
Bartlett, Heisenberg, and Majorana interactions, respectively.

Suppose then that there exist functions x;(r, o, 7), forming complete set of orthonormal
one-particle states and being eigenstates of the one-particle Hamiltonian of the shell model.
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2.2.1 Hartree-Fock method 23

For such set the operators of nucleon creation and annihilation a;” and a; are defined, and in
the notation of which the Hamiltonian (2.42) in Fock-space representation can be written
as

= typaf aw+f > Vi a7 gy (2.44)

L 11121'11'2

where matrix elements ¢;y and Vi, have forms

h? »
tll’ = —m /Xl (I‘)AXy(I')dST,

Visary, = d’r /Ol?’T/X}k1 (rio171) X;, (r20272)
V(r; —ry) A (Po, pT) Xt (rio171) X, (r20972) .

The Hartree-Fock method lies [44] in searching for an approximate solution of the N-body
problem in the set of Slater determinants det [x; (r;o;7;)], 4,7=1,..., A, consisting of A
wave functions y;. In Fock space these A-particle states are represented as

A
[HF) = [T a;710).
The goal of this approximation is to determine the one-particle basis
SOZ‘(I', g, 7—) = Z Uii’Xi’ (I', g, T) (245)

connected to the original function basis y; by the unitary transformation U, with the
creation and annihilation operators

= Z U“/dj/ and él = Z Uii’di’
4 i’

for which Slater’s determinant

ES

HF)® = ] &t [0) (2.46)
k=1

minimizes the expectation value
E"Y — (HF|H|HF)
conserving the proton and neutron numbers. Thus the density matrix is given as follows

pr = (HF |;f ay| HF ) (2.47)

which has a property trp = A.
So, in terms of the density matrix and the anti-symmetrized matrix element of the
two-particle interaction

Vi, = Viswin, — Visgisn

the expectation value EHF is

1 _
U= s 5 Y pur Vi P (2.48)

lll2 l]_llll2l/2
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2.2.1 Hartree-Fock method 24

Usually the effective two-particle nuclear interactions are density dependent: V' (r; — ry; p(R))
with R = (r; + r2) /2. Assuming that

R) = pix; R)x;(R)
ij
the variation of potential with respect to the density matrix has following dependency

oV avV dp  IV(p(R)) ,
" 0popy; (R)x; (R 9.49
Opi;  Op Opij dp x; (R)x;(R) (2.49)

Then to obtain minimum of E™F with respect to variations of the density matrix with the
trace conservation constraint, it is necessary to take the derivative

0 (EHF —etr p)

Do =t + LTy — =0 (2.50)
where € is a Lagrange multiplier and mean field I'y;, defined as
otr ‘7 _ 8‘/
= a[pp] — ZVMQHQ/JZ’QZQ Z Pul [ Xsz] Pl - (2.51)
Pit L2l l a1y 14 ( ) U111y

In Eq. (2.51) the last term arises when the effective two-particle potential has an explicit
density dependence. Then using the unitary transformation (2.45) which diagonalizes the
eigenvalue Eq. (2.50), in spatial representation takes the form

R?

oM App(r,o,7 —{—]2:1;/611" <p] v o', T)V(e—1)A (PU,PT) (2.52)

X [Spj (I‘ ) 0/7 7—,) Pk (I‘, g, 7_) — Py (I‘, g, 7_)9016 (rlv 0,7 Tl)] = €xPk (I‘, g, 7_)7

where the sum is to be extended over the A eigenstates with the smallest eigenvalues €.
Since in the basis ¢;(r, 0, 7), the density matrix is diagonal p;; = n;0;;, i.e. for occupied
states the eigenvalue is 1 and for unoccupied states it is 0. It can be described by the
condition
o {1 if 4 S Z.Felrmi
! 0 if 72> 1 Formi

Therefore energy (2.48) can be rewritten following

A
= ti+

A —
> Vi (2.53)
ij=1

DO | —

Due to eigenvalues ¢; of Hartree-Fock (2.52) are given by
€ = tii + L'y
so, the Eq. (2.53) transforms to simple expression
A 1
B = 2 <€i - QFZ-Z-) (2.54)

It can be seen that the Hartree-Fock approximation is a powerful tool for describing the
interaction of nucleons inside the atomic nucleus. However, this approach has its pitfalls.
For example, as shown [45], there is a commutation of the form

[H,p] =0 (2.55)
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2.2.2 Basics of the Hartree-Fock-Bogolyubov method 25

in the HF basis and variations of the type dpu, are allowed, but these interactions can only
be between particle states (i.e. states above the Fermi energy) k" and hole states (i.e. states
below the Fermi energy) k or vice versa. Therefore, the behavior of the particle-particle
interaction potential is irrelevant in the HF approximation.

Furthermore, it is easy to see that the Hartree-Fock equation (2.55) is a nonlinear eigen-
value equation. It is solved iteratively starting from the mean field T'®©). The eigenfunctions
<p§1) obtained by solving the equations HF with this mean field are used to compute the
new mean field ') according to the equation (2.51) until self-consistent. However, there
are nuances here as well.

First, although the HF equation is valid for any stationary point, it depends on the
proximity of the shape of the initial potential of the shell model to a finite local minimum
on the energy surface. This raises the question [46] of determining the minimum to which
the iteration converges if there are multiple local minima.

Second, the iteration preserves the symmetry of the initial field. This means that if the
desired solution does not have a spherical symmetry, but for example an axial symmetry,
the initial field must have less symmetries. The same is valid for other kinds of symmetries
and their breaking. So this is why it is not possible to get the saddle points of the surface.
To do this, one has to add the corresponding bounding field ¢Q; to I'y;. Usually Q is
the quadrupole momentum operator and ¢ is the Lagrange parameter. The latter has the
meaning of the generalized force required to keep the nucleus in equilibrium at a given value
of the quadrupole strain Q = (HF|Q[HF). Moreover, depending on the force parameter
q(Q), the zeros of this function correspond to the stationary points (including the saddle
points), and the sign of the derivative at these points gives the difference between the
minima and the saddle points.

2.2.2 Basics of the Hartree-Fock-Bogolyubov method

Let us now try to solve the above-mentioned disadvantage of the self-consistent Hartree-
Fock approximation by adding [47] to the mean field the pairing correlations through which
one can consider the particle-particle interactions. To do this, we will use the Bogolyubov
transformation [48] formalism, which introduced the quasi-particle creation and annihila-
tion operators &; and &;

M
A * ~ * /\+

.
Il
_

(2.56)

where M is the dimension of the single-particle space and v and v are transformation
matrices. Introducing the 2M x 2M matrix

i (E“;) (2.57)
0 U
which due to the ortho-normalization of quasi-particle states should be unitary
BBt =B*B =1, (2.58)

where Bt is the hermitian conjugate of the B matrix.
Using this matrix B the transformation (2.56) and its inverse operation can be written

<g+>:f;+<g+>; < +)=B(§+)- (2.59)
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2.2.2 Basics of the Hartree-Fock-Bogolyubov method 26

One assumes that the ground-state wave-function |HFB) of a nucleus with pairing corre-
lations is a state of independent quasi-particles

IHFB) = ﬁ@i\m. (2.60)

that demonstrates the state |[HFB) is the quasi-particle vacuum

&;HFB) = 0.
From the hermitian density matrix
rho;; = (HFB |a} a;| HFB) = [U*UT]U (2.61)
and the skew-symmetric pairing tensor
kij = (HFB |6, HFB) = [v*u”] S= [uv+]ij (2.62)

a generalised hermitian density matrix is formed

fz:< PR ) (2.63)

—R* 1_ﬁ*

Thus the expectation value of the Hamiltonian could be given in terms p;; and ;; as

. 1 e 1 O .
(HEB|H[HFB) = > _tijp;: + 5 3 (VI pispws + 5 21V IRD ks, (2.64)

ij ijkl ijkl
also the expectation value of the particle number by

(HFB|NHFB) = 3 pj; (2.65)

Now minimise the total energy with the constraint where the expectation of particle
number has the required value and leads to the stationarity condition HFB of the ground
state

o {(HFB|H — AN|HFB) — tr [A (R* - R)|} =0, (2.66)

where tr [A (f%Q - }A%)} is subtracted to account for the Bogolyubov condition (2.58), ex-
pressed here in terms of the generalized density (2.63). The variation is to be performed
with respect to dp, dp*, 0k and dk*, and A is a hermitian matrix whose elements are
Lagrange multipliers.

After performing the variation and eliminating the matrix A using its hermiticity, the
condition (2.66) can be expressed by the commutator:

[H,R] =0, (2.67)
where operator H is given by
- " 4 (2.68)
with 5
hi; = — (HFB|H — AN|HFB) (2.69)
apji
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2.2.3 Pairing effects within Bardeen-Cooper-Schrieffer method 27

and p

. = 2—— (HFB|H|HFB). (2.70)
Ok,

Equation (2.67) is the analog of Eq. (2.55) in HF theory. To solve Eq. (2.67) it is sufficient

to choose as Bogolyubov transformation B the unitary matrix which diagonalizes H. This

leads to the HFB equations in their standard form

A

where &; denotes the quasi-particle energy.
With the definition (2.70) the explicit form of the pairing matrix becomes
1 e
A= 5 > (i |V k) ru (2.72)
kl

The matrix elements of h (2.69) can be obtained in a similar way. For density dependent
interactions one gets from Egs. (2.69) and (2.49)

hi]’ - tz‘j - )\513 + Fij7 (273)

where is the quasi-particle mean-field.

e 1 oV(p) . 1,
Lij =Y (kIV(p)|il)puw + 5 > (mn (v) pipi| kil [Pznﬂkm + 5 KikFpm (2.74)
Kl 2 fimn dp 2
Thus the total binding energy represents as
P PN N
where B
1 oV . 1 .
Ep=—= Z mn () ©; ;| kl {plnpkm + ZKikbopm | Pij (2.76)
4 ijklmn ap 2

is the rearrangement energy resulting from the dependence of the effective interaction
potential on the density [49].

It is clear from the equation (2.75) that in the case of density-dependent interactions
the mean field depends not only on the density matrix (2.61) but also on the coupling
tensor (2.62). In fact, this is the main difference between the HF theory and the HFB
theory. Indeed, it is not difficult to see that the latter is a generalization of the Hartree-
Fock equation (2.54), if one sets the k and A matrices to zero, since the self-consistent
HF field depends only on the density matrix. And this means that, in contrast to the HF
theory, in the HFB theory the result depends on the contribution of both the particle-hole
channel and the particle-particle effective interaction potential channel.

2.2.3 Pairing effects within Bardeen-Cooper-Schrieffer method

More rigorous consideration of pairing effects allows one to describe the nuclear struc-
ture well, but the solution of the HFB equations is a rather bulky procedure, which is
especially inconvenient for the computation of very large numbers of states. The question
is how to find an alternative approximation that might be less tedious and also takes into
account the pairing effects described in the previous subsection. The answer was found in
the form of a simple HF-BCS approximation, where first the single-particle energies ¢; and
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the |i) eigenstates are self-consistent in the Hartree-Fock framework without considering
any pairing contribution from the mean field, and then the pairing correlations are included
in the BCS step. Moreover, this approach is extremely efficient when the effective inter-
action potential determining the mean field poorly describes the particle-particle channel,
which is quite common in practice.

In BCS theory, the pairing potential is assumed to act only between the |i) states and
their time-reversed counterparts |[z) = 7|i). For spherically symmetric systems |i) = |nljm)
and time-reversed states it is defined [46] by the following relation

7) = Tlnljm) = (—=1)"*™|nlj — m). (2.77)

Thus, these pairs of degenerate states are singlet in their relative spin and orbital angular
momentum, and must be isotriplets to satisfy the Pauli principle. In non-symmetric but
time-reversal symmetric systems, the single-particle states |i) can be decomposed into a
spherical basis, and the rule of equation (2.77) can be extended to such states. In this work
it is possible to limit the discussion to time-invariant systems with pairs of degenerate states
("Kramers’ degeneracy"), since there is no discussion of the rotation of the fissile system,
which is non-invariant under the mentioned symmetry type.
The BCS Hamiltonian is

ZQG a; + - Z Vi jsai at aza;. (2.78)

4,7>0

where the summation limits ¢ < 0 indicate a summation over all states ¢ and their con-
jugates 7,7 > 0 means a summation over the pairs (i,2) in this order only. According
to the representations [45] of BCS theory (as compared to HFB), the transformation to
quasi-particle operators is simplified, and the Eqs. (2.56) take the form

G = w;0; — viad, & = wal — v;a, (2.79)
with real u; and v; with the normalization condition, which instead (2.58) guarantees that

they obey Fermi commutation rules
ui + vl =1. (2.80)

The ansatz for the BCS ground-state of an even proton-number and even neutron-number
state is

BCS) = [T (ui + v a) [0), (2.81)

>0
where ¢ > 0 indicates the product over all single particle states of |i), excluding the time-
reversed counterparts. Clearly, the state |BCS) is a quasi-particle vacuum

ax|BCS) = 0.

Then the state of the BCS is not eigenstate of the particle number operator. In such a
case, in the representation u; and v; the expectation value of the particle number operator
N =Y,a a
= (BCS|N|BCS) =2 2. (2.82)
>0

So the expectation value of the Hamiltonian is

A _ 1 _
EBCS = <BCS’H|BCS> =2 Z 61'1)2-2 + Z %mvf + 5 Z V}gjuiviujvj. (283)

i>0 i>0 i,j>0
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Minimization of the expectation value of the Routhian H' = H — AN with respect to
variations of the v;, observing the constraint (2.80), yields the equation

0  Ou; 0 . "
- BCS|H — AN|B = 2.84
<81)Z- + B, 8uz>< CS| IBCS) =0, (2.84)
from which the BCS equations following
2euiv; + A (v —u?) =0, i>0, (2.85)
where B
& =€ — A+ Vit (2.86)
and -
Ay == Vigsusv;. (2.87)
5>0

From Egs. (2.80) and (2.85) one obtains

Ul?:} 1_L
2 NG R

(2.88)
o2 JE + A2
Inserting Eqs. (2.88) into Eq. (2.87) we get the gap equation
[ A
J (2.89)

Bi= =53 Vij—m—s
5

which together with the constraint (2.82) and Eq. (2.86)) the gap equation allows to de-
termine the Lagrange multiplier A\ and the v; in terms of the ¢; and the matrix elements
\_/ﬁ,jj— by an iterative procedure.

For the pairing potential in Eq. (2.89) sometimes a zero-range interaction is used [50,
51]
q 1— g1 09

Via(ry, 01,19, 00) =V 1 d(ri—m2), q=n,p (2.90)
With this interaction one obtains:
Vi = Vi [ rot(r)a(r), (2.91)
where
2
pi(r) = |pi(r)] (2.92)

and V! is the pairing strength.
The term proportional to v? in the equation (2.86) only leads to a shift of the energies ¢;,
i.e. it renormalizes the single-particle potential. Therefore, to avoid double counting, they
have to be excluded, since ¢; already corresponds to the full mean field.

The states of an odd nucleus with particle number N + 1 are given in BCS theory by

afIBCS) =af T (w+wiafa;)[0) (2.93)

i>0:ik
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where |[BCS) is the BCS ground state of the even nucleus with NV particles. The expectation
value of the Routhian H' = H — AN of an odd nucleus is

Ejs = (BCS

arH'af | BCS) = (BCS | A’

BCS) + & (2.94)

E =&+ AL (2.95)

It is supposed that addition of an additional odd particle does not affect the correlation
structure of paired particles NV, which is true only partially, since it is feasible [45] only if
many particles participate in formation of the correlated state. A more detailed consider-
ation of the odd system is given below for the model with the state-independent pairing
matrix element.

The ground state kg corresponds to €, ~ A. From eq. (2.86) follows, again neglecting
the v? terms, &, = 0. To get the odd-even mass difference, usually defined as the second
finite difference

with the quasi-particle energy

Eoe = —(1/2) |[ESS, — BN, — (BSS, — ES)], N even, (2.96)
one uses the following relations between ground-state energies
EE, =~ ES +2), B, = ES + M+ &, (2.97)

and obtains
Eeo = Sko ~ Ako‘ (298)

Note, however, that the even-odd staggering of nuclear binding energies exists in the ab-
sence of pairing, i.e., in the HF approximation, since it is related to the breaking of time
reversal symmetry in odd systems.

Figure 2.2 shows that on average A, = 12- A7Y/2MeV and A,, = 11- A~Y/2 MeV roughly
describe the data for protons and neutrons. In the equation (2.96) it is assumed that the
ground state binding energies of the three nuclei on the right hand side depend smoothly
on N, except for pairing effects. This is not always the case, for example when the ground
state strain changes rapidly as a function of N. Of course, this difficulty arises even more
often when fourth differences of the equation (2.96) are used instead of second differences.

Pairing energy corrections

The calculation of pairing corrections to the ground state binding energies, on the other
hand, is basically a rather schematic BCS calculation, where the interaction potential in
the Hamiltonian Eq. (2.78) is assumed to have state-independent matrix elements.

1 B (w)
/\+/\+/\ A o /\+/\+/\ A
2 > Vagsti afa;a; = —G Y a4 af azay, (2.99)
i.j>0 ij>0

where w indicates that the sum is restricted to states ¢,j which lie in a band of width
2w around the Fermi energy calculated in HF theory. Thus the gap parameter A from
eq. (2.87) also becomes state-independent.

(w)
A=G> uw; (2.100)

1>0
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Figure 2.2: The dependence of the proton and neutron gaps on the mass number, data
from the mass table of Ref. [52], taken from Ref. [46].

and therefore Eq. (2.86) is simplified to the following expression
& =€ —\— Gul. (2.101)
The expectation value of the Routhian H =H-)Nis
(w) (w)
BCS) =2 &n? + Y Gu! — A%/G (2.102)
i>0

>0

<BCS \ﬁf’

with the new gap equation

A

G« A
_“ (2.103)
2 >0

2 Je+ar
Again, the term Gv? in eq. (2.101) and Gov} in eq. (2.102) can be dropped and v? from

(2.88) can be inserted into Eqgs. (2.82) and (2.101), together with Eq. (2.103) one obtains
two nonlinear coupled equations for A and .

u; =0, v =1 for < @ Fermi

u; =1, v;, =0 for @ > ipermi (2.104)

for which A = 0. It has been found that for magic nuclei there is no pairing solution for
realistic parameters, while for mid-subshell nuclei there is a solution. However, it has been
shown that this sharp transition is due to the finite particle number fluctuation in the BCS
state. Various proposals have been made to solve this problem, such as the projection of
the BCS wave function onto the eigenstates of the particle number operator [45]. To obtain
non-trivial solutions describing pairing-correlated states, a large level density around the
Fermi energy and a sufficiently large pairing strength G are required.

The Lipkin-Nogami approach [53-55] is most commonly used in conjunction with
Strutinsky’s shell correction. This approach introduces a constraint on the variance of
the particle number in the Routhian H , with the Lagrange multiplier for the additional
constraint denoted as Ao. This changes Eq. (2.101) to
EN =6 — A+ (4 — G) v} (2.105)

(2

and the quasi-particle energy becomes

EN = /e + A2+ ), (2.106)
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with

G (2 ufui) (S8 upe?) = £ ufo!
TP s

The gap and particle number equations. (2.79) and (2.82) must be solved with the modified
definition of €;.

Attempts have been made to determine the pairing strength constant G for a given
range w from empirical mass differences within the BCS and Lipkin-Nogami schemes [56].
However, the assumption of a state-independent pairing matrix element GG does not accu-
rately describe the physical situation along the fission path. Around the fission, the single
particle states separate into those localized in one of the two nascent fragments and those
above the Fermi energy, which are still distributed throughout the entire nuclear volume.
This leads to four different characteristic values of G. After scission, the states above
the Fermi energy are also localized in one of the fragments, resulting in different pairing
strengths in the two fragments and consequently different chemical potentials and pairing
gaps. Therefore, there is a phase transition in the pairing degrees of freedom around scis-
sion [57]. After scission, the particle numbers of the two fragments are separate constants
of motion, whereas for a compact nucleus only the total number of particles is a constant
of motion. Thus, one should not interpolate G between the ground state of the fissioning
nucleus and the separated fragments using the shape function Bg,,, nor assume a constant
G.

For an odd system, the equations

Ay = (2.107)

, (w) . 2 (w) 1
N =1+ (1 — Z) and — = — 2.108
7«752160 & G m b ( )

must be solved for A and X instead of for (2.82) and (2.103). The notation & = /é? + A2
is used again, and N’ is the number of particles occupying states in the 2w band. The
gap parameter A is smaller than for the neighboring even systems due to the fact that the
state kg is "blocked" and inaccessible for the establishment of pairing correlations. If the
term v in eq. (2.102) is omitted, then the ground state expectation value of the Routhian
of an odd system is given by

(@)
BCS) =2 &ul + (e — A) — A?/G. (2.109)
i#ko

<BCS \H

If the pairing gap A is much larger than the level spacing, then one can obtain simple,
analytic expressions for the pairing energy and the pairing gap by introducing a continuous,
smooth single-particle level density g(e) (which should include the time-reflected states).
The gap equation (2.103) then becomes

2 A tg(e)de g\ In Vw? + A2 4+ w

G o /(6_)\)2+A2N 2 Vw2 +A? —w’

Since the pairing-window half-width w should be large compared to the pairing gap, w > A,
Eq. (2.110) can be simplified to

(2.110)

é ~ g(\) In (22’) . (2.111)

This approximation is sometimes called the "uniform model". The relation (2.111) allows to
estimate the pairing strength G when the average pairing gap is known from experimental
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2.2.4 Yukawa-folding methods 33

data. One can also see that G depends on the width of the window 2w, i.e. on the number
of states included in the sum in Eq. (2.99): G decreases with increasing number of states,
included in the pairing Hamiltonian.

The BCS energy-gain with respect to the energy of a system without pairing correla-
tions 1is

AE = (BCS |H' + AN|BCS) -2 > ei:2(§%eivf—A2/G—2 S oa

iSiFermi >0 iSiFermi

for an even particle number, where the Gv* term in Eq. (2.102) is neglected and N = 23, v?
is used. The quantity AE can be calculated analytically in the uniform model. Using
Eq. (2.101) we obtain

— Atw — 2 A
AFE = 1 ell— i g(e)de — & eg(e)de. (2.112)
2 n—w (e — \)2 + A2 G A—w

After evaluation of the integrals and eliminating 1/G with Eq. (2.109), the pairing energy
becomes

2
AE = ;g()\)w2 1— 4|1+ <A> . (2.113)
W

With w > A the last equation can be approximated by
—~ 1
AE =~ —Zg()\)AQ. (2.114)

The Lipkin-Nogami approach was also reformulated in the uniform model by Moéller and
Nix [56], where the expression for Ay, Eq. (2.107), becomes rather lengthy.

2.2.4 Yukawa-folding methods

In 1935 Hideki Yukawa proposed [58] the theory of strong interaction, where nucleons
exchange with each other through special kind of particles-mesotrons (now its known as
mesons introduced by Heisenberg), which play similar role to photons in electromagnetic
interactions. The form of the interaction potential is

67 mn;bescr
Vyur(r) = G ——— (2.115)
r
where G is the coupling constant of the given interaction. According to Yukawa'’s esti-
mates, the meson mass (later known as the 7—meson) was about 140 MeV/c?, giving a
characteristic strong interaction length corresponding to the Compton wavelength of the
pion

h

MC

Ar = ~ .14 fm,

Thus, the nuclear density p(7;) can be described by the folding procedure proposed in
[59], where uniform density distribution.

3 A.R3 <
—’)_{47#4 Ry° for r < Ry (2.116)

polr) = 0 for r> Ry
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which satisfies the nucleon number conservation condition

/pO(F) &r = N(2). (2.117)

Folding with the function g(|7} — 7%|) as follows
(1) = po / d’ry g(|7 — 7). (2.118)
14

This function is selected in the form of a Yukawa function (2.115) with a width parameter

a= A,
1 e In—72l/a

2.119
g<|T1 T2|> Arad ’7”1 _ 7’2|/CL ( )
with normalization condition
/g(lﬂ — 7ol ) d’ry = 1. (2.120)
4

It should be noted that g(|7, — 72|) does not represent the interaction potential of two
nucleons, but rather the fact that the short-range interaction between N nucleons generates
a density distribution which has a diffuse surface, analogous to Eq. (2.118).

Coulomb potential

After determining the charge distribution in the nucleus according to Eq. (2.118), the
Coulomb potential can be calculated [59] as

— e/d3 _pl2) (2.121)
|7“1

_T2|

Use the following relation for the functions f and g

—00

/ Prof (71 — ) g(F1 — 75) = / Plf(k)g(k)e* =T, (2.122)
1%

and replacing f - g by Fourier transforms of g(7s — 773)‘?1:
expression:

4 .
7T€p0/d3 /dS k2g (F1— 7“3)7 (2123)

where the Fourier transform of the Yukawa function (2.119) has the form

1 1

g(k) = 2n (5 ) (2.124)

Due to the fact that the function g depends only on the norm of E, inserting it into the
explicit form of Eq. (2.124) and using the trigonometric relation, the final expression (2.121)
is

6/’0 3 ik-(F1—7
V /d |7”1 — 7‘3| / dkme G 3). (2125)
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The last integral can be computed with the residue method in complex space, giving the
form

Vo(71) = Vo(71; sharp) + AV.(7), (2.126)

where V.(7; sharp) is the dominant term in the Coulomb potential due to the uniform
charge distribution, while AV,(7}) is the correction due to the diffuseness of the charge
distribution. Explicitly, these expressions are

1
‘/;(Fl, Sh/(l’f'p) = poe/dg’rgﬁ (2127)
|7 — 7%
\%
and 1
]
A‘/C(Fl) = —poe/dz)’rgﬁe* a ? . (2128)
v |71 — 72|

The integrals in Eqgs. (2.129) can be converted to surface integrals using the Gauss-Ostrogradsky
theorem, which makes them more suitable for numerical integration using e.g. the Gauss-
Legendre quadrature method. Finally, the potential can be expressed [60] as

Vo(7y; sharp) = —£¢ Sf [dS, - (7 — )]
2

s (2.129)
AV(71) = 22 §[dS - (7 - ) (P52 1= (14 P52 ] L (230)
So

For a spherical nucleus with radius Ry, these integrals can be evaluated analytically.

Coulomb energy

By analogy, one can derive the expressions for the Coulomb energy of a deformed
nucleus, which is defined [59] as

1 1
Ee = *//dgrl d*ry ——— p(71) p(72). (2.131)
2 ‘7“1 - 7’2’
Vv
Inserting the folded density (2.118) into the above equation yields
o’ 1
Ec = — /d37“1 d37"2 ﬁ//d?’rg d37”4 g(|F1 - 7?3|) g(|f'2 - F4|) (2132)
2 Vv |71 — 7| Ui

Generalized relation (2.122) for three functions f, g, h

J [ dire ds (17 =D gl = 7)) k(- 7)) =
vV (2.133)

— —

= @m)F [ &k JE) g(~F) h(E) O,
and substituting in the Eq. (2.132) we O;et
=dr —//d37"1 d*ry /d3k e g ( R(R—2), (2.134)
Completing the integral over k and using the Fourier transform of the function g given in

Eq. (2.124), one obtains
d37’1d37’2 eiEIﬁ_FQ‘
dk —————. 2.135
// |7”1 — 7“2| / k(l —+ a2k2)2 ( )
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The residuum theorem then leads to the same expression as in Eq. (2.126):
E. = E.(sharp) + AE,, (2.136)
where FE.(sharp) is the part of the Coulomb energy produced by the uniform density

distribution, and AF, is the negative correction from the surface charge.

|7’1—7”2|’

2 1 o 1 5
AEC — Po //dS,’,,l d37’2 S — €—|r1—r2\/a 1+ = M '
2 A |7 — 7] 2 a

Transforming the double volume integral into two surface integrals yields an expression
that is easier to calculate numerically:

2
E.(sharp) = % /d37’1 d’ry
Vv (2.137)

dS (ry — 7= ds, - (7 — 7
E (Shm’p %% 1\ |7?21)]_[F2|2 ( 1 2)]7
_ A / 74 [dS, - (71 = 7)) [dS5 - (71 = 7)) (2138)
© 2] 7 — 7] /o
% 2@_5+ 5+3|7?1_F2‘ +1|F1—F2’2 e—\ﬁ—%\
a a 2 a? ’

Yukawa-folded effective potentials

The form of the mean-field single-particle potential can be generated by convolution
of the nuclear density with a Yukawa-like function, which can be understood as a spin-
independent two-body interaction between two infinitesimal volume elements of a nuclear
drop.

Vo e Im—mal/A
471')\3 |7?1 — F2|/)\,
To obtain the central part of the single-particle potential, one folds [60] the Yukawa inter-
action (2.139) with the density distribution (2.118) as described in [59]

. T
1) = /dSTQ V(le) IO( 2
i Po

The above integral can be rewritten using the Fourier transform of the Yukawa function

g(k) (2.124) as

Vire) =— riy = |y — 7). (2.139)

(2.140)

N 3 3. ot (7 —7)
Voo (1) = = (5 S/Q/drg/d 1+A2k2 =) (2.141)

By performing the second integral over the angles 6 and ¢ in the momentum space, the
expression for the potential is obtained:

1/2 o0
> 2 d’rs g(k) . S o
Vi (1) = — (7?) Vo J I O/dkk 1o e sin(k |7 — 73]). (2.142)
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By substituting the explicit Fourier transform (2.124) for the function ¢g(k), an expression
can be obtained that is suitable for integration by the residue method in the complex plane.

ik|7 — 7]

Vo d3rs e

V,, (7)) = ——2 3 /dkk .
» (71) 1w ) =l T R (1 k)

(2.143)

In general, it is assumed that the range A of the Yukawa interaction is different from the
range a of the folding function of the same type used to generate the density distribution in
eq. (2.118). After performing an analytical integration in the complex plane, it is found [60]
that the single-particle potential is the sum of two terms, namely

Vip (71) = V (7y; sharp) + AV (1), (2.144)
where the sharp-density potential independent on the density diffuseness a

‘/0 e—'Fl—F2|/)\

V (71; sharp) = — 3 ——
4\ i ’7”1 —7”2|/)\

d®ry, (2.145)

the correction to the function is dependent on both the diffuseness parameters A and a,
which reads as follows

a2 % 67‘1:‘177_‘)2”(1

AV (r) = ————= V (r; sh —
e Vb = o | Tl

2 _)\2

drs. (2.146)

Transforming the above spatial integrals into surface integrals in the same manner, we

obtain s
. Vi —_— T — T
V (71; sharp) = 47r0)\3 jl{ <d5’2 : r12> (ll)\2|)

s (2.147)

[1_<1+‘ 1; 2|)€F1—F2]

and ) -
o a N 5 -
AV (1) = e V (7; sharp) + WO_/\Q) f <d5'2 . rlQ) X

(2.148)

(lﬁ —le)‘3 - (1+ 7 —ﬁ!) e}
a a

Evaluating expression (2.147) for a spherical nucleus with radius Ry can be done analyti-
cally [59] with the result

Vi {1 - (1 + %) e’RO/A%} for r < Ry

‘/:Sph(,r’l) Sha’]"p) = R R . R e—’l‘1/>\ (2149)
Vo {70 cosh(52) — smh(TO)} iy for > R,
while (2.148)
a2
AVin(ry) = —m Vepn (115 sharp)
oy [1- 1+ @) e B o <R, (250
+
i [ cosh() —sinh(§)] G55 for ry 2 Ro
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Splitting the Coulomb and nuclear potentials, as well as the associated folding energies,
into sharp and diffuse components is mathematically precise but, as shown by Ref. [59],
not really necessary since the effect of density diffuseness can be effectively mimicked by
a renormalization of the A parameter in the sharp-density contribution. Furthermore,
according to Ref. [59], the diffuse-density correction appears to vary very slowly with
nuclear deformation. Therefore, corrections in the form given in (2.128), (2.137) and (2.148)
were no longer used in later works, such as Ref. [61].

The spin-orbit component of the total single-particle mean-field interaction can be
constructed using the central part of the single-particle potential V, in the standard way

of

—

dx V|, q={n,p}, (2.151)

2
h -
Vio. =1 A 5| V-
o = (2M c) b
where ¢ denotes the vector of 2 x 2 Pauli matrices (0, 0y, 0.).

The parametrization of the depths of central parts of the single-particle potentials for
protons and neutrons used is given [61]

V=V, + V0, Vi=V,-V,56, (2.152)

- 3¢ 22 9J 1
0= (I+8QA5/3)/(1+4QAI/3)7

A A
P=60— 28. "=45|— 1.
A 60(240)—1— 8.0, A 5(240)—1—3 d

where

(2.153)

Table 2.1: Constants used in the Yukawa—folding procedure taken from Ref. [60].

constant \ value \ unit

A 0.8 fm

a 0.7 fm
Vs 52.5 MeV
V., 48.7 MeV
J 35.0 MeV
Q 25.0 MeV
1 %% MeV
M 938.9 | MeV/c?
70 1.16 fm

2.2.5 The harmonic-oscillator potential

In the case of an axially symmetric system, the harmonic oscillator potential can be

expressed as
1 1
Viops2) = imwin + §mw222. (2.154)
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To introduce dimensionless coordinates, the oscillator constants 5, and 5, can be defined:

1 M,
ﬂz*g* B ) szﬁz
bJ__ h 9 n_p/Bl'

(2.155)
Bl =

The eigenstates of this axially symmetric h.o. potential can then be expressed using La-
guerre polynomials in the | direction and Hermite polynomials in the z direction:

i
S oo A e
¢np,nz,A,E(Ra U) - ’gbnp (p) /I/an(z) E XZ(U)a (2156)
where
1
_ 1/2,0%/2 —
wnz (Z ) an (ﬁz) € Nz (C)? an \/7_T 2nznz!
: (2.157)
A (p) = A AJ27 A A Np:
n p) _Nn BJ_\/§77 Ln (77)7 Nn -
P P P p <np + A) '
The single-particle energies of this Hamiltonian are given by
Eo=2n,+ A+ 1) w0, + (n, +1/2)w,, a={n,n, A, X} (2.158)

In addition, the eigenstates of any axially symmetric single-particle potential can be written
in terms of these h.o. eigenstates as

q)l(é7 g, Q) = Xqi(q) Z Cégba(ﬁ, U), (2159)

where C? are complex coefficients.
In the Schrédinger equation

H(I)z(ﬁa g, Q) = [Tkzn + ‘/sp + ‘/s.o. + VCoul 5pq] - eiq)i(lféa g, q>7 q = {p7 TL} (2160)

for which the set of eigensolutions @i(}?, 0,q) is expressed by the series expansion (2.159),
where the coefficients C?, play the role of eigenvectors of the Hamiltonian matrix H,s with
the corresponding eigenvalue e;, the sum "5 Hopg Cé leads to e; C?. The matrix elements
H,p of the axial effective Hamiltonian are

h2

V+V9+ v
2m

Ha/3:<a‘—ﬁ

6> (2.161)

can be expressed explicitly as

2 — —

<a‘—V 2m*v‘5> Z/d?’ O VQSZ(E,U)-V@%»(R,U)

(a

V(@

sp

B> = Oaa0,5 No, No Njv N3y / dipye™ (2.162)
0

X /e—CQdCHnZ(é)Hn;(C)LQP(n) Loy () Vi (p, 2)(n,€),

—0o0

where the left gradient operator is chosen to act on the left (as the hermitian conjugate).
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Non-axial Hamiltonian symmetries

Let us define the following operation:

§=Ka ! (2.163)

Yy Y
where 7! here denotes [33] is the inverse of the reflection operation with respect to the
xOz— plane, while K is the time reversal operation, which can be defined as

K = Kye ™ (2.164)

where K is the complex conjugation operator. Immediately notice that the time-reversal
operation includes the rotation operation by an angle 7 around the y-axis in the spin space.
Let h be a single-particle Hamiltonian operator.If

hlp) = ) (2.165)
and A A

ghy~t = h, (2.166)
then it is obviously true that

9li) = 1. (2.167)

It explicitly means that if the eigenstates of the single-particle Hamiltonian are invariant
with respect to this symmetry and

) = Chla), (2.168)

then the coeflicients of the expansion C* are real in the orthogonal basis. For the density
distribution and the total mean-field potential V', respectively, this implies

p(lC,y,Z) :p<$, —y,Z) (2169)
Vi(z,y,2) =V(x,~y,2) (2.170)

Let us consider the case of a non-axial potential in more detail. First, one can introduce the
set of three operators associated with the rotation by the angle 7 with respect to the i-axis
(where {i = x,y, z}), acting together with the parity operator P (with parity eigenvalues
equal to m = £1) as

%= PRi(n). (2.171)

The action of these operators on an arbitrary spatial function ¢ (z,y, z) gives

ﬁ$¢(x7 Y, Z) = Pﬁx(ﬁ)¢(x7 Y, Z) = p¢($7 -Y, _Z> = @Z)(—ZE, Y, Z)u

ﬁ-yw('ru Y, Z) = PRy(ﬂ->w(x7 Y, Z) = P¢(_$a Y, _Z> = w(‘ru -Y, 2)7 (2172)
ﬁ'%ﬂ(l’, Y, Z) = PRZ(W)w(':a Y, Z) = Pw(_'x’ —-Y, Z) = ¢<$, Y, —Z).

Remember that the rotation around the i—axis by the angle 7w, called the i—signature

operation, is performed by the operator

Ri(m) = e='mi/h, ji=1li+ 3, (2.173)

where [; and §; are the i-components of the orbital angular momentum and spin operators,
respectively. The action of R, on an arbitrary eigenfunction ¢(7;s) of the mean-field

Hamiltonian h. A
Ro(m) o(7s) = 1 (7 5) (2.174)
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yields the eigenvalues » = £1. We recall that for the spin functions x; ., represented by

|[+) and |—) we have that

Bl = 3h1), Sl-) = I+,
B = Sh(H)2), =) = Sh(=i) 4, (2175)
=) = —3hl-)

. 1
S+ = Sh1),

where
o) b-()

It is also instructive to demonstrate the action of the rotation operators {e="%} on the

spin functions |[+) and |—), namely

T 1/7)\° 1.(7\° 1 (x\"
—imda /oy (il D) 2 Sl D) e D) s 2.1
e |+) ( i50a 2<2> 0$+6Z(2> O'x—|—24<2> G, + > ‘+> (2.176)

Noting that (6;)** =1, (i =1,2,3
Y CANE A N N L Y A N B CAR T I
2\2) Taal\z) T ) T2 7 6\2) T 120\2 -
™ .. . T . :
(cos (5) — 16, sin (2)>‘ + > = —i6,|+) = —i|-) (2.177)
we obtain explicitly that
e gy = (=i)=), e =) = (=i)[+),
(2.178)

e_mgy/h|_> = (=1)[+),

e~ imsy/h |_|_> = (+1)|_>7 y
e = (4)|-).

e/ |1y = (—4)|4),

Collecting the properties described by section 2.2.5 and admitting [60] that in general a
single-particle wave function ¢(7;s) is the product of the spatial and spin components:

(73 8) = ¥ (F) Xs,m., the parity operator P can be rewritten in terms of the operators 7; as
(2.179)

whereas, the z-signature operator S, is given by
) (2.180)

The latter acting on an arbitrary wave function (7 s)
Sz (7 s) = q (T s) (2.181)
gives four eigenvalues ¢ = {£1, +i}.
Examining the commutation properties of above introduced operators leads to the

following properties
P8 =0,
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[ﬁ-iu ﬁj} 7é 07 {Z =Y, 2}7 (2182)
#7=-1

Let us study the consequences of the combined symmetries gjﬁ’ and ngZ Ity = K T, !

follows the parity operator P or the z signature operator S, then one has the following
properties for the density and for the total single-particle potential:

o For the @]5 operation
p(x,y, 2) = p(—x,y,—2), V(z,y,z) =V(-z,y,—2). (2.183)
« And for the operation §5. (parity is broken)
p(z,y,2) = p(—x,y,2), V(z,y,2) =V(-z,y,2). (2.184)

For the symmetry (2.183) we conclude from the commutation rules (2.182) that both
quantum numbers 7m and g can be used to identify the eigenstates of the Hamiltonian h.
Thus the Hamiltonian matrix consists of four quasi-diagonal blocks corresponding to the
four possible combinations of quantum numbers {7, ¢}: {1,1}, {1, -1}, {—1,1}, {-1,—1}.
However, when the parity symmetry is broken, as in the expression (2.184), the z signature
and § symmetries are still preserved. This means that the single-particle states can only
be signed by the quantum number ¢ (then the Hamiltonian matrix reduces to two blocks
corresponding to ¢ = £1). On the other hand, if the z signature symmetry is broken while
the parity and § are conserved, then the only good quantum number is the parity = (the
Hamiltonian matrix reduces to two blocks corresponding to m = +1). If this is the case,
both the parity and the z signature symmetries are broken, and the only symmetry to be
conserved in all the above cases is g, which is in principle the time-reversal symmetry; then
there is no good quantum number.

Matrix elements of a triaxial arbitrary potential in the h.o. basis

To describe the average single-particle field in the absence of spherical or axial sym-
metry, the Cartesian coordinate system is preferred, since all three coordinates are treated
equally and no symmetry conditions are imposed on the basis wave functions. However,
even if the system turns out to be spherically or axially symmetric, the angular momen-
tum algebra cannot be applied directly to the resulting wave functions, so in the following
let us explicitly derive expressions for the matrix elements of all components of the total
single-particle Hamiltonian.

A triaxial harmonic oscillator potential can be written as

1 1 1
Vo (x,y,2) = §mw§x2 + imwzyz + 5mw§z2, (2.185)
where an energy eigenvalue is
1 1 1
E(ng,ny,n,) = hw, nm—|—§ + hw, ny—|—§ + hw, nz+§ (2.186)

with corresponding normalized eigenstate
My s 2y 2) =W, (1) W, () Wi (2) X () =

-3 [(azac)%(ayy)?w(azz)?} (2.187)

Vagaya H, H, H, x(3)e

42



2.2.5 The harmonic-oscillator potential 43

Where H,, is the normalized Hermite polynomial of order n'", and

Mwi
h

a; = (2.188)

are characteristic lengths. These parameters are scaling factors for transforming Cartesian
coordinates {z,y, 2} to {{,n,(}, (i = {1,2,3}), in the following way:

E=ax, n=ay, (=asz. (2.189)

It is possible to choose these three oscillator constants w; arbitrarily, but one must consider
that the volume does not change with the papering of the nuclear deformations. The
following equation is often used

13 41
IVE

Ty = h(wy wy w;) MeV (2.190)
which deals with the energy distance between the main shells in the harmonic oscillator
spectrum. However, matrix elements that are fixed in a given basis are not expected to be
noticeably affected, regardless of the values of the oscillator parameters.

Now we establish some recursive relations of Hermite polynomials:

Hy1(z) =22H,(x) — 2nH,_(z), (2.191)
iH (x) = 2nH, (2.192)
dx n - n—1, :

where Hy(z) =1, Hy(z) = 2.
Multiplying both sides of (2.191) by H,(z) and eliminating the undesirable factor x, yields

r1q / —1
HoHy =" Hy  Hyror + | Hy s oy — | H,y o H, (2.193)
n n n

The matrix elements of the one-body kinetic energy operator in the basis of the triaxial
h.o. potential can be found analytically by means of Egs. (2.191) and (2.192):

1 1
Mgy Ty Nz 2> - 62’2{5711746 5nyn’y hw, |:2(nz + 5)5nzn’z

1 1
— Z\/nz(nz — 1) 0n. o, — Zy/n’z(n’z - 1) 5712,”/2_2} + cycl.}.

The elements of the local mean-field effective potential which is only invariant with respect
to time-reversal can be calculated in a similar way:

<nnn2/

Yy

Tkin

(2.194)

<nnn2’

x? Y

/ / /
sp\nx,ny,nz,2> = dyry <nx,ny,nz Vsp\nx,ny,nz>, (2.195)

where

ol / d€e™ Hoy (€) Hav / dne™" Hy, (1) H, (1)

<nx,ny,n

(2.196)
x / dCe™ Hyy (O Ho . (€) V(€,1, C).
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2.2.5 The harmonic-oscillator potential 44

It can be shown that most of the above matrix elements can be obtained recursively from
the relation (2.193) for products of normalized Hermite polynomials. Thus, the matrix
elements of Vy, can be rewritten as

n, +1
<nlf’n;’ nlz“/sl’|nx7ny’ nz> = Zn <n;7n;7n/z + 1|‘/sp|na:7 Ny, Ny — 1>
z
n/
5 (s = 1Viplna, g,z — 1) (2.197)
4
n, —1
- Zn <név7nfg7n/z‘V9p’na:7ny7nz - 2>
zZ

From Eq. (2.195) it is possible to derive equivalent recurrence relations in both x and
y directions due to the symmetry conditions. Partial parity, determined by the Cartesian
coordinates (—1)" allows us to identify matrix elements equal to zero, as shown for axially
symmetric potentials in section 2.2.5. This gives a conserved quantity which is used to
characterize the full wave function (see eq. (2.159)) in a block diagonal Hamiltonian matrix.
The blocks can be further subdivided by considering the parity 7. For a more detailed
introduction to methods of calculating matrix elements, the author refers to Ref. [62] as
an example.

Finally, let is describe the potential that connects the spin and orbital motions in the
quantum system, the so-called spin-orbit potential. This potential, as shown in (2.151) for
the two nucleon charge states (q={p,n}), is derived from the respective central potential

Vi, (g ={p,n}) by

FxV|, (2.198)

2
S.0. (=2 N h =
V() = i) (2]\4c> VVS%) :

where the parameters ), indicating the intensity of the spin-orbit coupling are given by
the expressions (2.153) and ¢ is the vector (0,,0y,0,) of (2 x 2) Pauli matrices.

After some algebraic manipulations, the potential can be expressed in a form consisting
of products of space and spin operators as follows

Vio. = —= [@ (2 Wy _ azavsp> s (azé’v;pawav;,p)

h Y 0z oy ox 0z
o - (2.199)
A sp sp
+Uz<am oy Dy 0z > '

Since the spin-orbit interaction involves distinctions between protons and neutrons, we will
omit the index "q" in all subsequent expressions, including V;,. As a result, the matrix
elements of V,, have this shape:

/ 1o _ LK / /ARSI PN a‘/sp av:?P
<nac7ny’nz ‘/s.o.|nxanyanz> - _h{<nxanyyn3 Og (83182 - az ay > nx7nyanz>
. oV IV
+<n;,n’y,n’z Gy (@axp — 9, a;) nxnyn> (2.200)
. oV Vs
—|—<n;,n;, nlz Oz (axayp - 8yazp> Ny, ny,nz>}

For easier use in further calculations, it is convenient to express the spin operators {6,, 6,, 5.}
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in terms of the operators {6,,5_, ¢}, which are given as

G4 = (6, +1i6y),
G = (6, —ib,), (2.201)
0o = 6Z7

which act on the spin part of the general wave function in the following way:

ol =11 el =0,
oIt =14, ol =0.

The complexity of finding the partial derivatives of a given local potential, such as
Eq. (2.147), usually precludes its analytic expression. However, by integrating over the
parts in Eq. (2.200), and remembering that ¥,,, — 0 at infinity, the derivative of the po-
tential can be transferred to the basis wave functions. This is convenient to do analytically.
Using eq. (2.191) and the form of the derivative of the basis wave function, e.g. given in
x-direction as

d\ljn x _1
zl(;x) an\/_< ro_1(azx) —aianz(axx)>e 2957

Ny ng +1
o ()5 1)

(2.202)

2

(2.203)

:a’:L'

we obtain that

1
<n;,n;, N,y X\ Vo [Ny yy 1, E> = 2/{{(2’|0+|E)B_ + (X'o_|Z)By +2(X|0,|X)B

where
By =B, ¥ B, (2.204)

B, ;(1 — (—1)”;+”y> aya, X
[— n’(ny, + 1)<n;,n’y,n’z — 1, \Vip|ng, ny + 1,nz>
ny(n), + 1)<n;,n’y, n, 4+ 1, |Vip|ng, ny — 1,nz> (2.205)
+ \/m@;,n; — 1,0}, |[Vip|ng, ny, n, + 1>
ey D+ Ll [Viplng, e — 1)),
B, = ;<1 + (—1)”L+”y> (0, X
{ nz+1)<n;—1,n;,n’z, Vsp|n$,ny,nz+1>
n,(n,, + 1)<n' + 1, my, 0L, | Vipl 1w, iy, 1 — 1> (2.206)

Viplnze + 1,1y, 1)

+ /1, nx+1<n,n n, —1,
+ \/ng(n +1<

nn+1

sp|nx - ]-; nya nz>} )
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1 n! +n
B, =3 1 — (=)™ ) aza,x

[— ny (N, + 1)<n;,n; —1,nl,

N (n), + 1)<n;,n; +1,nl,

+ g + D, — 1,1,

+ \/ny(nl + 1)<n; + 1,my,n7,

Viplna + 1,my, 12 )

‘/sp|nx - 17 nyv nz>

Viplne, ny + 1,12 )

Vp| T, 1y — 1,nz>}

The spin-orbit interaction, which is proportional to B_ and B, binds only antiparallel
spin states, in contrast to the central potential, which contributes only between states with
the same spin projection. This peculiarity leads to the splitting of each single-particle level
(except for s-states) into two levels with the same orbital angular momentum but opposite
spin orientations. To recursively construct the mean potential matrix, it is sufficient to
numerically compute all the diagonal elements and a small percentage of the off-diagonal
elements. The remaining off-diagonal elements are determined in successive rows up to
the main diagonal of the matrix. After calculating the elements of the mean potential
matrix, the same must be done for the spin-orbit potential using the equation (2.204).
Several matrix elements must be calculated numerically. They can also be calculated
recursively [60] by first calculating some additional matrix elements of the central potential
with n, +n,4+n, = Nyar + 1 (where Ny, is the cut-off condition related to the number of
main h.o. shells used in the wave function expansion). The ground states (2.187) (omitting
the quantum number of the spin o) are ordered as follows:

10,0,0), 10,0,1), 10,0,), ...
10,1,0), [0,1,1),]0,1,), ...
11,0,0), |1,0,1), |1,0,), ...
11,1 ,0) |1,1,1> 1, 1),...

Diagonaliztion of the symmetric potentials in the original h.o. basis

Consider a single-particle Hamiltonian H with axial symmetry, e.g. in the case of a
prolate deformed mean-field, the central potential is independent of the angle ¢ in cylin-
drical coordinates. Consequently, the single-particle Hamiltonian commutes with the third
component of the total angular momentum operator jz = l; + 5, and with the parity
operator }5, leading to the equations:

[H,J.)=0, [H P]=0. (2.207)

It can be seen that the action of the parity operator P on an arbitrary spatial function
Y(x,y, z) is given by R

Py(z,y,2) = (—z,—y, —2) (2.208)
with its eigenvalues equal to 7 = 4+1. Thus the eigenstates of such a Hamiltonian are
characterized by a set of quantum numbers {2 = A + X, 7}, where Q and 7 are the total
angular momentum and parity quantum numbers, respectively. In addition, when octupole
deformations are taken into account, the reflection symmetry with respect to the xOy-plane
is broken, and thus parity is no longer a good quantum number as [I:I , ﬁ] #0.
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It can be shown by Eq. (2.198) that both the central and the spin-orbit potentials
share the same spatial symmetries, which can be described parametrically and are able
to describe nuclear shapes if the cross section perpendicular to the z—-axis is at most an
ellipse. Alternatively, one can consider many other geometric shapes for which

Vz,y,z) =V (-z,—y, 2). (2.209)
is satisfied, with no constraints on the shape in the z— direction.
Returning to the original h.o. basis, it can be concluded that the only good quantum
number for these potentials is given by

q=(=1)"T3/]3], (2.210)

where ¥ is the spin projection, equal to {1/2,—1/2}. This implies that the Hamiltonian
matrix is split into two identical blocks with ¢ = 1 and ¢ = —1 respectively. For further
simplification, only one of these blocks needs diagonalization; following Kramer’s theo-
rem [33], each state can then be occupied by two particles, and this transformation already
contains the time inversion operation.

In this case, the Hamiltonian matrix can be represented schematically as follows

|boda 1) |Deven ) |boda {) |beven 1)
Veent + Vso:3 | Vson + Vso2 0 0 |boda T)
Vo1 = Vsosa | Veent = Vso3 0 0 |beven {)
0 0 Veent + Vaosz | Veod + Vios2 | |boaa )
0 0 Vios1 = Vsoa | Veent — Vso.3 |beven 1)

with the notation of |b,qq 1) denoting the set of basis states (+i)™ |ng, ny,n,)|s.), for
which n, +n, is an odd number with spin projection 1/2, symbolized by the up arrow, and
the other three types of basis states having analogous meanings. The quantities Ve, and
Vsoon (n={1,2,3}) are as follows: Vientr = Viin + Vip + Voow 0pg (¢ = {p,n}) and Vi, .,
corresponding to the spin-orbit term entering Eq. (2.204) proportional to B,, B,, and B,,
respectively. Consequently, the upper-left and lower-right blocks of the full matrix must
be identical, i.e., they must have the same eigensolutions.

So, this section was devoted to a comprehensive overview of the microscopic approach
to understanding the internal structure of the atomic nucleus. To determine the energy
of the nucleus, the well-known Hartree-Fock method was used, which involves solving the
many-body problem of the nucleons using a set of orthonormal one-particle states. The
Hamiltonian of the system includes a two-particle interaction consisting of a long-range
Coulomb interaction between the protons and a short-range nuclear interaction. In ad-
dition, the BCS method, which incorporates pairing correlations between nucleons, was
mentioned, detailing the inclusion of the pairing potential in the Hamiltonian and the so-
lution of the BCS equations to determine pairing gaps and binding energies. The Coulomb
potential and energy corrections in the nucleus have also been considered. In section 2.2.4
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2.3 Macroscopic-microscopic method 48

it was described the folding procedure and how the density dependent Coulomb potential
can be calculated. It was explained how the Coulomb energy can be corrected for the
diffuseness of the charge distribution. Finally, the role of the harmonic oscillator potential
in describing the single-particle states in the nucleus was mentioned. In particular, the
eigenstates of the axially symmetric harmonic oscillator potential and how they can be
used as a basis for describing the nuclear structure.

2.3 Macroscopic-microscopic method

Having discussed the details of the macroscopic and microscopic approaches separately,
it is time to generalize these two approaches. The advantage of unification lies in the
number of described properties and characteristics of the atomic nucleus, including those
possessing deformations. Earlier (see 2.1.3) an example was given where an attempt was
made to estimate the binding energy by including pair correlations of nucleons within the
nucleus, but there was no dependence on the deformation parameters. To remedy this
weakness, the idea of extracting the shell effect of the averaged nuclear properties, which
with the BCS method could approximate the effect of the short-range pairwise interaction,
came up.

As mentioned earlier, the deformation of nuclei is described by the introduction of
collective coordinates. Their minimization by energy gives information about the ground
state of the nuclear system. Therefore, to find this point (and other extrema), a coordinate
grid with energy values at its nodes is used. This is described in more detail in Chapter 5.
Here it can be said that the macroscopic energy can always be calculated within the
framework of the LD and DM models presented above, taking into account deformations.
But these deformations are always caused by quantum-mechanical effects.

2.3.1 Single-partcle energy summation

Real nuclei often exhibit nonspherical ground state shapes due to shell effects. There-
fore, the single-particle energies of the deformed mean-field potentials must be used to
calculate the microscopic contribution to their potential energy.

In the first attempt [46], Mottelson and Nilsson have proposed the evaluate the sum
of energies of occupied single-particle states

Exn(N, Z,def) =Y eb + > el + Ecou - (2.211)
Here e, are the single-particle energies of protons (p) and neutrons (n), obtained by diag-
onalizing the Hamiltonian with the deformed mean-field potential V (r; def)

h =T+ V(r;def). (2.212)

The Coulomb energy of protons can be obtained by the integral after all single-particle
coordinates of protons
2

ECOul_Z// /xp I 1) U (ry, ... 1) dTy . dT (2.213)

1> |r1 I']‘

where W is a Slater determinant consisting of single-particle functions. Substituting the
squares of these functions for the single-particle proton densities p} gives the formula

ECoul _Z//pz rZ p] I']

i>7 |r7f r]‘

o2
——dT7;dT; (2.214)
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Bethe and Bacher have estimated [63] this integral as

3 Z%e? ™5 a  0.7636

Ecow = 5 Ry B (def) — 23R B

(2.215)

where a is the value of the diffuseness of the nucleus surface and Ry = roAY/3 is the radius
of the spherical charge distribution.
The single-particle energy summation method gave the minimum energy for non-zero de-
formations, but it did not reproduce either the experimental masses of the nuclei or their
fission barrier heights. Its main error was the double counting of nucleon-nucleon inter-
actions in the total energy, which cannot be separated. In the energy sum (2.211) it is
impossible to separate a part of the energy coming from the mean-field potential. Therefore
one has to find another method to include the shell effects.

Taking into account the short-range pairing correlations, the method proposed by Bés
and Szymanski improves the Mottelson-Nilsson method:

Vg 2
Fpg = (Z 2e,V? — % -G v,})
v=1

v>0

P (2.216)
43 A2
. (z 2,V -2 Gy vf) + Eeon.

v=1 n

v>0

For odd nuclei, a quasi-particle energy must be added. With these microscopic methods
the nuclear energy can be determined with an accuracy to a constant. But only its variance
with deformation can be evaluated from the microscopic structure, and its absolute value
must be estimated from the masses of known nuclei.

2.3.2 Idea of the macroscopic-microscopic method

Strutinsky proposed a method of renormalizing the energy to a liquid drop or other
macroscopic energy by means of a microscopic energy correction in order to reproduce
absolute values of the potential energy and to avoid double summation of nuclear two-
body coupling. The microscopic energy consists of the part responsible for shell effects and
the term associated with pairing correlations. Thus, the total energy of the nucleus is

EStrut = ELD + 5Eshell + 5Epair . (2217)

On Fig. 2.3 schematically shows the contribution of