
Uniwersytet Marii Curie-Skªodowskiej w Lublinie

Wydziaª Matematyki, Fizyki i Informatyki

Bartªomiej Kotyra

Wydajne algorytmy równolegªe

w modelowaniu hydrologicznym

Rozprawa doktorska przygotowana pod opiek¡

dr. hab. Przemysªawa Stpiczy«skiego, prof. UMCS

Lublin, 2024

Skªadam serdeczne podzi¦kowania

profesorowi dr. hab. Przemysªawowi Stpiczy«skiemu

za opiek¦ naukow¡, wsparcie i nadanie kierunku

przeprowadzonym pracom badawczym.

Spis tre±ci

Lista publikacji zawartych w rozprawie doktorskiej 5

Streszczenie 6

Abstract 7

1 Wst¦p 8

2 Obliczenia równolegªe 11

2.1 Komputery sekwencyjne . 12

2.2 Procesory wielordzeniowe . 13

2.3 Procesory GPU . 13

2.4 Standard OpenMP . 15

2.5 Platforma CUDA . 15

3 Wybrane zagadnienia z zakresu modelowania hydrologicznego

i systemów informacji geogra�cznej 17

3.1 Numeryczne modele terenu . 18

3.2 Rastry kierunku spªywu . 19

3.3 Akumulacja spªywu powierzchniowego 20

3.4 Wyznaczanie zlewni . 21

3.5 Identy�kacja najdªu»szych ±cie»ek spªywu 22

4 Omówienie uzyskanych wyników 23

4.1 High-performance parallel implementations of �ow accumulation algorithms

for multicore architectures . 23

4.2 High-performance watershed delineation algorithm for GPU using CUDA

and OpenMP . 26

4.3 Fast parallel algorithms for �nding the longest �ow paths in �ow direction

grids . 28

3

5 Podsumowanie 32

Bibliogra�a 34

A High-performance parallel implementations of �ow accumulation

algorithms for multicore architectures 39

B High-performance watershed delineation algorithm for GPU using

CUDA and OpenMP 52

C Fast parallel algorithms for �nding the longest �ow paths in �ow direction

grids 63

4

Lista publikacji zawartych w rozprawie

doktorskiej

1. Kotyra B., Chabudzi«ski �., Stpiczy«ski P.

High-performance parallel implementations of �ow accumulation algorithms for

multicore architectures

Computers & Geosciences, vol. 151, 2021, 104741

https://doi.org/10.1016/j.cageo.2021.104741

2. Kotyra B.

High-performance watershed delineation algorithm for GPU using CUDA and OpenMP

Environmental Modelling & Software, vol. 160, 2023, 105613

https://doi.org/10.1016/j.envsoft.2022.105613

3. Kotyra B., Chabudzi«ski �.

Fast parallel algorithms for �nding the longest �ow paths in �ow direction grids

Environmental Modelling & Software, vol. 167, 2023, 105728

https://doi.org/10.1016/j.envsoft.2023.105728

5

Streszczenie

Celem prac przeprowadzonych i opisanych w ramach niniejszej rozprawy byªo opracowanie

nowych, wydajnych algorytmów równolegªych, przeznaczonych do realizacji wybranych

zada« z obszaru modelowania hydrologicznego i systemów informacji geogra�cznej (GIS).

Rozwa»ane zagadnienia obejmowaªy obliczanie akumulacji spªywu powierzchniowego, wy-

znaczanie zlewni oraz identy�kacj¦ najdªu»szych ±cie»ek spªywu. Zaproponowane algo-

rytmy zostaªy poddane szczegóªowej ocenie i porównane z innymi istniej¡cymi rozwi¡-

zaniami, zarówno opisanymi w literaturze, jak i dost¦pnymi w powszechnie stosowanych

pakietach oprogramowania. Uzyskane wyniki pozwalaj¡ wykaza¢ istotn¡ przewag¦ opraco-

wanych algorytmów nad alternatywnymi rozwi¡zaniami przeznaczonymi do realizacji tych

samych zada«. Co wa»ne, zaproponowane koncepcje pozwalaj¡ na znacznie wydajniejsze

wykorzystanie wªasno±ci wspóªczesnych architektur wielordzeniowych.

Niniejsz¡ rozpraw¦ stanowi zbiór trzech powi¡zanych tematycznie publikacji nauko-

wych. Ka»da porusza odr¦bny problem obliczeniowy i prezentuje opracowane przez autora

rozwi¡zania, a tak»e ocenia ich warto±¢ w kontek±cie dotychczasowego stanu bada«.

W rozdziale 1 nakre±lono kontekst i tematyk¦ zrealizowanych prac. Przedstawiono

tutaj zakres i najwa»niejsze cele bada«, a tak»e zde�niowano tez¦ niniejszej rozprawy.

Rozdziaª 2 stanowi krótkie wprowadzenie do obszaru oblicze« równolegªych. Omó-

wiono w nim zagadnienia stanowi¡ce wspólne tªo dla wszystkich trzech publikacji.

W rozdziale 3 przedstawiono wybrane tematy z zakresu modelowania hydrologicznego

i systemów informacji geogra�cznej. Opisano tutaj zagadnienia obliczeniowe, b¦d¡ce

gªównym punktem zainteresowania przeprowadzonych bada«.

Rozdziaª 4 omawia kolejno trzy publikacje zawarte w rozprawie. Przedstawiono w nim

zakres zrealizowanych prac, uwzgl¦dniaj¡c przyj¦te zaªo»enia, wybrane metody i zasto-

sowane technologie. Zaprezentowano tak»e najwa»niejsze z uzyskanych rezultatów.

W rozdziale 5 zawarto krótkie podsumowanie wykonanych prac badawczych, z uwzgl¦d-

nieniem najwa»niejszych wyników i kluczowych wniosków. Zaproponowano tak»e poten-

cjalne kierunki dalszych bada«.

Zaª¡czniki A, B oraz C zawieraj¡ tre±¢ kolejnych publikacji i tym samym szczegóªowo

prezentuj¡ prace zrealizowane w ramach niniejszej rozprawy.

6

Abstract

The goal of the work presented in this dissertation was to develop new, e�cient parallel

algorithms for selected problems in hydrological modeling and geographic information

systems (GIS). The issues addressed included calculating �ow accumulation, delineating

watersheds and identifying the longest �ow paths. The proposed algorithms were closely

evaluated and compared with other existing solutions, both from the literature and

commonly used software packages. The results demonstrate signi�cant advantages of

the developed algorithms over alternative solutions designed to perform the same tasks.

Importantly, the proposed concepts allow for much more e�cient use of modern multi-core

architectures.

The dissertation consists of three thematically related research publications. Each of

them addresses a separate computational problem and presents the solutions developed

by the author, assessing their value in relation to the current state of research.

Chapter 1 outlines the background and topics of the research conducted. It speci�es

the scope and most important objectives, as well as the thesis of this dissertation.

Chapter 2 provides a brief introduction to the area of parallel computing. It covers

issues that constitute the common background for all three publications.

Chapter 3 presents selected topics related to hydrological modeling and geographic

information systems. The computational issues that were the main focus of this research

are outlined here.

Chapter 4 describes the three publications included in the dissertation. It presents

the scope of research work, discussing the assumptions, methods and technologies used.

The most important results were also highlighted.

Chapter 5 presents a short summary of all the research work carried out, including

the most important results and key conclusions. Potential directions for further research

were also proposed.

Appendices A, B and C contain the published research papers and therefore present

in detail the work carried out within this dissertation.

7

Rozdziaª 1

Wst¦p

Historia modelowania hydrologicznego si¦ga lat 50. XIX wieku, jednak okres najbardziej

dynamicznego rozwoju tego obszaru rozpocz¡ª si¦ dopiero wraz z pocz¡tkiem rewolucji

cyfrowej. Rosn¡ca dost¦pno±¢ komputerów stworzyªa mo»liwo±ci obliczeniowe, jakie nigdy

wcze±niej nie byªy osi¡galne. Podobnie jak w wielu innych dziedzinach, gwaªtowny roz-

wój nowych technologii doprowadziª do szybkich i znacz¡cych post¦pów, fundamentalnie

zmieniaj¡c charakter caªego obszaru [44].

Jednym z czynników maj¡cych istotny wpªyw na kierunek rozwoju modelowania

hydrologicznego byªy narodziny, a nast¦pnie upowszechnienie si¦ systemów informacji

geogra�cznej (GIS) w ostatnich dekadach XX wieku. Cho¢ z pocz¡tku technologia GIS

znajdowaªa zastosowanie gªównie w innych obszarach, z biegiem czasu jej mo»liwo±ci za-

cz¦to dostrzega¢ i wykorzystywa¢ tak»e w kontek±cie zagadnie« zwi¡zanych z hydrologi¡.

Obecnie systemy GIS stanowi¡ nieodª¡czny element du»ej cz¦±ci bada« hydrologicznych

[43].

W ci¡gu ostatnich kilku dekad przemysª sprz¦tu komputerowego do±wiadczyª wielu

istotnych przemian. Jedn¡ z najwa»niejszych byª zwrot w kierunku procesorów wielor-

dzeniowych, których upowszechnienie w ogromnym stopniu zwi¦kszyªo mo»liwo±ci obli-

czeniowe urz¡dze« dost¦pnych dla przeci¦tnego u»ytkownika. Nale»y jednak podkre±li¢,

»e efektywne korzystanie z tych zasobów mo»liwe jest jedynie za po±rednictwem opro-

gramowania, które zostaªo zaprojektowane i zaimplementowane z my±l¡ o przetwarzaniu

równolegªym [17].

W tym kontek±cie na szczególn¡ uwag¦ zasªuguj¡ wspóªczesne procesory gra�czne

(GPU). Cho¢ pierwotnym przeznaczeniem urz¡dze« tej klasy byªo wydajne przetwarzanie

gra�ki, na przestrzeni ostatnich dwóch dekad ich mo»liwo±ci zostaªy z powodzeniem za-

adaptowane do szerokiej gamy innych zastosowa«. Architektury nowoczesnych jednostek

GPU, umo»liwiaj¡ce przeprowadzanie oblicze« równolegªych z wykorzystaniem setek czy

tysi¦cy rdzeni, pozwalaj¡ na osi¡gni¦cie poziomów wydajno±ci dalece wykraczaj¡cych

8

poza ograniczenia konwencjonalnych procesorów. Nowe mo»liwo±ci sprz¦towe, wraz z upo-

wszechnieniem standardów programowania GPU takich jak CUDA czy OpenCL, dopro-

wadziªy do gª¦bokich przemian w obszarze wysokowydajnych oblicze« komputerowych

[5, 20].

Nale»y podkre±li¢, »e pomimo rosn¡cej dost¦pno±ci nowoczesnych jednostek oblicze-

niowych i standardów ich programowania, projektowanie i implementacja wydajnych

algorytmów równolegªych wci¡» pozostaje relatywnie trudnym zadaniem. W szczególno±ci

programowanie urz¡dze« GPU, ze wzgl¦du na ich fundamentalnie odmienn¡ architektur¦

sprz¦tow¡, jest cz¦sto uwa»ane za wyspecjalizowan¡ dziedzin¦ [20]. Tradycyjne algorytmy

sekwencyjne nie pozwalaj¡ na peªne wykorzystanie wspóªczesnych zasobów sprz¦towych,

a ich adaptacja do uwarunkowa« przetwarzania równolegªego cz¦sto okazuje si¦ zªo»onym

zagadnieniem [36].

Ostatnie dekady to jednocze±nie okres szybkiego rozwoju technik pozyskiwania i gro-

madzenia danych geoprzestrzennych, b¦d¡cych podstaw¡ funkcjonowania systemów GIS.

Rozdzielczo±¢ i precyzja dost¦pnych zbiorów danych znacz¡co wzrosªy, dalece przewy»sza-

j¡c dotychczasowe standardy. Z jednej strony obszerne i ªatwo osi¡galne zasoby tworz¡

nowe mo»liwo±ci, pozwalaj¡c na przeprowadzanie bardziej zªo»onych i dokªadniejszych

oblicze« oraz symulacji. Z drugiej, ich praktyczne wykorzystanie wi¡»e si¦ z nowymi

wyzwaniami, wynikaj¡cymi z konieczno±ci przetwarzania danych o niespotykanych dot¡d

rozmiarach [4, 49].

Istniej¡ca literatura sugeruje, »e du»a cz¦±¢ opracowanych jeszcze w latach 80. i 90.

algorytmów przeznaczonych do przetwarzania danych geoprzestrzennych wci¡» jest po-

wszechnie implementowana i wykorzystywana we wspóªczesnym oprogramowaniu GIS.

Obecnie w wielu sytuacjach wydajno±¢ tych narz¦dzi okazuje si¦ dalece niewystarczaj¡ca.

Rozmiary dost¦pnych zbiorów danych geoprzestrzennych ró»ni¡ si¦ o rz¦dy wielko±ci od

tych, dla których pierwotnie przeznaczone byªy te rozwi¡zania. Cho¢ dzisiejszy sprz¦t

komputerowy oferuje nieosi¡galne wcze±niej mo»liwo±ci obliczeniowe, istniej¡ce algorytmy

cz¦sto okazuj¡ si¦ nieadekwatne do wspóªczesnych realiów [49].

Celem prac przedstawionych w niniejszej rozprawie byªo opracowanie nowych, wy-

dajnych algorytmów rozwi¡zuj¡cych wybrane problemy z obszaru modelowania hydro-

logicznego i systemów informacji geogra�cznej. Szczególn¡ uwag¦ po±wi¦cono mo»liwo-

±ciom przetwarzania równolegªego wspóªczesnych jednostek obliczeniowych � zarówno

wielordzeniowych procesorów CPU, jak i urz¡dze« GPU. Gªówn¡ motywacj¦ stanowiªa

potrzeba opracowania rozwi¡za«, które pozwoliªyby przekroczy¢ ograniczenia zwi¡zane

z wydajno±ci¡ istniej¡cego oprogramowania.

Przeprowadzone prace koncentrowaªy si¦ na trzech powi¡zanych ze sob¡ zagadnie-

niach: obliczaniu akumulacji spªywu powierzchniowego, wyznaczaniu zlewni i identy�kacji

9

najdªu»szych ±cie»ek spªywu. Realizacja tych zada« z wykorzystaniem technologii GIS

i danych geoprzestrzennych nie jest now¡ koncepcj¡ � pierwsze algorytmy przeznaczone

do tego celu zaproponowano w literaturze ju» w latach 80. i 90. Nowsze publikacje

podkre±laj¡ jednak czasochªonno±¢ lub wr¦cz niepraktyczno±¢ wykonywania tych operacji

za pomoc¡ istniej¡cych narz¦dzi w kontek±cie wspóªczesnych, obszernych zbiorów danych.

We wszystkich trzech przypadkach za najwa»niejszy cel realizowanych prac przyj¦to

opracowanie oryginalnych algorytmów równolegªych, których wydajno±¢ istotnie prze-

wy»szaªaby dost¦pne dot¡d rozwi¡zania.

Teza niniejszej rozprawy zostaªa zde�niowana nast¦puj¡co:

Odpowiednio zaprojektowane i zaimplementowane algorytmy równolegªe, przeznaczone

do rozwi¡zywania zada« z obszaru modelowania hydrologicznego i systemów informacji

geogra�cznej, mog¡ pozwoli¢ na istotn¡ popraw¦ wydajno±ci oblicze« w stosunku do obec-

nie stosowanych rozwi¡za«.

10

Rozdziaª 2

Obliczenia równolegªe

Historia rozwoju komputerów jest nierozerwalnie zwi¡zana z zagadnieniami dotycz¡cymi

pr¦dko±ci wykonywania oblicze«. Od czasu wdro»enia pierwszych elektronicznych, cyfro-

wych komputerów w latach 40. XX wieku, rozwój tej technologii byª w ogromnym stopniu

kierowany potrzeb¡ uzyskania wy»szej mocy obliczeniowej. Rosn¡ca na przestrzeni dekad

wydajno±¢ dost¦pnych urz¡dze« nie tylko drastycznie zredukowaªa czas potrzebny na

wykonanie wielu zªo»onych zada«, ale równie» istotnie wpªyn¦ªa na to, jakie rodzaje

problemów s¡ dzisiaj uwa»ane za mo»liwe do rozwi¡zania za pomoc¡ komputerów [21, 36].

Jednym z przeªomowych zdarze« w historii rozwoju sprz¦tu komputerowego byªo

upowszechnienie procesorów wielordzeniowych, rozpoczynaj¡ce si¦ w pierwszej dekadzie

XXI wieku. Konstrukcja urz¡dze« wieloprocesorowych nie byªa ju» wówczas w »adnym

stopniu now¡ ide¡ � komputery równolegªe znajdowaªy praktyczne zastosowanie w wy-

specjalizowanych obszarach ju» od kilkudziesi¦ciu lat. Jednak dopiero zwrot w kierunku

tych rozwi¡za« w±ród najwa»niejszych producentów ukªadów scalonych pozwoliª na udo-

st¦pnienie urz¡dze« tej klasy szerokiej grupie odbiorców [17, 21].

Wraz z nowymi mo»liwo±ciami sprz¦towymi pojawiªy si¦ tak»e wyzwania o nowym

charakterze. Obecny w latach 80. i 90. trend wzrostu mocy obliczeniowej tradycyjnych,

jednordzeniowych procesorów gwarantowaª coraz bardziej wydajn¡ realizacj¦ zada« zle-

canych komputerowi z u»yciem ju» istniej¡cego oprogramowania. Zwrot w kierunku pro-

cesorów wielordzeniowych zmieniª t¦ sytuacj¦ � wprawdzie nowe jednostki obliczeniowe

oferowaªy niespotykane dot¡d mo»liwo±ci, jednak ich efektywne wykorzystanie nie od-

bywaªo si¦ automatycznie. Wzrost wydajno±ci zwi¡zany z równolegªym wykonywaniem

operacji na wielu rdzeniach procesora jest osi¡galny jedynie za po±rednictwem odpowied-

nio zaprojektowanego i zaimplementowanego oprogramowania [38, 48].

Jak zaznaczono w [36]: �wyzwaniem zwi¡zanym z przetwarzaniem równolegªym nie

jest sprz¦t; jest nim fakt, »e zbyt maªo istotnych programów zostaªo przepisanych tak,

aby umo»liwi¢ szybsz¡ realizacj¦ zada« na komputerach wieloprocesorowych�.

11

2.1 Komputery sekwencyjne

W latach 60. XX wieku, Michael J. Flynn zaproponowaª relatywnie prosty sposób klasy-

�kacji architektur komputerowych w oparciu o liczb¦ równocze±nie przetwarzanych stru-

mieni instrukcji i strumieni danych [13, 14]. Stosowana do dzisiaj klasy�kacja, okre±lana

obecnie jako taksonomia Flynna, wyró»nia cztery gªówne klasy architektur:

� SISD � pojedynczy strumie« rozkazów, pojedynczy strumie« danych

� SIMD � pojedynczy strumie« rozkazów, wiele strumieni danych

� MISD � wiele strumieni rozkazów, pojedynczy strumie« danych

� MIMD � wiele strumieni rozkazów, wiele strumieni danych

Kategoria SISD obejmuje konwencjonalne komputery odpowiadaj¡ce architekturze

von Neumanna. Urz¡dzenia tej klasy s¡ wyposa»one w pojedynczy procesor, realizuj¡cy

strumie« rozkazów jako sekwencj¦ kolejnych kroków � dlatego zwykle okre±lane s¡ jako

komputery sekwencyjne (ang. sequential computers). Zanim procesory wielordzeniowe

staªy si¦ dost¦pne dla szerszej grupy u»ytkowników, architektury nale»¡ce do kategorii

SISD stanowiªy powszechnie przyj¦ty standard [38].

Historycznie wi¦kszo±¢ oprogramowania komputerowego powstawaªa z my±l¡ o archi-

tekturach SISD. Programy przeznaczone do uruchamiania na urz¡dzeniach tej klasy s¡

interpretowane jako jednow¡tkowa sekwencja instrukcji. Tym samym w trakcie realizacji

programu procesor generalnie wykonuje rozkazy jeden po drugim [1, 31].

Jednym z najistotniejszych czynników maj¡cych wpªyw na wydajno±¢ pracy konwen-

cjonalnego procesora jest cz¦stotliwo±¢ taktowania, okre±laj¡ca dªugo±¢ cyklu, w trakcie

którego procesor wykonuje pojedyncz¡, elementarn¡ operacj¦. Lata 80. i 90. stanowiªy

okres szczególnie intensywnego wzrostu cz¦stotliwo±ci taktowania dost¦pnych na rynku

procesorów, jednak ten trend zaªamaª si¦ w pierwszej dekadzie XXI wieku [19]. Kluczo-

wym powodem byª fakt, i» wy»sza cz¦stotliwo±¢ pracy procesora poci¡ga za sob¡ tak»e

wy»sze zu»ycie energii, co z kolei przekªada si¦ na zwi¦kszon¡ emisj¦ ciepªa. Problemy

zwi¡zane z chªodzeniem ukªadów okazaªy si¦ tym samym barier¡ ograniczaj¡c¡ mo»liwo±¢

dalszego wzrostu cz¦stotliwo±ci taktowania procesorów [31, 38].

Rosn¡ca wydajno±¢ procesorów jednordzeniowych naturalnie wi¡zaªa si¦ z mo»liwo±ci¡

szybszego wykonywania dost¦pnych programów komputerowych przez nowsze jednostki.

Utrzymuj¡cy si¦ na przestrzeni dekad trend pozwalaª oczekiwa¢, »e urz¡dzenia kolejnych

generacji w naturalny sposób zagwarantuj¡ jeszcze bardziej wydajn¡ realizacj¦ zada« bez

konieczno±ci wprowadzania istotnych zmian w ju» istniej¡cym oprogramowaniu. Rezygna-

cja przemysªu z dalszego d¡»enia do szybszej pracy pojedynczych rdzeni oznaczaªa, »e

ta sytuacja nie b¦dzie miaªa ju» dªu»ej miejsca. Wprawdzie pojawiaj¡ce si¦ na rynku

procesory wielordzeniowe oferowaªy znacznie wi¦ksze mo»liwo±ci obliczeniowe, ale ich

12

efektywne wykorzystanie za pomoc¡ istniej¡cych, sekwencyjnych programów kompute-

rowych nie byªo mo»liwe. Charakter oprogramowania przeznaczonego dla architektur

SISD ogranicza sposób jego wykonania do jednow¡tkowej pracy pojedynczego rdzenia

procesora, bez wzgl¦du na architektur¦ wykorzystywanego urz¡dzenia [31, 39].

2.2 Procesory wielordzeniowe

Pocz¡wszy od pierwszej dekady XXI wieku, nowym standardem staªy si¦ procesory za-

wieraj¡ce wiele �zycznych jednostek CPU (okre±lanych jako rdzenie procesora). Obecnie

niemal wszystkie komputery stacjonarne i serwery s¡ wyposa»one w procesory wielordze-

niowe [36].

Architektury typowych, wielordzeniowych procesorów CPU nale»¡ do kategorii MIMD

w taksonomii Flynna. Jednostki tej klasy pozwalaj¡ na jednoczesne wykonywanie wielu

strumieni rozkazów na oddzielnych strumieniach danych. Z punktu widzenia programisty

oznacza to mo»liwo±¢ wyra»enia zadania do wykonania w postaci zbioru niezale»nych

podzada«, które urz¡dzenie mo»e realizowa¢ równolegle, skracaj¡c tym samym czas po-

trzebny na uzyskanie ko«cowego wyniku [1].

Liczba dost¦pnych rdzeni jest zale»na od architektury konkretnego modelu procesora.

Jednostki dwurdzeniowe, które staªy si¦ powszechnie dost¦pne w pierwszej dekadzie XXI

wieku, s¡ od tego czasu stopniowo wypierane przez rozwi¡zania nowszych generacji.

Obecnie norm¡ na rynku konsumenckim jest dost¦pno±¢ procesorów cztero-, sze±cio- czy

o±miordzeniowych. Jednocze±nie liczby rdzeni dost¦pnych w jednostkach przeznaczonych

do bardziej wymagaj¡cych zastosowa« nierzadko osi¡gaj¡ nawet trzycyfrowe warto±ci.

Oczekuje si¦, »e ten trend w rozwoju architektur CPU b¦dzie trwaª nadal [31, 36, 39].

Nale»y przy tym podkre±li¢, »e wykorzystanie mocy obliczeniowej oferowanej przez

dodatkowe rdzenie procesora nie odbywa si¦ w sposób automatyczny. Kluczowym wa-

runkiem jest skonstruowanie programu komputerowego w taki sposób, aby realizowane

zadanie mogªo zosta¢ zinterpretowane jako wiele odr¦bnych sekwencji rozkazów, które

mog¡ by¢ przetwarzane równocze±nie. Dopiero taka struktura oprogramowania pozwala

na przydziaª pracy do wi¦cej ni» jednego rdzenia procesora i tym samym umo»liwia

wykonanie programu w sposób równolegªy [31].

2.3 Procesory GPU

Odr¦bn¡ kategori¦ urz¡dze«, maj¡cych istotne znaczenie w obszarze wysokowydajnych

oblicze« równolegªych, stanowi¡ wspóªczesne procesory gra�czne (GPU). Historycznie

jednostki nale»¡ce do tej klasy wywodz¡ si¦ z wyspecjalizowanych procesorów projekto-

13

wanych z my±l¡ o szybkim przetwarzaniu gra�ki 3D. Z uwagi na ten charakterystyczny,

pierwotnie zakªadany zakres zastosowa«, architektury tych urz¡dze« znacz¡co ró»ni¡ si¦

od tych stosowanych w produkcji konwencjonalnych procesorów CPU [5, 20].

W angloj¦zycznej literaturze architektury wspóªczesnych jednostek GPU okre±lane

s¡ terminem �manycore� (w odró»nieniu do wyra»enia �multi-core�, u»ywanego gªównie

wobec konwencjonalnych procesorów wielordzeniowych). Stosowanie odr¦bnego terminu

jest konsekwencj¡ wykorzystywania rozwi¡za« opartych na wyj¡tkowo wysokich liczbach

rdzeni, cz¦sto wyra»anych w setkach lub tysi¡cach. Nale»y jednak podkre±li¢, »e rdzenie

GPU maj¡ fundamentalnie prostsz¡ konstrukcj¦ ni» te spotykane w dzisiejszych proceso-

rach CPU, tym samym oferuj¡c mo»liwo±ci obliczeniowe o odmiennym charakterze [3, 8].

Architektura typowego, wspóªczesnego procesora GPU mo»e by¢ w uproszczeniu in-

terpretowana jako kolekcja jednostek nale»¡cych do kategorii SIMD w taksonomii Flynna.

Taka konstrukcja istotnie ogranicza charakter zada« obliczeniowych, które mog¡ by¢ wy-

konywane na urz¡dzeniach tej klasy przy efektywnym wykorzystaniu ich potencjaªu. Tym

samym jednostki GPU nie s¡ z natury procesorami ogólnego przeznaczenia � pomimo ich

wysokiej mocy obliczeniowej, niektóre rodzaje zada« wci¡» b¦d¡ wykonywane wydajniej

przez konwencjonalne procesory CPU [3, 39].

Urz¡dzenia GPU wykazuj¡ swoj¡ przewag¦ przede wszystkim w realizacji oblicze«

o charakterze kompatybilnym z architektur¡ SIMD � czyli takich, gdzie pojedynczy ci¡g

instrukcji jest równolegle wykonywany na wielu strumieniach danych. Tym samym zada-

nia, w których zastosowanie GPU mo»e przynie±¢ najwi¦cej korzy±ci, to te o strukturze

przypominaj¡cej przetwarzanie gra�ki, gdzie dla ka»dego punktu obrazu wykonywane s¡

te same operacje [39].

Dopiero w ci¡gu ostatnich dwóch dekad procesory GPU znalazªy szersze, praktyczne

zastosowanie w zagadnieniach niezwi¡zanych bezpo±rednio z gra�k¡ komputerow¡. Obec-

nie urz¡dzenia tej klasy s¡ z powodzeniem u»ywane w niemal wszystkich obszarach,

w których wydajno±¢ oblicze« komputerowych ma istotne znaczenie. Nale»y jednak pod-

kre±li¢, »e warunkiem efektywnego wykorzystania mo»liwo±ci oferowanych przez jednostki

GPU jest formuªowanie zada« obliczeniowych w sposób kompatybilny z ich specy�czn¡

architektur¡. Z tego wzgl¦du programowanie GPU diametralnie ró»ni si¦ od tworzenia

oprogramowania dla CPU i jest cz¦sto postrzegane jako wyspecjalizowana dziedzina

[5, 8, 20].

Podobnie jak w przypadku wielordzeniowych procesorów CPU, rozwój jednostek GPU

prowadzi do stopniowego wzrostu liczby dost¦pnych rdzeni w urz¡dzeniach kolejnych

generacji. Oczekuje si¦, »e ten trend b¦dzie kontynuowany w kolejnych latach [31].

14

2.4 Standard OpenMP

Rozwój architektur wielordzeniowych naturalnie wi¡zaª si¦ z potrzeb¡ opracowania no-

wych standardów programowania, pozwalaj¡cych tworzy¢ aplikacje wykorzystuj¡ce mo»-

liwo±ci przetwarzania równolegªego. Obecnie jednym z najwa»niejszych i najszerzej sto-

sowanych jest standard OpenMP [6]. Historia OpenMP si¦ga lat 90. � pierwsza wersja

specy�kacji zostaªa opublikowana w roku 1997. Standard jest wci¡» rozwijany, maj¡c

szerokie wsparcie ze strony przemysªu oprogramowania komputerowego [31, 39].

OpenMP nie jest samodzielnym j¦zykiem programowania. Standard ma form¦ rozsze-

rzenia, którego skªadnia mo»e by¢ stosowana w ramach j¦zyków C, C++ oraz Fortran.

Implementacja programów z wykorzystaniem OpenMP polega na umieszczaniu w kodzie

¹ródªowym okre±lonych instrukcji i dyrektyw, wyra»aj¡cych oczekiwany sposób realizacji

zadania na urz¡dzeniu umo»liwiaj¡cym przetwarzanie równolegªe. Zadaniem kompila-

torów wspieraj¡cych standard OpenMP jest interpretacja tych konstrukcji, a nast¦pnie

generowanie kodu, który b¦dzie wykonywany przez maszyn¦ w »¡dany sposób [3, 7, 31].

Standard OpenMP opiera si¦ na modelu pami¦ci wspóªdzielonej (ang. shared-memory).

Tym samym zakªada si¦, »e program zaimplementowany z u»yciem OpenMP b¦dzie wyko-

nywany przez grup¦ procesorów maj¡cych dost¦p do wspólnej przestrzeni adresowej. Taki

model ogranicza kontekst, w którym standard OpenMP mo»e by¢ stosowany, wykluczaj¡c

systemy rozproszone (skªadaj¡ce si¦ z niezale»nych urz¡dze«). Z tego wzgl¦du mo»liwo±ci

oferowane przez OpenMP s¡ cz¦sto wykorzystywane w poª¡czeniu z innymi standardami,

które pozwalaj¡ przekroczy¢ te ograniczenia [7, 39].

2.5 Platforma CUDA

Platforma CUDA zostaªa opracowana i udost¦pniona przez korporacj¦ NVidia jako ±rodo-

wisko umo»liwiaj¡ce programowanie i wykonywanie oblicze« równolegªych na jednostkach

GPU. Ze wzgl¦du na wªasno±ciowy charakter projektu i jego ±cisªy zwi¡zek z architek-

turami sprz¦tu dostarczanego przez NVidia, oprogramowanie tworzone z u»yciem CUDA

mo»e by¢ uruchamiane wyª¡cznie na urz¡dzeniach GPU pochodz¡cych od tego produ-

centa. Mimo to, CUDA obecnie dominuje w±ród technologii natywnego programowania

GPU [3, 39].

Model programowania CUDA zakªada odr¦bno±¢ jednostki GPU od procesora CPU

i jego pami¦ci (okre±lanych terminem �host�) � urz¡dzenie GPU posiada wªasn¡, nieza-

le»n¡ przestrze« adresow¡. Typowy scenariusz realizacji zada« obliczeniowych obejmuje

transfer danych wej±ciowych do pami¦ci GPU, wykonanie zleconych operacji, a nast¦pnie

pobranie uzyskanych wyników z powrotem do pami¦ci hosta [8].

15

Ze wzgl¦du na specy�czn¡ architektur¦ jednostek GPU, programy implementowane

z u»yciem CUDA musz¡ mie¢ okre±lon¡ form¦. Kluczowy element stanowi¡ funkcje okre-

±lane terminem �kernel�, których uruchomienie i wykonanie na GPU jest zlecane z poziomu

hosta. Z punktu widzenia implementacji, kod ¹ródªowy kernela ma struktur¦ programu

sekwencyjnego, jednak jego realizacja mo»e odbywa¢ si¦ w sposób równolegªy (przez wiele

w¡tków wykonuj¡cych niezale»nie ten sam zestaw instrukcji) [8, 47].

W¡tki wykonuj¡ce zadania na GPU s¡ zorganizowane w dwupoziomow¡ hierarchi¦:

grup¦ w¡tków okre±la si¦ terminem �blok� (ang. block), natomiast grup¦ bloków nazywa

si¦ �siatk¡� (ang. grid). Wywoªanie kernela na GPU wi¡»e si¦ z okre±leniem wymiarów

siatki przeznaczonej do jego wykonania. Chocia» ka»dy w¡tek w siatce realizuje kod

tego samego kernela, to dost¦pno±¢ informacji o wªasnym poªo»eniu w strukturze bloków

umo»liwia w¡tkom odpowiedni podziaª pracy i tym samym wydajn¡, równolegª¡ realizacj¦

zadania [3].

Podobnie jak w przypadku OpenMP, specy�czne mo»liwo±ci oferowane przez techno-

logi¦ CUDA s¡ cz¦sto ª¡czone z innymi standardami programowania równolegªego [3, 31].

16

Rozdziaª 3

Wybrane zagadnienia z zakresu

modelowania hydrologicznego

i systemów informacji geogra�cznej

Hydrologia stanowi jeden z kluczowych dziaªów geogra�i �zycznej, zajmuj¡cy si¦ rol¡

i wªa±ciwo±ciami wody wyst¦puj¡cej w ±rodowisku ziemskim. Jako dyscyplina naukowa,

hydrologia d¡»y przede wszystkim do pogª¦bienia wiedzy dotycz¡cej procesów zwi¡za-

nych z obiegiem wody w przyrodzie. Badania hydrologiczne prowadz¡ do opracowywania

praktycznych metod redukcji ryzyka zwi¡zanego z powodziami, suszami, erozj¡ gleby czy

osuwiskami [26, 33].

Modelowanie hydrologiczne jest relatywnie szerokim poj¦ciem, obejmuj¡cym wiele

zró»nicowanych metod i technik. Wspólnym celem stosowanych modeli jest szacowanie

i przewidywanie warto±ci zmiennych, maj¡cych znaczenie dla bada« i projektów hydro-

logicznych. W ogólno±ci, modele hydrologiczne stanowi¡ uproszczon¡, zwykle opisan¡

matematycznie reprezentacj¦ rzeczywistego systemu wodnego wraz z prawami rz¡dz¡cymi

jego zachowaniem [33].

Badania wykorzystuj¡ce modelowanie hydrologiczne s¡ zwykle przeprowadzane w skali

obejmuj¡cej systemy wodne caªych zlewni. Warunkiem koniecznym do ich przeprowa-

dzania jest dost¦pno±¢ odpowiednich danych dotycz¡cych badanego obszaru. Obecnie

kluczow¡ rol¦ w pozyskiwaniu i przetwarzaniu tych danych peªni¡ systemy informacji

geogra�cznej (GIS) [33, 42].

Poj¦ciem GIS okre±la si¦ zbiorczo technologi¦ komputerow¡ przeznaczon¡ do groma-

dzenia, przechowywania i przetwarzania danych geoprzestrzennych (powi¡zanych z po-

ªo»eniem na powierzchni Ziemi). Fundamentalnie systemy GIS s¡ narz¦dziami ogólnego

przeznaczenia o wielu zró»nicowanych zastosowaniach � ich przydatno±¢ w zagadnieniach

hydrologicznych zostaªa dostrze»ona i doceniona dopiero z biegiem czasu. Ze wzgl¦du na

17

przestrzenny charakter procesów le»¡cych w centrum zainteresowania hydrologii, integra-

cja mo»liwo±ci oferowanych przez GIS jest dzisiaj traktowana jako naturalny, a cz¦sto

nieodª¡czny element bada« w tym obszarze. Narz¦dzia GIS s¡ obecnie powszechnie sto-

sowane w procesie opracowywania danych dla modeli hydrologicznych [43, 44, 55].

Pozostaªe sekcje tego rozdziaªu koncentruj¡ si¦ na omówieniu wybranych zagadnie«,

le»¡cych na pograniczu modelowania hydrologicznego i systemów informacji geogra�cznej.

Ze wzgl¦du na obszerno±¢ obu dziaªów, materiaª zostaª uproszczony i ograniczony do

tematów maj¡cych bezpo±redni zwi¡zek z publikacjami zawartymi w niniejszej rozprawie.

3.1 Numeryczne modele terenu

Poj¦ciem numerycznego modelu terenu (ang. digital elevation model, DEM) okre±la si¦

trójwymiarow¡, cyfrow¡ reprezentacj¦ fragmentu powierzchni Ziemi. W ogólno±ci modele

DEM pozwalaj¡ na przybli»one okre±lenie uksztaªtowania terenu, dostarczaj¡c informacji

o wysoko±ci wzniesienia w danych lokalizacjach [43].

Istniej¡ce rodzaje numerycznych modeli terenu ró»ni¡ si¦ od siebie sposobem re-

prezentacji danych. W obszarze GIS powszechnie wykorzystywana jest forma rastrowa,

w której DEM stanowi siatk¦ kwadratowych komórek, zawieraj¡cych warto±ci okre±laj¡ce

wysoko±¢ powierzchni terenu w odpowiadaj¡cych im lokalizacjach (wzgl¦dem przyj¦tego

punktu odniesienia). Cho¢ inne rodzaje modeli DEM równie» znajduj¡ swoje zastosowa-

nia, w praktyce to wªa±nie forma rastrowa jest spotykana najcz¦±ciej [24, 33, 43]. Rycina

3.1 przedstawia uproszczony przykªad tej reprezentacji.

Rysunek 3.1: Uproszczony przykªad numerycznego modelu terenu w formie rastrowej

Obecnie numeryczne modele terenu s¡ konstruowane gªównie z wykorzystaniem tech-

nik teledetekcji i fotogrametrii. Z uwagi na intensywny rozwój technologii stosowanych

w tych obszarach, w ci¡gu ostatnich dekad dost¦pno±¢, rozdzielczo±¢ i precyzja modeli

DEM znacz¡co wzrosªy. Obecnie spotykane s¡ ju» modele, w których pojedyncza komórka

rastra reprezentuje obszar o powierzchni mniejszej ni» jeden metr kwadratowy [4, 35, 52].

18

Nieprzetworzone modele DEM zawieraj¡ zwykle lokalne depresje � miejscowe obni-

»enia terenu otoczone komórkami o wy»szych warto±ciach. Ich obecno±¢ mo»e wynika¢

zarówno z rzeczywistego uksztaªtowania powierzchni, jak i nieuniknionych bª¦dów po-

miaru wysoko±ci. Niezale»nie od ¹ródªa pochodzenia, lokalne depresje stanowi¡ przeszkod¦

dla poprawnego dziaªania wielu algorytmów zwi¡zanych z hydrologi¡. Z tego wzgl¦du

oryginalne modele DEM s¡ cz¦sto korygowane za pomoc¡ procedur gwarantuj¡cych wy-

eliminowanie artefaktów tego rodzaju [50, 53].

Precyzja danych topogra�cznych okazuje si¦ mie¢ wyj¡tkowo istotne znaczenie w za-

stosowaniach zwi¡zanych z modelowaniem hydrologicznym [23, 27]. Tym samym rosn¡ca

dokªadno±¢ dost¦pnych modeli DEM jest naturalnie traktowana jako po»¡dane zjawisko.

Nale»y jednak podkre±li¢, »e wzrost rozdzielczo±ci modeli przekªada si¦ na coraz wi¦ksze

rozmiary zbiorów danych podlegaj¡cych przetwarzaniu w ramach systemów GIS, co pro-

wadzi do nowych wyzwa« zwi¡zanych z wydajno±ci¡ wykorzystywanego oprogramowania

[49].

3.2 Rastry kierunku spªywu

Na podstawie modelu DEM (zwykle poddanemu odpowiedniej korekcji) mo»liwe jest

wygenerowanie rastra kierunku spªywu (ang. �ow direction). Podstawowa koncepcja po-

lega na przypisaniu ka»dej komórce modelu odpowiedniej warto±ci, pozwalaj¡cej okre±li¢

w jaki sposób spªyw jest kierowany z danej lokalizacji do s¡siednich komórek. Wynik

tej operacji jest zwykle przechowywany w postaci odr¦bnego rastra (o wymiarach od-

powiadaj¡cych wej±ciowemu modelowi terenu) [54]. Rycina 3.2 przedstawia uproszczony

przykªad.

Rysunek 3.2: Przykªad rastra kierunku spªywu wygenerowanego na podstawie modelu

DEM

Modelowanie spªywu powierzchniowego w oparciu o raster �strzaªek� wskazuj¡cych na

s¡siednie komórki staªo si¦ szeroko stosowanym podej±ciem w latach 80. [22, 34]. Z bie-

giem czasu zaproponowano wiele mody�kacji, oryginalnych metod i nowych algorytmów

19

wyznaczania rastrów kierunku spªywu [12, 15, 41, 51]. Fundamentalne koncepcje pozo-

staj¡ powszechnie stosowane do dzisiaj i s¡ standardowo implementowane w pakietach

oprogramowania GIS.

Metody generowania rastrów kierunku spªywu mo»na podzieli¢ na dwie gªówne ka-

tegorie, okre±lane w angloj¦zycznej literaturze terminami �single-�ow� oraz �multiple-

�ow�. Podej±cie single-�ow zakªada, »e spªyw jest kierowany z ka»dej komórki do tylko

jednego z jej najbli»szych s¡siadów. Z kolei metody nale»¡ce do grupy multiple-�ow

dopuszczaj¡ kierowanie spªywu do wi¦cej ni» jednego s¡siada (w okre±lonych proporcjach).

Oba podej±cia znajduj¡ praktyczne zastosowania [28, 40].

We wszystkich przypadkach podstaw¡ do okre±lenia kierunku spªywu danej komórki

jest lokalne nachylenie terenu, wyznaczane w oparciu o warto±ci modelu DEM. Prostsze

metody koncentruj¡ si¦ jedynie na najbli»szym s¡siedztwie ka»dej komórki, podczas gdy

bardziej zªo»one rozwi¡zania uwzgl¦dniaj¡ równie» kontekst wi¦kszego obszaru. Istniej¡

tak»e algorytmy wprowadzaj¡ce element losowy do podejmowanych decyzji w celu uzy-

skania rezultatów o bardziej naturalnej charakterystyce [12, 16].

Rastry kierunku spªywu s¡ z reguªy wykorzystywane jako dane wej±ciowe dla kolejnych

operacji zwi¡zanych z modelowaniem hydrologicznym [54].

3.3 Akumulacja spªywu powierzchniowego

Zagadnienie obliczania akumulacji spªywu powierzchniowego zostaªo precyzyjnie zde�-

niowane w literaturze ju» w latach 80. [22, 34]. Mimo istotnych przemian w obszarze

GIS, zaproponowana wówczas koncepcja nadal funkcjonuje w praktycznie niezmienionej

postaci. Powszechnie stosowane pakiety oprogramowania, przeznaczone do prac w zakresie

hydrologii, z reguªy oferuj¡ narz¦dzia umo»liwiaj¡ce wykonanie tej operacji.

Warto±ci akumulacji s¡ wyznaczane na podstawie rastra kierunku spªywu. Operacja

polega na obliczeniu i przypisaniu ka»demu elementowi rastra liczby wszystkich komórek,

które kieruj¡ spªyw do danej lokalizacji (zarówno bezpo±rednio, jak i za po±rednictwem

innych komórek). Tym samym warto±¢ akumulacji koreluje z powierzchni¡ obszaru, z któ-

rego spªyw jest kierowany do okre±lonego punktu [22, 30].

Rycina 3.3 przedstawia uproszczony przykªad tej operacji. Komórki, które nie posia-

daj¡ ani jednego s¡siada kieruj¡cego spªyw w ich stron¦, otrzymaªy warto±¢ 0. Pozostaªym

elementom rastra przypisano sumaryczn¡ liczb¦ komórek, z których spªyw mo»e by¢

transportowany przez dan¡ lokalizacj¦.

Rastry z warto±ciami akumulacji spªywu stanowi¡ podstaw¦ do wyznaczenia sieci

hydrogra�cznej danego obszaru. Wykorzystuje si¦ je tak»e do precyzyjnego lokalizowania

komórek stanowi¡cych uj±cia zlewni [25].

20

Rysunek 3.3: Przykªad obliczania akumulacji spªywu powierzchniowego

3.4 Wyznaczanie zlewni

Terminem �zlewnia� (ang. watershed, catchment, drainage basin) okre±la si¦ obszar l¡-

dowy, z którego spªyw tra�a ostatecznie do pojedynczej lokalizacji, nazywanej uj±ciem

(ang. watershed outlet). Tradycyjnie obszary zlewni byªy wyznaczane r¦cznie za pomoc¡

map topogra�cznych [10, 43].

Metody automatycznego wyznaczania zlewni z u»yciem danych geoprzestrzennych

byªy aktywnie badane od lat 80. [2, 22, 29]. Du»a cz¦±¢ koncepcji zaproponowanych w tym

okresie znajduje zastosowanie do dzisiaj. Stosowane w praktyce operacje s¡ w wi¦kszo±ci

precyzyjnie zde�niowane, jednoznacznie specy�kuj¡c oczekiwany wynik dla okre±lonych

danych wej±ciowych.

Najcz¦±ciej implementowane podej±cie opiera si¦ na wykorzystaniu rastra kierunku

spªywu wraz z lokalizacj¡ wybranego punktu uj±cia. Operacja wyznaczania zlewni ma

na celu zidenty�kowanie caªego obszaru (ewentualnie jego granicy), z którego spªyw

powierzchniowy jest kierowany do wskazanej komórki (lub grupy komórek) [18, 25]. Wynik

jest cz¦sto generowany jako oddzielny raster, w którym komórki nale»¡ce do obszaru

zlewni zostaj¡ oznaczone odpowiedni¡ warto±ci¡ [22].

Rycina 3.4 przedstawia uproszczony przykªad tej operacji. Jedna z lokalizacji zostaªa

wybrana i wskazana jako punkt uj±cia. Komórki zidenty�kowane jako nale»¡ce do obszaru

zlewni otrzymaªy warto±¢ 1 (pozostaªe oznaczono warto±ci¡ 0).

Rysunek 3.4: Przykªad wyznaczania zlewni w oparciu o raster kierunku spªywu

21

3.5 Identy�kacja najdªu»szych ±cie»ek spªywu

Najdªu»sza ±cie»ka spªywu (ang. longest �ow path, longest drainage path) stanowi za-

gadnienie o szczególnie istotnym znaczeniu z perspektywy modelowania hydrologicznego.

Operacj¦ identy�kacji najdªu»szej ±cie»ki spªywu przeprowadza si¦ zwykle w obr¦bie

obszaru wybranej zlewni. Nast¦pnie jej poªo»enie oraz dªugo±¢ s¡ wykorzystywane do

okre±lenia warto±ci parametrów modeli hydrologicznych, w szczególno±ci czasu opó¹nienia

odpªywu (ang. lag time) oraz czasu koncentracji odpªywu (ang. time of concentration)

[11, 32].

Pierwsze prace po±wi¦cone automatycznej identy�kacji najdªu»szych ±cie»ek spªywu

opublikowano w latach 90. [45, 46]. Podej±cie powszechnie stosowane w ramach systemów

GIS opiera si¦ na wykorzystaniu rastra kierunku spªywu. Zwykle pojedyncza komórka

rastra jest wskazywana jako punkt uj±cia zlewni, a zadaniem algorytmu jest zidenty�ko-

wanie najdªu»szej ±cie»ki prowadz¡cej do tej lokalizacji.

Dªugo±¢ ±cie»ki spªywu jest najcz¦±ciej szacowana jako suma odlegªo±ci mi¦dzy cen-

trami kolejnych komórek. Przyjmuje si¦, »e dystans pomi¦dzy s¡siednimi elementami

nale»¡cymi do tego samego wiersza lub tej samej kolumny jest równy dªugo±ci boku

pojedynczej komórki. Za odlegªo±¢ mi¦dzy elementami poª¡czonymi diagonalnie przyj-

muje si¦ dªugo±¢ boku komórki przemno»on¡ przez
√
2. Pomimo wzgl¦dnej prostoty tego

podej±cia, uzyskiwane estymaty w przybli»eniu odpowiadaj¡ rzeczywistym dªugo±ciom

±cie»ek spªywu [12, 37].

Rycina 3.5 ilustruje uproszczony przykªad tej operacji. Jedna z komórek zostaªa

oznaczona jako uj±cie zlewni (i tym samym punkt ko«cowy poszukiwanej ±cie»ki spªywu).

Spo±ród wszystkich ±cie»ek prowadz¡cych do wskazanej lokalizacji wybrana zostaªa ta

o najwi¦kszej szacowanej dªugo±ci.

Rysunek 3.5: Przykªad identy�kacji najdªu»szej ±cie»ki spªywu

22

Rozdziaª 4

Omówienie uzyskanych wyników

W tym rozdziale opisano zawarto±¢ trzech powi¡zanych ze sob¡ publikacji naukowych, sta-

nowi¡cych kluczow¡ cz¦±¢ niniejszej rozprawy. Przedstawiono zakres prac zrealizowanych

w ramach ka»dej z nich, a tak»e omówiono zaproponowane rozwi¡zania i najwa»niejsze

z uzyskanych wyników.

4.1 High-performance parallel implementations of �ow

accumulation algorithms for multicore architectures

Artykuª zatytuªowany �High-performance parallel implementations of �ow accumulation

algorithms for multicore architectures� stanowi pocz¡tek cyklu powi¡zanych tematycznie

publikacji. Skoncentrowano si¦ w nim na zagadnieniu akumulacji spªywu powierzchnio-

wego.

Celem przeprowadzonych bada« byªo opracowanie mo»liwie szybkiego i skalowalnego

algorytmu równolegªego, przeznaczonego do obliczania macierzy akumulacji spªywu. Bez-

po±redni¡ motywacj¡ do podj¦cia tego zagadnienia byªa niepraktyczna czasochªonno±¢

przeprowadzania tej operacji za pomoc¡ powszechnie stosowanych narz¦dzi GIS, w szcze-

gólno±ci w kontek±cie wspóªczesnych, obszernych zbiorów danych. Prace byªy kierowane

ch¦ci¡ uzyskania mo»liwie jak najwi¦kszej redukcji czasu obliczeniowego potrzebnego do

wygenerowania poprawnego wyniku. Szczególn¡ uwag¦ po±wi¦cono mo»liwo±ciom prze-

twarzania równolegªego oferowanym przez wielordzeniowe architektury CPU.

De�niuj¡c problem algorytmiczny zaªo»ono, »e dane wej±ciowe b¦dzie stanowiª raster

kierunku spªywu wygenerowany dowoln¡ metod¡ typu single-�ow. Oczekiwanym wyni-

kiem dziaªania algorytmu byªa macierz akumulacji spªywu, w której warto±¢ przypisana

ka»demu elementowi odpowiadaªa liczbie komórek kieruj¡cych spªyw przez dan¡ lokaliza-

cj¦. Przyj¦to, »e obliczenia b¦d¡ przeprowadzane dla caªego obszaru opisanego przez dane

23

wej±ciowe (ka»da komórka powinna otrzyma¢ warto±¢ akumulacji wynikaj¡c¡ z rastra

kierunku spªywu).

Na wczesnym etapie prac dostrze»ono, »e spotykany w literaturze sposób de�niowa-

nia oblicze« akumulacji spªywu jako iteracyjnej symulacji przemieszczania si¦ wody po

powierzchni terenu jest nieadekwatny do faktycznej zªo»ono±ci obliczeniowej zagadnienia.

W rzeczywisto±ci problem mo»e zosta¢ z powodzeniem rozwi¡zany w czasie liniowym.

Odpowiednio zaprojektowane algorytmy wymagaj¡ jednorazowego przypisania warto±ci

ka»dej komórce, unikaj¡c iteracyjnej aktualizacji stanu macierzy wynikowej. Ta obserwa-

cja pozwoliªa znacz¡co ograniczy¢ zakres rozpatrywanych koncepcji.

Implementacje, które wybrano do przedstawienia w ramach artykuªu, bazowaªy na

dwóch przeciwstawnych podej±ciach, oznaczonych jako �bottom-up� oraz �top-down�.

Koncepcja �bottom-up� opieraªa si¦ na rozpoczynaniu oblicze« w lokalizacjach o naj-

ni»szym poªo»eniu i stopniowym przemieszczaniu si¦ w stron¦ coraz wy»szych komórek,

przeciwnie do kierunku spªywu. Algorytmy wykorzystuj¡ce to podej±cie zostaªy zaimple-

mentowane w postaci rekurencyjnej, która w naturalny sposób odpowiadaªa tej formie

przedstawienia problemu.

Podej±cie �top-down� zakªadaªo rozpoczynanie oblicze« w komórkach ¹ródªowych (nie-

posiadaj¡cych s¡siadów kieruj¡cych spªyw w ich stron¦) i stopniowym przemieszczaniu si¦

w kierunku coraz ni»szych lokalizacji. Algorytmy oparte na tym podej±ciu rozpoczynaªy

prac¦ od zlokalizowania nieprzetworzonych jeszcze komórek ¹ródªowych, a nast¦pnie poru-

szaªy si¦ zgodnie z kierunkiem spªywu, ustalaj¡c warto±ci elementów macierzy wynikowej.

Algorytmy oparte na obu podej±ciach zostaªy zaprojektowane z my±l¡ o przetwarzaniu

równolegªym. W pierwszej kolejno±ci zaimplementowano wersje sekwencyjne, kªad¡c przy

tym nacisk na tak¡ organizacj¦ zada«, która powinna umo»liwi¢ ich pó¹niejszy podziaª

mi¦dzy równolegle pracuj¡ce w¡tki. Nast¦pnie podj¦to próby zredukowania czasu oblicze-

niowego algorytmów sekwencyjnych za pomoc¡ technik programowania równolegªego.

Implementacje opracowanych rozwi¡za« zostaªy przygotowane w j¦zyku C++. Rów-

nolegªe wykonanie odpowiednich sekcji kodu osi¡gni¦to za pomoc¡ standardu OpenMP.

W artykule opisano ª¡cznie sze±¢ implementacji � dwie sekwencyjne i cztery równolegªe.

Zrezygnowano z prezentacji innych rozwi¡za«, których wydajno±¢ okazaªa si¦ znacznie

odbiega¢ od najlepszych osi¡gni¦tych rezultatów.

Pomiary wydajno±ci zostaªy przeprowadzone z wykorzystaniem 118 zró»nicowanych

zestawów danych wej±ciowych. Numeryczny model terenu zostaª skonstruowany w oparciu

o zasoby udost¦pniane przez Gªówny Urz¡d Geodezji i Kartogra�i. Dane o jednometro-

wej rozdzielczo±ci pokrywaªy fragment poªudniowo-wschodniej Polski. W ramach tego

obszaru wyselekcjonowano 59 zlewni o zró»nicowanych rozmiarach i charakterystykach,

dla których nast¦pnie wygenerowano rastry kierunku spªywu. W ka»dym przypadku dane

24

zostaªy przygotowane w dwóch formach: z uwzgl¦dnieniem tylko i wyª¡cznie komórek

nale»¡cych do danej zlewni, a tak»e z uwzgl¦dnieniem wszystkich komórek le»¡cych

w obszarze prostok¡tnego rastra obejmuj¡cego zlewni¦. Liczba niepustych elementów

w tak przygotowanych rastrach rozci¡gaªa si¦ w przybli»eniu od 46 milionów do 4,6

miliarda.

Jako ±rodowisko do przeprowadzenia pomiarów wybrano maszyn¦ wyposa»on¡ w dwa

procesory Intel Xeon E5-2670 v3 oraz koprocesor Intel Xeon Phi 7120P. Wybór byª

podyktowany ch¦ci¡ zbadania skalowalno±ci opracowanych algorytmów w kontek±cie mo»-

liwie du»ej liczby równolegle pracuj¡cych w¡tków. Komputer byª wyposa»ony w 128 GB

pami¦ci RAM i dziaªaª pod kontrol¡ systemu Linux CentOS 7.0.

Uzyskane rezultaty wykazaªy znacz¡c¡ przewag¦ jednej z równolegªych implementa-

cji podej±cia �top-down� nad wszystkimi pozostaªymi rozpatrywanymi koncepcjami. Co

wa»ne, w±ród rozwi¡za« sekwencyjnych to algorytm oparty na idei �bottom-up� uzyskaª

najkrótsze czasy wykonania, jednak równolegªe wersje tego podej±cia okazaªy si¦ oferowa¢

kilkukrotnie ni»sze przyspieszenie ni» w przypadku �top-down�. Wyja±nieniem tych obser-

wacji mógªby by¢ fakt, »e implementacja �bottom-up� wymaga wykonania sumarycznie

mniejszej liczby operacji obliczeniowych, podczas gdy struktura algorytmu �top-down�

pozwala na bardziej zrównowa»ony przydziaª pracy do w¡tków.

U»ycie koprocesora Intel Xeon Phi umo»liwiªo przeprowadzenie pomiarów z wykorzy-

staniem relatywnie du»ej liczby rdzeni i tym samym ocen¦ skalowalno±ci wybranych roz-

wi¡za«. Testy obejmowaªy zró»nicowane kon�guracje z liczbami równolegle pracuj¡cych

w¡tków si¦gaj¡cymi 240. Implementacja wyªoniona wcze±niej jako najbardziej wydajna

okazaªa si¦ wci¡» uzyskiwa¢ coraz krótsze czasy wykonania wraz ze zwi¦kszaniem liczby

aktywnych rdzeni nawet w górnych granicach tego zakresu. Podczas eksperymentów z wy-

korzystaniem maksymalnej dost¦pnej liczby w¡tków, przyspieszenie uzyskiwane wzgl¦dem

wersji sekwencyjnej osi¡gaªo warto±ci przekraczaj¡ce 33.

Zakªadanym punktem odniesienia dla uzyskanych wyników, wybranym we wczesnym

stadium tych prac, byªa wydajno±¢ narz¦dzia Flow Accumulation dost¦pnego na plat-

formie ArcGIS Desktop 10.6. Ostatecznie ze wzgl¦du na niepraktyczn¡ czasochªonno±¢

zrezygnowano z precyzyjnych pomiarów z wykorzystaniem tego oprogramowania. Zreali-

zowane, uproszczone porównania wykazaªy, »e maj¡c do dyspozycji identyczne ±rodowisko

sprz¦towe, najbardziej wydajna z zaproponowanych implementacji realizuje te same za-

dania w czasie o dwa rz¦dy wielko±ci krótszym ni» ArcGIS Desktop.

Kod ¹ródªowy opracowanych algorytmów zostaª udost¦pniony w publicznym repozy-

torium (https://github.com/bkotyra/high_performance_flow_accumulation).

25

https://github.com/bkotyra/high_performance_flow_accumulation

Wkªad autora rozprawy w t¦ publikacj¦ zostaª oszacowany na 87%. Zakres wykona-

nych prac obejmowaª:

� przegl¡d literatury (cz¦±¢ po±wi¦cona algorytmom)

� zaprojektowanie i implementacj¦ wszystkich algorytmów omówionych w artykule

� wykonanie pomiarów wydajno±ci

� analiz¦ i wizualizacj¦ uzyskanych wyników

� przygotowanie wi¦kszo±ci tre±ci manuskryptu (z wyª¡czeniem wst¦pu i opisu danych

u»ytych do eksperymentów)

4.2 High-performance watershed delineation algorithm

for GPU using CUDA and OpenMP

Artykuª zatytuªowany �High-performance watershed delineation algorithm for GPU using

CUDA and OpenMP� zostaª po±wi¦cony zagadnieniu wyznaczania zlewni. Skoncentro-

wano si¦ w nim na wykorzystaniu mo»liwo±ci jednostek GPU w celu poprawy wydajno±ci

tej operacji.

Punktem odniesienia dla przeprowadzonych bada« byªy istniej¡ce w literaturze algo-

rytmy automatycznego wyznaczania zlewni. Na przestrzeni ostatnich kilkudziesi¦ciu lat

zaproponowano kilka fundamentalnie ró»nych podej±¢ do tego samego zadania. Nowsze

publikacje prezentuj¡ algorytmy zaprojektowane dla architektur GPU, opracowane z my-

±l¡ o skróceniu czasu obliczeniowego potrzebnego na wykonanie tej operacji. Wydajno±¢

tych rozwi¡za« pozostawia jednak wiele do »yczenia � w niektórych przypadkach im-

plementacje wykorzystuj¡ce równolegªo±¢ jednostek GPU okazywaªy si¦ osi¡ga¢ wyniki

sªabsze ni» relatywnie proste algorytmy sekwencyjne.

Celem zrealizowanych prac byªo opracowanie algorytmu wyznaczania zlewni, ofe-

ruj¡cego wydajno±¢ wy»sz¡ ni» inne, dost¦pne w literaturze rozwi¡zania. Z uwagi na

dotychczasowy stan bada«, szczególn¡ uwag¦ po±wi¦cono wykorzystaniu mo»liwo±ci urz¡-

dze« GPU. Za bezpo±redni punkt odniesienia do porówna« przyj¦to istniej¡ce algorytmy

opracowane dla tych architektur.

Okre±laj¡c problem algorytmiczny do rozwi¡zania w tej pracy przyj¦to, »e dane wej-

±ciowe b¦d¡ skªadaªy si¦ z rastra kierunku spªywu wygenerowanego dowoln¡ metod¡

single-�ow oraz par wspóªrz¦dnych okre±laj¡cych poªo»enie komórek uj±ciowych (wraz

z przypisanymi do nich etykietami zlewni). Cho¢ najcz¦±ciej spotykany w literaturze

przypadek zakªada wyznaczanie pojedynczej zlewni i wybór tylko jednego punktu uj±cia,

w pracy dopuszczono mo»liwo±¢ wskazania wielu komórek uj±ciowych nale»¡cych do

tej samej lub ró»nych zlewni. Oczekiwanym wynikiem dziaªania algorytmu byª raster,

26

w którym ka»da komórka miaªa przypisan¡ etykiet¦ zlewni, do której nale»aªa (lub warto±¢

NONE, je»eli znajdowaªa si¦ poza obszarem zlewni branych pod uwag¦).

Struktura opracowanego algorytmu zostaªa oparta na zaªo»eniu, »e kluczowe operacje

b¦d¡ wykonywane przez kernele CUDA na jednostce GPU. Przyj¦to, »e ka»dej komórce

rastra zostanie przypisany oddzielny w¡tek, który jako jedyny b¦dzie mógª mody�kowa¢

jej zawarto±¢. Instrukcje wykonywane po stronie hosta ograniczaªy si¦ do odpowiedniego

przygotowania danych wej±ciowych, przetransferowania ich do pami¦ci GPU, uruchomie-

nia odpowiednich kerneli na urz¡dzeniu i pobrania gotowych wyników.

Algorytm zaproponowany w ramach tej pracy ma charakter iteracyjny � zawarto±¢

komórek jest aktualizowana wielokrotnie, w ka»dym kroku wykorzystuj¡c stan rastra uzy-

skany w poprzedniej iteracji. Warto±ci indywidualnych komórek s¡ ustalane i mody�ko-

wane w sposób równolegªy, efektywnie propaguj¡c wiedz¦ o przynale»no±ci poszczególnych

lokalizacji do odpowiednich zlewni. Przygotowane zostaªy dwie implementacje, ró»ni¡ce

si¦ podej±ciem do synchronizacji pracy mi¦dzy w¡tkami. Pierwsza implementacja zakªada

u»ycie dwóch buforów, z których jeden przechowuje stan rastra obliczony w poprzednim

kroku (i jest wykorzystywany wyª¡cznie do odczytu), podczas gdy drugi stanowi miejsce

zapisu zaktualizowanych warto±ci. Druga implementacja wykorzystuje pojedynczy bufor

i operacje atomowe, dopuszczaj¡c odczyt i zapis komórek w ramach tej samej iteracji.

Do celów porównawczych zaimplementowano tak»e dwa algorytmy wyznaczania zlewni

dla GPU opisane w istniej¡cej literaturze. Wedªug wiedzy autora, dotychczas opubliko-

wano trzy algorytmy przeznaczone do realizacji tego zadania z wykorzystaniem archi-

tektur SIMD, jednak niezadowalaj¡ca wydajno±¢ jednego z nich zostaªa wykazana ju»

w oryginalnej publikacji. Z tego wzgl¦du uwag¦ po±wi¦cono jedynie dwóm pozostaªym.

Implementacje wszystkich algorytmów zostaªy przygotowane w j¦zyku C++ z wyko-

rzystaniem standardu CUDA. Niektóre sekcje kodu wykonywane po stronie CPU zostaªy

dodatkowo zrównoleglone z u»yciem standardu OpenMP.

Do pomiarów wykorzystano trzydzie±ci zestawów danych o zró»nicowanych rozmia-

rach, obejmuj¡cych od 67,5 miliona do 2 miliardów komórek. Wszystkie zbiory zostaªy

przygotowane w oparciu o ten sam obszar ¹ródªowy, ale przedstawiony w ró»nych ska-

lach. Takie podej±cie zostaªo wybrane w celu ujednolicenia wewn¦trznej charakterystyki

wszystkich zbiorów testowych. Eksperymenty zostaªy przeprowadzone na maszynie wy-

posa»onej w dwa procesory Intel Xeon E5-2670 v3, 128 GB pami¦ci RAM oraz kart¦ GPU

NVIDIA A100 Tensor Core.

Uzyskane wyniki pozwoliªy jednoznacznie wykaza¢ znacz¡c¡ przewag¦ opracowanego

algorytmu nad istniej¡cymi alternatywami � czasy obliczeniowe potrzebne na wykonanie

tych samych zada« ró»niªy si¦ ±rednio o dwa rz¦dy wielko±ci. Obie implementacje zapropo-

nowanego rozwi¡zania osi¡gn¦ªy wzgl¦dnie podobne rezultaty, wskazuj¡c na umiarkowan¡

27

przewag¦ wersji opartej na pojedynczym buforze. Co wa»ne, wykorzystane algorytmy

referencyjne dla GPU okazaªy si¦ w rzeczywisto±ci mniej wydajne ni» relatywnie pro-

ste rozwi¡zanie sekwencyjne dla CPU, co podwa»a sens ich praktycznego stosowania.

Ta obserwacja wydaje si¦ pokrywa¢ z wynikami publikowanymi wcze±niej przez innych

autorów.

Jedn¡ z istotnych konsekwencji struktury zaproponowanego algorytmu jest mo»liwo±¢

jednoczesnego wyznaczania wielu zlewni w obr¦bie tego samego zbioru danych bez do-

datkowego kosztu obliczeniowego. Z uwagi na równolegªy, iteracyjny sposób organizacji

pracy na jednostce GPU, czas potrzebny na wykonanie zadania nie jest zale»ny od

liczby punktów uj±ciowych wskazanych przez u»ytkownika. Ta cecha nowego algorytmu

stanowi istotn¡ zalet¦ w kontek±cie typowych przypadków u»ycia, cz¦sto wymagaj¡cych

wielokrotnego przeprowadzenia operacji wyznaczania zlewni dla ró»nych lokalizacji.

Implementacje opracowanych algorytmów zostaªy udost¦pnione w publicznym repo-

zytorium pod adresem https://github.com/bkotyra/watershed_delineation_gpu.

Przedstawione prace badawcze zostaªy w caªo±ci zrealizowane przez autora niniejszej

rozprawy. Tym samym publikacja ma charakter jednoautorski.

4.3 Fast parallel algorithms for �nding the longest �ow

paths in �ow direction grids

W artykule zatytuªowanym �Fast parallel algorithms for �nding the longest �ow paths in

�ow direction grids� skoncentrowano si¦ na zagadnieniu identy�kacji najdªu»szych ±cie»ek

spªywu w zlewniach.

Pierwsze algorytmy przeznaczone do realizacji tego zadania zostaªy zaproponowane

w literaturze ju» w latach 90. Nowsze prace podkre±laj¡ jednak problemy z wydajno±ci¡

istniej¡cych metod i wskazuj¡ na konieczno±¢ opracowania nowych rozwi¡za«. Wedªug

wiedzy autora, do momentu ukazania si¦ tego artykuªu istniej¡ca literatura nie propono-

waªa algorytmów równolegªych dla tego zagadnienia.

Najwa»niejszym celem prac byªo opracowanie nowego algorytmu, który pozwalaªby

w mo»liwie krótkim czasie identy�kowa¢ najdªu»sze ±cie»ki spªywu prowadz¡ce do wy-

branych lokalizacji. Skoncentrowano si¦ na wykorzystaniu mo»liwo±ci przetwarzania rów-

nolegªego na wielordzeniowych procesorach CPU. Dodatkowo zwrócono szczególn¡ uwag¦

na problemy zwi¡zane z precyzj¡ uzyskiwanych wyników, wyst¦puj¡ce w istniej¡cych al-

gorytmach � jednym z zaªo»e« pracy byªo zaproponowanie rozwi¡zania, które pozwoliªoby

ich unikn¡¢.

Powszechnie stosowane podej±cie do tego zagadnienia opiera si¦ na wykorzystaniu

28

https://github.com/bkotyra/watershed_delineation_gpu

rastra kierunku spªywu. W zwi¡zku z tym, w ramach tej pracy równie» przyj¦to, »e dane

wej±ciowe b¦dzie stanowiª raster kierunku spªywu (wygenerowany dowoln¡ metod¡ typu

single-�ow) wraz z lokalizacjami punktów ko«cowych poszukiwanych ±cie»ek. Dopusz-

czono mo»liwo±¢ wskazania wi¦cej ni» jednego punktu ko«cowego w tym samym zbiorze

danych (najdªu»sza ±cie»ka spªywu powinna zosta¢ znaleziona dla ka»dej z oznaczonych

lokalizacji).

W ramach przeprowadzonych bada« opracowano kilka odmiennych sposobów organi-

zacji oblicze«. Ostatecznie zdecydowano si¦ zaprezentowa¢ algorytmy oparte na dwóch

odr¦bnych podej±ciach, oznaczonych w pracy jako �top-down� oraz �double drop�. W arty-

kule przedstawiono zarówno sekwencyjne, jak i równolegªe implementacje tych koncepcji.

Dodatkowo zaimplementowano rozwi¡zanie rekurencyjne, opisane w istniej¡cej literatu-

rze, a tak»e podj¦to prób¦ poprawy jego wydajno±ci z wykorzystaniem przetwarzania

równolegªego.

Podej±cie �top-down� zakªadaªo organizacj¦ pracy w sposób pokrewny do idei opra-

cowanej wcze±niej dla zagadnienia akumulacji spªywu. Algorytm rozpoczyna obliczenia

w komórkach ¹ródªowych, a nast¦pnie przemieszcza si¦ w stron¦ coraz ni»szych lokalizacji,

stopniowo gromadz¡c dane o istniej¡cych ±cie»kach spªywu i propaguj¡c je do kolejnych

elementów rastra. Przygotowano dwie sekwencyjne implementacje oparte na tym podej-

±ciu, z których jedna okazaªa si¦ mo»liwa do efektywnego zrównoleglenia.

Koncepcja stoj¡ca za podej±ciem �double drop� powstaªa z my±l¡ o minimalizacji

problemów zwi¡zanych z próbami wykorzystania przetwarzania równolegªego w innych

algorytmach opracowanych dla tego zagadnienia. Nieintuicyjna organizacja pracy po-

lega na rozpoczynaniu oblicze« od dowolnego punktu rastra, a nast¦pnie dwukrotnym

trawersowaniu tej samej ±cie»ki spªywu � za pierwszym razem mierz¡c odlegªo±¢ do

punktu ko«cowego, a za drugim przypisuj¡c odpowiedni dystans ka»dej odwiedzanej

komórce. Zakªadano, »e sekwencyjna wersja takiego rozwi¡zania prawdopodobnie oka»e

si¦ niewydajna, jednak w wersji równolegªej mo»liwe b¦dzie unikni¦cie czasochªonnej

synchronizacji pracy mi¦dzy w¡tkami, co mo»e pozwoli¢ na znaczne skrócenie caªkowitego

czasu oblicze«.

Implementacje oparte na podej±ciu rekurencyjnym zostaªy potraktowane jako punkty

odniesienia w ewaluacji nowych rozwi¡za«. Dodatkowo w porównaniach postanowiono

uwzgl¦dni¢ narz¦dzie r.accumulate, dost¦pne na platformie GRASS GIS. Wedªug wyni-

ków opublikowanych przez autora tego oprogramowania, dotychczas byªo to najbardziej

wydajne z istniej¡cych rozwi¡za« przeznaczonych do identy�kacji najdªu»szych ±cie»ek

spªywu [9].

Implementacje algorytmów zostaªy przygotowane w j¦zyku C++. Sekcje kodu prze-

znaczone do wykonania w sposób równolegªy zaimplementowano z u»yciem standardu

29

OpenMP. Ze wzgl¦du na problemy z precyzj¡ wyników, rozpoznane w istniej¡cych roz-

wi¡zaniach, we wszystkich implementacjach zastosowano podej±cie pozwalaj¡ce wyelimi-

nowa¢ akumulacj¦ bª¦dów zaokr¡gle«.

Dane wykorzystane do eksperymentów obejmowaªy obszary zlewni o zró»nicowanych

rozmiarach i charakterystykach, le»¡cych na terenie Polski. Rastry zostaªy wygenerowane

w kilku ró»nych rozdzielczo±ciach, skutkuj¡c poka¹nym zestawem przypadków testowych.

Najwi¦ksze wykorzystane zbiory danych zawieraªy w przybli»eniu 7 miliardów komórek.

Pomiary wydajno±ci zostaªy przeprowadzone na dwóch maszynach o ró»nych specy�-

kacjach. Pierwszy komputer byª wyposa»ony w dwa procesory Intel Xeon E5-2670 v3 oraz

128 GB pami¦ci RAM i dziaªaª pod kontrol¡ systemu AlmaLinux 8.4. Drugi posiadaª dwa

procesory Intel Xeon CPU E5-2620 v4 oraz 112 GB pami¦ci RAM, maj¡c do dyspozycji

dwa systemy operacyjne � Windows 10 Enterprise LTSC 64-bit oraz Ubuntu 22.04.1 LTS.

Pomiary wydajno±ci algorytmów zaimplementowanych w j¦zyku C++ zostaªy przeprowa-

dzone na obu maszynach pod systemami z rodziny Linux. Eksperymenty dotycz¡ce plat-

formy GRASS GIS zostaªy zrealizowane zarówno pod Ubuntu jak i Windows, ze wzgl¦du

na zaobserwowane ró»nice w zachowaniu tego oprogramowania w zale»no±ci od systemu

operacyjnego.

Uzyskane wyniki pozwoliªy wykaza¢ znaczn¡ przewag¦ obu zaproponowanych algoryt-

mów równolegªych nad alternatywnymi rozwi¡zaniami. Bior¡c pod uwag¦ ±rednie czasy

wykonania, podej±cie �double drop� osi¡gn¦ªo najlepsze rezultaty w zdecydowanej wi¦k-

szo±ci przypadków. Cho¢ równolegªa implementacja oparta na koncepcji �top-down� naj-

cz¦±ciej uzyskiwaªa sªabsze wyniki, przy odpowiednio wysokiej liczbie aktywnych w¡tków

ró»nice mi¦dzy tymi algorytmami stawaªy si¦ coraz mniej istotne. Porównanie opraco-

wanych rozwi¡za« z narz¦dziem dost¦pnym na platformie GRASS GIS wykazaªo, »e

zaproponowane algorytmy pozwalaj¡ skróci¢ potrzebny czas obliczeniowy o rz¡d wielko±ci

wzgl¦dem najbardziej wydajnej alternatywy, jaka byªa dotychczas dost¦pna.

Warto podkre±li¢, »e zaproponowane algorytmy równolegªe posiadaj¡ odmienne wªa-

±ciwo±ci, które okazuj¡ si¦ cenne w innych przypadkach u»ycia. Podej±cie �top-down�

w naturalny sposób rozwi¡zuje wariant problemu, w którym konieczne jest znalezienie

najdªu»szych ±cie»ek spªywu dla wi¦cej ni» jednego punktu ko«cowego. Z kolei podej±cie

�double drop� pozwala na ªatwe zidenty�kowanie alternatywnych ±cie»ek spªywu o tej

samej dªugo±ci. W zale»no±ci od celu przeprowadzanej analizy, jedna z tych cech mo»e

mie¢ wi¦ksz¡ warto±¢ dla u»ytkownika.

Kod ¹ródªowy wszystkich opracowanych algorytmów (wraz z aplikacj¡ umo»liwiaj¡c¡

wykonywanie pomiarów) zostaª udost¦pniony w publicznym repozytorium pod adresem

https://github.com/bkotyra/longest_flow_path.

30

https://github.com/bkotyra/longest_flow_path

Wkªad autora rozprawy w t¦ publikacj¦ zostaª oszacowany na 97%. Zakres wykona-

nych prac obejmowaª:

� przegl¡d literatury

� zaprojektowanie i implementacj¦ wszystkich algorytmów omówionych w artykule

� wykonanie pomiarów wydajno±ci (z wyª¡czeniem pomiarów dotycz¡cych platformy

GRASS GIS)

� analiz¦ i wizualizacj¦ uzyskanych wyników

� przygotowanie wi¦kszo±ci tre±ci manuskryptu

31

Rozdziaª 5

Podsumowanie

Prace zrealizowane i przedstawione w ramach niniejszej rozprawy koncentrowaªy si¦ na

wybranych, wzajemnie powi¡zanych tematach z obszaru modelowania hydrologicznego

i systemów informacji geogra�cznej. Wspólnym problemem, rozpoznanym we wszystkich

rozwa»anych zagadnieniach, byªa niska wydajno±¢ obliczeniowa istniej¡cych algorytmów

i narz¦dzi, dostrzegalna szczególnie w kontek±cie obszernych zbiorów danych geoprze-

strzennych. Wspóªczesna literatura podkre±la konieczno±¢ opracowania nowych, bardziej

efektywnych rozwi¡za«. Przedstawione w rozprawie publikacje stanowi¡ prób¦ odpowiedzi

na to wyzwanie.

Wspólnym celem zaprezentowanych prac byªo opracowanie nowych algorytmów, które

umo»liwiªyby realizacj¦ wybranych zada« w sposób bardziej wydajny w stosunku do

dost¦pnych dotychczas alternatyw. Szczególn¡ uwag¦ po±wi¦cono potencjaªowi le»¡cemu

w mo»liwo±ciach przetwarzania równolegªego, oferowanym przez wspóªczesne jednostki

obliczeniowe.

W ramach rozprawy przedstawiono trzy publikacje, z których ka»da odpowiada na

jeden z wybranych problemów i szczegóªowo omawia zaproponowane rozwi¡zania. Arty-

kuªy prezentuj¡ oryginalne, opracowane przez autora algorytmy równolegªe, przeznaczone

do obliczania akumulacji spªywu powierzchniowego, wyznaczania zlewni i identy�ka-

cji najdªu»szych ±cie»ek spªywu. W publikacjach zawarto wyniki pozwalaj¡ce oceni¢

przydatno±¢ zaproponowanych algorytmów w kontek±cie innych, istniej¡cych rozwi¡za«,

przeznaczonych do realizacji tych samych zada«.

Gªównym kryterium oceny nowych algorytmów, nadaj¡cym kierunek prowadzonym

badaniom, byª czas obliczeniowy wymagany do uzyskania prawidªowego wyniku. W trak-

cie prac zwrócono jednak uwag¦ tak»e na inne aspekty, w których opracowywane rozwi¡-

zania mogªyby zaoferowa¢ przewag¦ w stosunku do istniej¡cych alternatyw. W efekcie al-

gorytmy przedstawione w publikacjach zostaªy zaprojektowane z my±l¡ o wyeliminowaniu

problemów charakterystycznych dla powszechnie stosowanych rozwi¡za«. Uwzgl¦dniono

32

równie» specy�czne przypadki u»ycia, które pomimo swojej praktyczno±ci z reguªy nie

byªy rozwa»ane w innych pracach.

Indywidualne cele, postawione w ka»dej z trzech publikacji, zostaªy pomy±lnie zre-

alizowane. Zaproponowane algorytmy charakteryzuj¡ si¦ wysok¡ wydajno±ci¡, stanowi¡c

odpowied¹ na zidenty�kowane problemy zwi¡zane z przetwarzaniem wspóªczesnych, ob-

szernych zbiorów danych geoprzestrzennych. Uzyskane wyniki pozwalaj¡ wykaza¢ zna-

cz¡c¡ przewag¦ opracowanych rozwi¡za« nad istniej¡cymi i stosowanymi obecnie alter-

natywami, wspieraj¡c tym samym tez¦ niniejszej rozprawy.

Obszar systemów informacji geogra�cznej wci¡» jest aktywnie rozwijany. Opubli-

kowane algorytmy mog¡ okaza¢ si¦ przydatne zarówno w opracowywaniu nowych, jak

i rozbudowie istniej¡cych pakietów oprogramowania. Skala ró»nic uzyskanych wzgl¦dem

przyj¦tych punktów odniesienia wskazuje na potencjaª wi¡»¡cy si¦ z praktycznym zasto-

sowaniem zaproponowanych koncepcji.

Nale»y podkre±li¢, »e przedstawione publikacje poruszaj¡ jedynie wybrane zagadnienia

nale»¡ce do obszaru, w którym podobnych problemów i wyzwa« jest znacznie wi¦cej.

Du»a cz¦±¢ dost¦pnych w literaturze rozwi¡za«, które nadal s¡ powszechnie stosowane,

zostaªa opracowana w kontek±cie, który nie jest ju» dzisiaj aktualny. Dynamiczny rozwój

technologii komputerowej, id¡cy w parze z rosn¡c¡ dost¦pno±ci¡ coraz wi¦kszych zbiorów

danych, wskazuj¡ na potrzeb¦ kontynuacji prac w tym obszarze.

Na szczególn¡ uwag¦ zasªuguj¡ oryginalne metody proponowane w nowszych publika-

cjach z zakresu GIS, przy opracowywaniu których nie po±wi¦cono wystarczaj¡cej uwagi

kwestiom dotycz¡cym wydajno±ci. Cz¦sto prowadzi to do sytuacji, w których mo»liwo±¢

praktycznego zastosowania warto±ciowych koncepcji okazuje si¦ ograniczona. Podj¦cie

prób rozwi¡zania tych problemów mo»e stanowi¢ obiecuj¡cy kierunek dalszych prac.

33

Bibliogra�a

[1] S. Akhter and J. Roberts. Multi-core Programming: Increasing Performance Through

Software Multi-threading. Intel Press, 2006.

[2] Lawrence E. Band. Topographic partition of watersheds with digital elevation

models. Water Resources Research, 22(1):15�24, 1986.

[3] G. Barlas. Multicore and GPU Programming: An Integrated Approach, 2nd Edition.

Elsevier Science, 2022.

[4] Shashank Bhushan, David Shean, Oleg Alexandrov, and Scott Henderson. Auto-

mated digital elevation model (DEM) generation from very-high-resolution Planet

SkySat triplet stereo and video imagery. ISPRS Journal of Photogrammetry and

Remote Sensing, 173:151�165, 2021.

[5] André R. Brodtkorb, Trond R. Hagen, and Martin L. Sætra. Graphics processing unit

(GPU) programming strategies and trends in GPU computing. Journal of Parallel

and Distributed Computing, 73(1):4�13, 2013.

[6] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, and R. Menon. Parallel

Programming in OpenMP. Morgan Kaufmann Publishers, San Francisco, 2001.

[7] Barbara Chapman, Gabriele Jost, and Ruud van der Pas. Using OpenMP: Portable

Shared Memory Parallel Programming. The MIT Press, 2007.

[8] J. Cheng, M. Grossman, and T. McKercher. Professional CUDA C Programming.

Wiley, 2014.

[9] Huidae Cho. A recursive algorithm for calculating the longest �ow path and its

iterative implementation. Environmental Modelling & Software, 131:104774, 2020.

[10] V.T. Chow, D.R. Maidment, and L.W. Mays. Applied Hydrology. McGraw-Hill,

1988.

34

[11] Isabel Kaufmann de Almeida, Aleska Kaufmann Almeida, Sandra Garcia Gabas,

and Teodorico Alves Sobrinho. Performance of methods for estimating the time of

concentration in a watershed of a tropical region. Hydrological Sciences Journal,

62(14):2406�2414, 2017.

[12] John Fair�eld and Pierre Leymarie. Drainage networks from grid digital elevation

models. Water Resources Research, 27(5):709�717, 1991.

[13] Michael J. Flynn. Some computer organizations and their e�ectiveness. IEEE

Transactions on Computers, C-21(9):948�960, 1972.

[14] M.J. Flynn. Very high-speed computing systems. Proceedings of the IEEE,

54(12):1901�1909, 1966.

[15] T.Graham Freeman. Calculating catchment area with divergent �ow based on a

regular grid. Computers & Geosciences, 17(3):413�422, 1991.

[16] Jurgen Garbrecht and Lawrence W Martz. The assignment of drainage direction over

�at surfaces in raster digital elevation models. Journal of Hydrology, 193(1):204�213,

1997.

[17] D. Geer. Chip makers turn to multicore processors. Computer, 38(5), 2005.

[18] Scott Haag, Daniel Schwartz, Bahareh Shakibajahromi, Michael Campagna, and

Ali Shokoufandeh. A fast algorithm to delineate watershed boundaries for simple

geometries. Environmental Modelling & Software, 134:104842, 2020.

[19] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative

Approach, 5th Edition. Morgan Kaufmann Publishers Inc., 2011.

[20] Pieter Hijma, Stijn Heldens, Alessio Sclocco, Ben van Werkhoven, and Henri E. Bal.

Optimization techniques for GPU programming. ACM Comput. Surv., 55(11), mar

2023.

[21] W.W. Hwu, D.B. Kirk, and I.E. Hajj. Programming Massively Parallel Processors:

A Hands-on Approach, 4th Edition. Morgan Kaufmann, 2023.

[22] S. K. Jenson and J. O. Domingue. Extracting topographic structure from digital

elevation data for geographic information system analysis. Photogrammetric Engi-

neering & Remote Sensing, 54(11):1593�1600, 1988.

[23] Jing Li and David W.S. Wong. E�ects of DEM sources on hydrologic applications.

Computers, Environment and Urban Systems, 34(3):251�261, 2010.

35

[24] Chang Liao, Tian Zhou, Donghui Xu, Richard Barnes, Gautam Bisht, Hong-Yi

Li, Zeli Tan, Teklu Tesfa, Zhuoran Duan, Darren Engwirda, and L. Ruby Leung.

Advances in hexagon mesh-based �ow direction modeling. Advances in Water

Resources, 160:104099, 2022.

[25] John B. Lindsay, James J. Rothwell, and Helen Davies. Mapping outlet points used

for watershed delineation onto DEM-derived stream networks. Water Resources

Research, 44(8), 2008.

[26] R.K. Linsley, M.A. Kohler, and J.L.H. Paulhus. Hydrology for Engineers. McGraw-

Hill, 1982.

[27] Ralf Ludwig and Philipp Schneider. Validation of digital elevation models from

SRTM X-SAR for applications in hydrologic modeling. ISPRS Journal of Photo-

grammetry and Remote Sensing, 60(5):339�358, 2006.

[28] M. López-Vicente, C. Pérez-Bielsa, T. López-Montero, L.J. Lambán, and A. Navas.

Runo� simulation with eight di�erent �ow accumulation algorithms: Recommenda-

tions using a spatially distributed and open-source model. Environmental Modelling

& Software, 62:11�21, 2014.

[29] Danny Marks, Je� Dozier, and James Frew. Automated basin delineation from

digital elevation data. Geo-Processing, 2:299�311, 10 1984.

[30] Lawrence W. Martz and Jurgen Garbrecht. Automated extraction of drainage

network and watershed data from digital elevation models. Journal of the American

Water Resources Association, 29(6):901�908, 1993.

[31] Wen mei W. Hwu, David B. Kirk, and Izzat El Hajj, editors. Programming Massively

Parallel Processors, 4th Edition. Morgan Kaufmann, 2023.

[32] Eleni Maria Michailidi, Sylvia Antoniadi, Antonis Koukouvinos, Baldassare Bacchi,

and Andreas Efstratiadis. Timing the time of concentration: shedding light on a

paradox. Hydrological Sciences Journal, 63(5):721�740, 2018.

[33] A. Musy, B. Hingray, and C. Picouet. Hydrology: A Science for Engineers. Taylor

& Francis, 2014.

[34] John F. O'Callaghan and David M. Mark. The extraction of drainage networks from

digital elevation data. Computer Vision, Graphics, and Image Processing, 28(3):323�

344, 1984.

36

[35] Chukwuma J. Okolie and Julian L. Smit. A systematic review and meta-analysis

of digital elevation model (DEM) fusion: pre-processing, methods and applications.

ISPRS Journal of Photogrammetry and Remote Sensing, 188:1�29, 2022.

[36] D.A. Patterson and J.L. Hennessy. Computer Organization and Design: The

Hardware/Software Interface. ISSN. Elsevier Science, 2020.

[37] Adriano Rolim da Paz, Walter Collischonn, Alfonso Risso, and Carlos André Bulhíes

Mendes. Errors in river lengths derived from raster digital elevation models.

Computers & Geosciences, 34(11):1584�1596, nov 2008.

[38] Thomas Rauber and Gudula Rünger. Parallel Programming: for Multicore and

Cluster Systems. Springer Berlin Heidelberg, 2013.

[39] R. Robey and Y. Zamora. Parallel and High Performance Computing. Manning,

2021.

[40] Holger Schäuble, Oswald Marinoni, and Matthias Hinderer. A GIS-based method to

calculate �ow accumulation by considering dams and their speci�c operation time.

Computers & Geosciences, 34(6):635�646, 2008.

[41] Jan Seibert and Brian L. McGlynn. A new triangular multiple �ow direction

algorithm for computing upslope areas from gridded digital elevation models. Water

Resources Research, 43(4), 2007.

[42] V. P. Singh and M. Fiorentino. Geographical Information Systems in Hydrology.

Springer Netherlands, 1996.

[43] Vijay Singh. Handbook of Applied Hydrology, 2nd Edition. McGraw-Hill Education,

New York, N.Y, 2016.

[44] Vijay Singh. Hydrologic modeling: progress and future directions. Geoscience Letters,

5, 12 2018.

[45] Peter N. Smith. Hydrologic data development system. Master's thesis, University of

Texas, Austin, 1995.

[46] Peter N. Smith. Hydrologic data development system. Transportation Research

Record, 1599(1):118�127, 1997.

[47] Duane Storti and Mete Yurtoglu. CUDA for Engineers: An Introduction to High-

Performance Parallel Computing. Addison-Wesley Professional, 2015.

37

[48] Herb Sutter and James Larus. Software and the concurrency revolution: Leveraging

the full power of multicore processors demands new tools and new thinking from the

software industry. Queue, 3(7):54�62, 2005.

[49] Wenwu Tang and Shaowen Wang. High Performance Computing for Geospatial

Applications. Springer International Publishing, 01 2020.

[50] David Tarboton, Dan Watson, Robert Wallace, K. Schreuders, and T. Tesfa.

Hydrologic terrain processing using parallel computing. Civil and Environmental

Engineering Faculty Publications. Paper 2715, page 0867, 11 2009.

[51] David G. Tarboton. A new method for the determination of �ow directions and

upslope areas in grid digital elevation models. Water Resources Research, 33(2):309�

319, 1997.

[52] M. Uysal, A.S. Toprak, and N. Polat. DEM generation with UAV photogrammetry

and accuracy analysis in Sahitler hill. Measurement, 73:539�543, 2015.

[53] L. Wang and H. Liu. An e�cient method for identifying and �lling surface depres-

sions in digital elevation models for hydrologic analysis and modelling. International

Journal of Geographical Information Science, 20(2):193�213, 2006.

[54] John Wilson, Graeme Aggett, Yongxin Deng, and Christine Lam. Water in the

landscape: A review of contemporary �ow routing algorithms. Advances in Digital

Terrain Analysis, pages 213�236, 01 2008.

[55] H. Zhang, C. T. Haan, and David L. Nofziger. Hydrologic modeling with GIS: An

overview. Applied Engineering in Agriculture, 6:453�458, 1990.

38

Dodatek A

High-performance parallel

implementations of �ow accumulation

algorithms for multicore architectures

39

Computers & Geosciences 151 (2021) 104741

Available online 3 March 2021
0098-3004/© 2021 Elsevier Ltd. All rights reserved.

Contents lists available at ScienceDirect

Computers and Geosciences

journal homepage: www.elsevier.com/locate/cageo

Research paper

High-performance parallel implementations of flow accumulation
algorithms for multicore architectures
Bartłomiej Kotyra a,∗, Łukasz Chabudziński b, Przemysław Stpiczyński a

a Maria Curie-Skłodowska University, Institute of Computer Science, ul. Akademicka 9, 20-031 Lublin, Poland
b Maria Curie-Skłodowska University, Institute of Earth and Environmental Sciences, al. Kraśnicka 2d, 20-718 Lublin, Poland

A R T I C L E I N F O

Keywords:
Flow accumulation
Parallel algorithms
OpenMP
Multicore processors
Manycore architectures
GIS

A B S T R A C T

The calculation of flow accumulation is one of the tasks in digital terrain analysis that is not easy to parallelize.
The aim of this work was to develop new, faster ways to calculate flow accumulation and achieve shorter
execution times than popular software tools for this purpose. We prepared six implementations of algorithms
based on both top-down and bottom-up approaches and compared their performance using 118 different data
sets (including 59 subcatchments and 59 full frames) of various sizes but the same area and resolution. Our
results clearly show that the parallel top-down algorithm (without the use of OpenMP tasks) is the most suitable
implementation for flow accumulation calculations of all we have tested. The mean and median execution times
of this algorithm are the shortest in all cases studied. The implementation is characterized by high speedups.
The execution times of the parallel top-down implementation are two orders of magnitude shorter compared to
the Flow Accumulation tool from ArcGIS Desktop. This is important, considering the performance of popular
GIS platforms, where it takes hours to perform the same kind of operations with the use of similar equipment.

1. Introduction

For the last few decades, the size of the GIS data to process have
been constantly growing together with the complexity of computa-
tions needed to perform spatial analyses (Tang and Wang, 2020).
On the other hand, parallel processing has become ubiquitous. The
market offers multicore and many-core processors, graphics process-
ing units, and big computer clusters. Parallel computers with mul-
ticore and many-core processors have become popular because they
achieve high performance execution together with energy efficiency
measured by performance-per-watt (Gruber and Keller, 2010; Patterson
and Hennessy, 2013). Modern processors offer performance previously
achieved only by supercomputers and large clusters. Moreover, modern
computer architectures equipped with multicore processors offer large
shared memory, which is usually sufficient for GIS computations. It
should be noted that the use of OpenMP, a standard for programming
shared-memory parallel computers (Chapman et al., 2007), allows
to obtain good performance with relatively little effort. Moreover,
OpenMP 4.5 offers more sophisticated programming techniques like
thread affinity, tasking and supports SIMD extensions of modern mul-
ticore processors (van der Pas et al., 2017). However, implementing
parallel algorithms that effectively use underlying hardware is still a
challenging task.

∗ Corresponding author.
E-mail addresses: bartlomiej.kotyra@poczta.umcs.lublin.pl (B. Kotyra), lchabudzinski@poczta.umcs.lublin.pl (Łu. Chabudziński),

przem@hektor.umcs.lublin.pl (P. Stpiczyński).

Flow accumulation (also referred to as contributing area, upslope
contributing area, or upslope area) is one of the parameters that are
challenging for efficient calculation in digital terrain analysis. This
issue is highly important in the context of hydrological applications
where the extent of the water aggregation area (from rainfall, snow-
fall, etc.) is relevant. In the natural environment, water flow on the
terrain surface is caused by gravity. It is partially modified by the
properties of the layer through or over which water flows. Depending
on the area, this layer may comprise vegetation, anthropogenic objects
(e.g. buildings, squares, roads), and soil. The gravity process is modeled
with the use of regular-grid digital elevation models (DEMs). Assuming
that water flows between the DEM cells, it becomes obvious that the
obtained flow accumulation values should be well correlated with the
actual flow values observed in the catchment either during a single
episode or throughout the year (Gruber and Peckham, 2009). In this
approach, the computed flow accumulation value in a given cell is
the sum of the weights of all cells from which water flows into that
cell. Therefore, high flow accumulation values indicate areas of runoff
accumulation such as rivers or local wetlands. Consequently, low or
zero flow accumulation values indicate local elevations, e.g. peaks or
watersheds (Wang and Jin, 2001). The calculation of flow accumula-
tion values in the DEM involves three steps: (1) DEM preprocessing

https://doi.org/10.1016/j.cageo.2021.104741
Received 27 July 2020; Received in revised form 18 February 2021; Accepted 25 February 2021

40

Computers and Geosciences 151 (2021) 104741

2

B. Kotyra et al.

to remove depressions and flat areas commonly contained in DEMs,
(2) computing flow-direction, (3) calculation of flow accumulation.
Various methods and algorithms are used in each stage, which affect the
calculation time and the obtained values (Zhou et al., 2016; Lindsay,
2016; Wang et al., 2019).

The choice of the flow direction algorithm is definitely impor-
tant (López-Vicente et al., 2014), whereas the choice of algorithms for
depression filling and handling flat areas do not affect flow accumula-
tion calculations directly (Zhou et al., 2016; Lindsay, 2016; Wang et al.,
2019).

The results of this very common procedure in hydrological studies
depend on the calculation algorithm used and input data — flow
direction (Knight et al., 2014). The flow accumulation algorithm was
one of the first developed by O’Callaghan and Mark (1984) in a group
that can be referred to as hydrological algorithms. The other algorithms
in this group were closely related to the flow accumulation algorithm
and comprised the method of depression filling pretreatment, flow
direction determination, upslope area accumulation, drainage channel
extraction, geographic feature vectorization and topographic parameter
calculations. It should be noted that flow accumulation is an essential
element for drainage network extraction (Martz and Garbrecht, 1992;
Soille and Gratin, 1994; Garbrecht and Martz, 1997b; Tarboton, 1997;
Jones, 2002; Bai et al., 2015) and is used in other aspects of environ-
mental modeling (Rengers et al., 2016; Almeida et al., 2019; Tillery and
Rengers, 2020).

Flow accumulation is one of the key input elements in simple
flood risk assessment models used for calculation of the flood level
and volume of runoff water from the catchment (Choi, 2012; López-
Vicente et al., 2014; Huang, 2020). It is especially used in the case
of ungauged catchments, which facilitates real time flood forecasting
or rainfall-runoff simulation (Mwakalila, 2003). It plays a fundamental
role in more advanced hydrological models, although it is only one of
the input elements for advanced computational algorithms modeling
the water flow on and below the ground (Heathwaite et al., 2005;
Irving et al., 2018). Soil moisture patterns, zones of saturation and
the generation of runoff from saturated areas can be indicated by
flow accumulation (Beven and Kirkby, 1979; Burt and Butcher, 1985;
Güntner et al., 2004). Apart from the typical hydrological applications,
flow accumulation is also one of the main components of the models for
delineated landscape units (Rathjens et al., 2016) and new aggregated
indexes (López-Vicente and Ben-Salem, 2019).

Efficient implementations of the time-consuming hydrological al-
gorithms become a challenge for modern GIS software packages. As
reported by Gruber and Peckham (2009), the processing of high-quality
elevation data sets that are currently becoming widely available re-
quires new computational algorithms, as well as further development
and refinement of existing methods. It should be emphasized that there
are many algorithms for the determination of flow accumulation. The
required resources and computation efficiency may vary depending on
the input data characteristics and the structure of the algorithm. This is
important in the process of problem solving, as the knowledge of how
an algorithm works helps to use it in the most efficient way (Tarboton,
1997; Arnold, 2010).

The main motivation of this work was to address performance issues
of existing algorithms, related to the growing size of available spatial
datasets. According to our knowledge and experience, the existing flow
accumulation algorithms are not efficient or scalable enough, which
can be seen especially when working with larger data sets. High com-
putational complexity along with inefficient or non-existent parallelism
make the existing algorithms unsuitable for modern data. Our aim was
to implement, test and present new, more efficient algorithms that
could improve this situation. Our approach was to develop the most
efficient implementations we could, based on a variety of concepts with
an emphasis on parallelism. The developed algorithms were then tested
on multiple datasets to assess their performance.

2. Flow accumulation algorithms

2.1. Flow direction

Most algorithms for calculating the flow accumulation use a flow
direction matrix as input data. It is one of the basic DEM derivatives
determining the direction of water flow. It allows to identify the basic
elements characterizing the catchment (drainage network, watershed),
which are used to model the water flow (O’Callaghan and Mark, 1984;
Jenson and Domingue, 1988; Tarboton, 1997; Martz and Garbrecht,
1999; Turcotte et al., 2001; Choi, 2012). Therefore, flow direction
calculation algorithms are widely implemented in software packages
such as ArcGIS (and their extensions, e.g. ArcHydro Tools) (Moore
et al., 1993), GRASS (Metz et al., 2011) and TecDEM (Shahzad and
Gloaguen, 2011). They can be used for the calculation of flow accumu-
lation, although there are algorithms that allow determination of flow
accumulation directly from DEM (Arge et al., 2003; Bai et al., 2015).
However, they are employed relatively rarely.

The depression-filling pretreatment of a DEM allows the water from
every cell to flow to the catchment outlet. It is the first step of the
flow direction procedure (Grimaldi et al., 2007). Therefore, when flow
direction is used, the values of cells in depressions and flat areas should
be transformed with special algorithms that allow modeling the flow in
the entire catchment (Garbrecht and Martz, 1997a; Barnes et al., 2014).
There are also flow-routing algorithms that do not need a depression-
filling preprocessing of the DEM. These solutions can process massive
DEMs rapidly (Magalhães et al., 2012), generate wide watercourses,
calculate divergent flows, and detect fluvial landforms (Rueda et al.,
2013). At the same time, they are less affected by the accuracy or data
acquisition errors that DEMs include.

There are two fundamentally different approaches to determining
the flow direction: the single flow and the multiple flow. In the sin-
gle flow approach, the whole content of a cell is always transferred
to only one of its neighboring cells. In the multiple flow approach,
the content is transferred proportionally to every lower neighboring
cell (Schäuble et al., 2008; Arge et al., 2003). Both methods are
often analyzed and compared regarding their advantages and disad-
vantages (López-Vicente et al., 2014). Each approach has its specific
applications (Schäuble et al., 2008). It is worth noting that access to
both methods is important and desirable for GIS software users (Barták,
2009).

These fundamental differences between the single flow and multiple
flow approaches can substantially affect the structure of the flow accu-
mulation algorithm. In this work, we decided to focus on the single
flow approach.

One of the simplest and most frequently implemented single direc-
tion methods is the D8 method (Garbrecht and Martz, 1997a; Tarboton,
1997). Its main assumption is that the flow direction of a cell can be
determined with the use of local topographic slope values considering
its eight adjacent cells.

It is necessary to note the importance of issues related to the
cycles in flow direction matrices. There are cases where some imple-
mentations of flow direction algorithms can generate recurring flow
paths. This kind of anomalies can have an important impact on sub-
sequent flow accumulation calculations. While some implementations
are resistant to flow direction cycles, others can generate incorrect
results or end up in an infinite loop, making it impossible to finish the
calculations properly.

According to our experience, the D8 algorithm implementation
available in ArcGIS Desktop 10.6 can generate flow direction matrices
with two neighboring cells pointing at each other.

41

Computers and Geosciences 151 (2021) 104741

3

B. Kotyra et al.

2.2. Algorithms

In one of the earliest papers dedicated to the problem of drainage
network extraction (O’Callaghan and Mark, 1984), the iterative flow
accumulation method was proposed. The algorithm is based on the
single flow approach. In a single iteration, the algorithm scans consec-
utive cells in a row-by-row manner. The current state of a given cell is
used to update the flow accumulation values in the neighboring cells.
These iterations are repeated as long as any values are changing. It is
important to note that the time complexity of implementations based
on this method is relatively high — the number of required iterations
is dependent on the number of cells included in the longest flow path
in the matrix.

Since then, a lot of research has been dedicated to the design of
better performing algorithms and reducing the computation time with
the use of parallel programming techniques. Some works criticize the
iterative approach to the flow accumulation problem and suggest meth-
ods based on ordering cells using a priority queue or sorting (Jones,
2002; Wallis et al., 2009; Sten et al., 2016). The main idea here is
to eliminate repeated calculations and multiple updates of the same
cells. This kind of approach makes it possible to reduce the required
computational effort substantially, but it is important to note that the
cell ordering procedure also affects the overall execution time of these
algorithms.

Multiple works consider the idea of recursive flow accumulation
algorithms (Freeman, 1991; Schäuble et al., 2008; Choi, 2012). These
methods usually start processing DEM from the topographically lowest
cell (bottom-up approach). Determining the accumulation value of a
given cell requires recursive executions of the procedure for its closest
inflow neighbors. In this way, the algorithm first moves contrarily to
the flow direction (from the lowest to the highest cells) and then goes
back, updating flow accumulation values in the matrix. One of the
important advantages of this approach is the fact that every accumula-
tion value is calculated only once — the processing order is naturally
dictated by subsequent recursive executions.

However, critical views on the recursive approach can often be
found in literature, too. Some authors point out the high memory
requirements and the issues related to the parallelization of this kind
of algorithms (Wallis et al., 2009; Qin and Zhan, 2012). Some papers
suggest solving these problems by replacing recursion with adequate
data structures, e.g. a stack-based approach (Do et al., 2011). Other
works consider the possibility of reversing the order of calculations by
starting at the topographically highest cells and gradually processing
data in accordance with the flow direction (top-down approach) (Arge
et al., 2003; Schäuble et al., 2008; Zhou et al., 2019). Methods from this
family vary considerably in implementation details and computational
complexity.

A lot of research was dedicated to parallelizing flow accumulation
algorithms in order to shorten their execution time. These works differ
in the problems addressed as well as the utilized hardware architectures
and programming techniques. Some papers were dedicated to solutions
based on computing clusters. In this kind of approach, input data is
usually split and distributed between separate computing units. In ad-
dition to the obvious advantage of a shorter execution time, it enables
processing of data sets that are too large for a single machine. Wallis
et al. (2009) and Do et al. (2011) studied specific flow accumulation
algorithms along with the methods of their parallelization for compu-
tational clusters. Barnes (2017) focused on the methods of distributing
tasks between nodes and gathering partial results together, without
considering any specific flow accumulation algorithm details.

Attempts to develop flow accumulation algorithms dedicated for
GPU were another important research direction. Published imple-
mentations differ in terms of calculation methods and programming
techniques used to parallelize them. Ortega and Rueda (2010) pre-
sented two relatively simple algorithms for GPU, implemented using
the CUDA architecture (Cheng and et al, 2014). Their approach was

based on the original flow accumulation method from O’Callaghan
and Mark (1984). Qin and Zhan (2012) focused on using CUDA to
parallelize calculations based on the multiple-flow direction. Sten et al.
(2016) compares four different algorithmic concepts implemented with
OpenCL (Kowalik and Puzniakowski, 2012), trying to achieve the
highest possible efficiency in the flow accumulation phase. Rueda
et al. (2016) compared implementations of the original algorithm
(O’Callaghan and Mark, 1984) based on OpenACC (Chandrasekaran
and Juckeland, 2018) and CUDA, while focusing on differences in the
execution time and code complexity.

There are also works focused on modifying the standard approach to
calculation of flow accumulation. Du et al. (2017) proposed a method
that uses a small set of low resolution data as a first step. Based on the
results obtained, high resolution data is then divided into smaller parts
and processed in parallel.

Certain new procedures have been proposed that are more efficient
in modeling the terrain surface, taking into account e.g. closed de-
pressions. For example, a noteworthy algorithm has been presented
by Arnold (2010). It provides a method for dealing with depressions
in the context of flow accumulation calculations. It assumes that water
can fill and then flow through topographic depressions.

3. Experimental data

3.1. Study area

The area selected for the investigations covers a part of south-
eastern Poland that varies in terms of its altitude, morphometry,
and hydrology. According to the physical–geographical division of
Poland (Solon et al., 2018), it is situated in two macro-regions: Wyżyna
Lubelska Upland and Roztocze. In terms of the hydrographic division,
the area is the watershed of the upper Wieprz river characterized
by tectonic mobility; hence, its subcatchments have very different
morphometric characteristics (Brzezińska-Wójcik, 2013; Chabudziński
and Brzezińska-Wójcik, 2013; Margielewski et al., 2017) (Fig. 1).

3.2. Source data

The input data are derived from the Central Office of Geodesy and
Cartography (GUGiK) in the ASCII XYZ GRID format with a 1-meter
resolution. Individual files correspond to the range of map sheets in
the flat rectangular PL-1992 coordinate system at a scale of 1:5000.

The 974 sheets combined into one file in the TIFF format with a
resolution of 1 × 1 m were selected for the investigations. The Mosaic
to new raster tool from the ArcGIS Desktop 10.6 was used for merging
the data. Next, 118 test areas were extracted. They represented both
subcatchments (59 objects) with various surfaces and shapes and their
extents (59 objects) limited to rectangular frames (Fig. 2). These areas
were extracted into separate TIFF format files using the Extract by mask
(subcatchments) and Clip (areas in the rectangular frames) tools from
the ArcGIS Desktop 10.6. DEM preprocessing was carried out in each
file to remove the depressions and flat areas commonly contained in
DEMs; next, flow-direction was computed using ArcGIS Desktop 10.6.

Subcatchment files contained cells with values (elevation, filled
elevation, flow direction) only where the catchment was located and
NoData cells outside of the catchment, while files limited to the rect-
angular frames were fully filled with data (Fig. 2). The number of
non-empty cells ranged from 46 171 348 to 2 489 411 697 for the sub-
catchment files and from 119 366 531 to 4 600 417 303 for the rect-
angular frame files. The main reasons for dividing the data into two
groups: subcatchments and their limiting ranges was the willingness to
compare the execution times of our algorithms on various datasets and
indicate whether filling cells outside the catchment area with NoData
values has any impact.

42

Computers and Geosciences 151 (2021) 104741

4

B. Kotyra et al.

Fig. 1. Study area: subcatchments division of the upper Wieprz river watershed.

Fig. 2. Example of the data: subcatchment (a) and its frame (b).

4. Implemented algorithms

In this work, we focused on developing high-performance parallel
flow accumulation algorithms for multicore architectures. We required
that the basic versions of our methods should be characterized by linear
computational complexity (thus, the flow accumulation value of each
cell should be calculated and updated only once), to minimize the
number of computational operations required. Moreover, to simplify
the operations performed on each cell, we decided to introduce a frame
of additional neutral cells around each matrix. For this reason, our
algorithms process matrices using one-based indexing. We decided to
consider two opposite approaches — the bottom-up method and the
top-down method. This decision was based on the observation that

these methods could be implemented with linear time complexity. First,
we focused on the preparation of sequential algorithms that require
as few computational operations as possible (deliberately avoiding
queues or sorting). Next, we used these versions both as a basis for
parallel versions and as benchmarks in performance measurements.
We attempted to parallelize these algorithms using various methods,
guided by our experience, understanding of the problem and the results
of our early experiments.

All algorithms were implemented in C++ and parallelized using
OpenMP. This standard introduces several directives that instruct the
compiler that certain portions of the source code, i.e. loops and code
sections, can be executed by threads working in parallel. Directives
are also used to synchronize threads and specify data sharing. The

43

Computers and Geosciences 151 (2021) 104741

5

B. Kotyra et al.

standard also defines functions and environment variables that affect
the execution of parallel programs. Version 3.0 of the OpenMP standard
introduced additional constructs for explicit support of task parallelism
that can be used to parallelize recursive algorithms (van der Pas et al.,
2017; Stpiczyński, 2018), thus it seems to be ideal for the simple and
efficient implementation of the considered algorithms.

4.1. Bottom-up approach

The bottom-up approach starts calculations in the topographically
lowest cells. Then, higher cells are processed step by step in the
opposite order to the flow direction. Traditionally, algorithms in this
category are implemented using recursion. By using the flow direction
matrix to determine the order of cell processing, it is possible to achieve
an implementation with linear time complexity, in which the value of
each cell is calculated only once.

It should be noted that the bottom-up approach assumes no cycles
in the flow direction matrix (Wallis et al., 2009). Such anomalies in the
input data can result in a situation where the algorithm cannot finish
the calculations, and subsequent recursive calls eventually lead to stack
overflow.

As part of this work, we have prepared and tested three different im-
plementations based on the bottom-up approach - a sequential version
and two parallel ones.

4.2. Bottom-up - sequential implementation

The structure of the sequential version is based on a simple recursive
function. In the first step, the algorithm prepares an inverse flow
direction matrix, where the values indicate the neighbors from which
water flows into the given cell. Then, the recursive function is started
sequentially for all cells on DEM edges out of which water flows outside
the processed area. Due to the possibility of using a DEM that is not
hydrologically correct, a recursive function is also called for each DEM
cell with no flow direction assigned.

The purpose of the recursive function is to calculate the flow
accumulation value of a given cell and save the result in the output
matrix. The obtained value is also returned as the result of the call.
The function uses the inverse flow direction matrix prepared in the
first step. The calculations are based on recursive function calls for the
nearest neighboring cells from which water drains into a given cell.
Returned values are added together. Then, the sum is increased by the
number of these inflow neighbors, resulting in the final value of the
cell’s flow accumulation.

4.3. Bottom-up - parallel implementation

The first of the parallel implementations based on the bottom-up
approach uses exactly the same recursive function as the sequential
version. The difference lies in using OpenMP directives to start calcula-
tions from multiple cells in parallel. An independent parallel calculation
procedure can be started in each cell from which water flows beyond
the boundaries of the DEM. The same is true for cells without an
assigned flow direction. The single-flow approach ensures that, for each
cell, the recursive function will be called only once by a single thread.
This guarantees that no data race will occur.

The first step of this algorithm is the parallel preparation of an
inverse flow direction matrix. Cell values are calculated solely on the
basis of the original flow direction matrix; therefore, parallelization
of this stage is trivial. Next, threads begin an independent search for
the starting points for a recursive procedure. Cells to be checked are
allocated to threads using dynamic work distribution, which ensures
that each cell is checked by only one thread. When a given thread
finds a cell that directs flow outside the DEM boundaries or does not
have a flow direction assigned, it calls the described recursive function
for it. After returning from the function, the thread resumes searching

for more starting points. The algorithm ends when all cells in the
raster have been checked and all threads have completed their recursive
calculations.

It should be noted that this approach assumes the existence of many
starting points in the input data. The small number of such points limits
the number of threads that can perform calculations simultaneously.
Moreover, differences in catchment sizes can lead to unbalanced work
allocation to threads. Thus, in this implementation, the possibility of
using the advantages of parallelism is strongly dependent on the nature
of the input data.

4.4. Bottom-up - task-based implementation

The second parallel implementation based on the bottom-up ap-
proach utilizes OpenMP tasks. This mechanism made it possible to use
parallelism in a significantly different way than in the first implemen-
tation. Our goal here was to reduce the problems mentioned earlier,
especially those related to the character of the input data.

This approach uses tasks to parallelize the recursive function. Sub-
sequent calls are no longer made by the same thread but delegated
in the form of tasks for later execution. The generated task can be
performed by the same or a different thread. In this way, the execution
of a recursive procedure started by a single thread can be parallelized
by dividing it into tasks for different threads.

This method of calculation may prove valuable when the input data
contains a small number of starting points for the algorithm. In this
type of situation, although the calculations are initially started by only
a small number of threads, the remaining threads receive their work
allocation at higher levels of recursion nesting.

Our initial experiments have shown that creation of a large number
of tasks can be associated with significant overhead of task creation
and management. To reduce this problem, we decided to introduce a
restriction that allows threads to create new tasks only to a certain
level of recursion nesting. When the stack of dependent tasks reaches
a certain maximum size, threads stop creating new tasks and perform
all further calculations on their own. Owing to this approach, it was
possible both to parallelize work effectively and to reduce the problems
related to managing a large number of short tasks.

4.5. Top-down approach

The top-down approach starts the calculations from the locally high-
est cells (local peaks and ridges). Subsequent lower cells are processed
in the order indicated by the flow direction. As in the bottom-up
approach, the use of the flow direction matrix allows implementation
with linear time complexity.

The change in the cell processing direction results in significant
differences between the top-down and bottom-up approaches. First of
all, the use of recursion is no longer a natural solution to the problem
(it is no longer needed or useful). It is also important that the typical
landscape of the catchment should contain many local peaks and
ridges that can be used as starting points for the top-down calculation
procedure. This creates new opportunities to introduce parallelism to
algorithms.

We have prepared and tested three different implementations based
on the top-down approach — the basic algorithm in the sequential
version and its two parallel versions. The concept underlying the se-
quential version is similar to that presented in Zhou et al. (2019).

4.6. Top-down - sequential implementation

While working on the sequential version, we noticed that the or-
dering of all cells before starting the main calculations is essentially
unnecessary and results in higher computational complexity and longer
execution times. We decided to apply a simpler approach.

44

Computers and Geosciences 151 (2021) 104741

6

B. Kotyra et al.

Listing 1: Bottom-up algorithm - recursive function

unsigned int updateValue(const FlowDirectionMatrix& reversalDirectionMatrix ,
int row, int col, FlowAccumulationMatrix& accumulationMatrix)

{
unsigned int sum = 0;

if (reversalDirectionMatrix.value[row][col] & DIRECTION_RIGHT)
sum += updateValue(reversalDirectionMatrix , row , col + 1, accumulationMatrix) + 1;

if (reversalDirectionMatrix.value[row][col] & DIRECTION_DOWN_RIGHT)
sum += updateValue(reversalDirectionMatrix , row + 1, col + 1, accumulationMatrix) + 1;

if (reversalDirectionMatrix.value[row][col] & DIRECTION_DOWN)
sum += updateValue(reversalDirectionMatrix , row + 1, col , accumulationMatrix) + 1;

if (reversalDirectionMatrix.value[row][col] & DIRECTION_DOWN_LEFT)
sum += updateValue(reversalDirectionMatrix , row + 1, col - 1, accumulationMatrix) + 1;

if (reversalDirectionMatrix.value[row][col] & DIRECTION_LEFT)
sum += updateValue(reversalDirectionMatrix , row , col - 1, accumulationMatrix) + 1;

if (reversalDirectionMatrix.value[row][col] & DIRECTION_UP_LEFT)
sum += updateValue(reversalDirectionMatrix , row - 1, col - 1, accumulationMatrix) + 1;

if (reversalDirectionMatrix.value[row][col] & DIRECTION_UP)
sum += updateValue(reversalDirectionMatrix , row - 1, col , accumulationMatrix) + 1;

if (reversalDirectionMatrix.value[row][col] & DIRECTION_UP_RIGHT)
sum += updateValue(reversalDirectionMatrix , row - 1, col + 1, accumulationMatrix) + 1;

accumulationMatrix.value[row][col] = sum;

return sum;
}

In the first step, using the flow direction raster, the algorithm
prepares an inlet number matrix. Every value in this matrix corresponds
to the number of inflows to a given cell (the number of adjacent cells
from which water flows into the given cell). Then, the raster is linearly
searched for cells where the number of inflows is zero, i.e. cells to
which water does not flow from any of its neighbors. These cells are
local peaks and ridges of the terrain and thus the starting points for
the top-down calculation procedure.

When the cell forming the local peak or ridge is found, the algorithm
temporarily stops the further screening of the raster and starts the main
calculation procedure. The procedure is based on moving along the
path determined by the flow direction. At each point, the algorithm
calculates the total number of water units that have drained into the
cell and updates the output flow accumulation matrix.

The inlet number matrix is used to recognize the junction cells
(cells with more than one inflow). The values of such cells depend on
several separate upstream channels, so their calculation requires prior
processing of all cells in each of these channels.

While moving to subsequent cells, the calculation procedure decre-
ments their values in the inlet number matrix. In this way, cells ready
for further processing can be distinguished from those for which the
necessary information has not yet been calculated. Only the cells whose
inlet number is currently zero can be processed. When the procedure
reaches the junction cell that is not yet ready to calculate its final
flow accumulation value (its inlet number is greater than zero), the
calculations for the current flow path are terminated and the algorithm
returns to search for the next local peak or ridge.

This approach ensures that the flow accumulation value of each cell
will be calculated and written to the output matrix only once. The
correct order of cell processing is guaranteed despite the lack of an
explicit cell ordering procedure.

4.7. Top-down - parallel implementation

The first parallel implementation of the top-down approach is based
on a slightly modified sequential version. A few changes were nec-
essary to facilitate seamless cooperation of multiple threads. OpenMP
directives were used to parallelize the calculations.

In the first step, the algorithm prepares the inlet number matrix in
parallel (the values of individual cells can be calculated independently
of each other; therefore, the parallelization of this task is trivial). Next,
threads begin the process of searching the raster for local peaks and
ridges. When such a cell is identified, the thread stops searching and
begins the calculation procedure, moving along the flow path and
updating the values in the output flow accumulation matrix.

Therefore, the task of each thread is to search a part of the raster
and perform the calculation procedure, starting with all the peak and
ridge cells identified by it. Due to the varying lengths of flow paths, we
decided to use dynamic work allocation to threads.

Many threads can simultaneously perform their own calculation
procedures, processing subsequent cells along the flow direction. There-
fore, value modifications related to junction cells (with more than one
inflow) involve potential data races. Our implementation eliminates
this problem by using two types of atomic operations. The first case is
related to the updates of flow accumulation values in the output matrix,
which are implemented with the use of the atomic update directive.
The second case is related to decrementations of values in the inlet
number matrix, where it is necessary not only to modify the cell value
atomically, but also to capture the result of this operation immediately
to avoid data races in the loop condition. For this reason, the atomic
capture operation was used here.

This implementation also required the distinction of cells with no
inflows (local peaks and ridges) from those whose number of inflows

45

Computers and Geosciences 151 (2021) 104741

7

B. Kotyra et al.

was reduced to zero during processing. Therefore, these two states
(peak/ridge cell, processed cell) are distinguished by two different
negative values in the inlet number matrix. This eliminates a scenario
where a thread recognizes a cell with zero inflows in place already
processed by another thread.

4.8. Top-down - task-based implementation

The second parallel implementation based on the top-down ap-
proach uses OpenMP tasks. The idea of the algorithm is mostly the same
as in the previous implementation. The difference lies in placing the
main calculation procedure inside the task directive.

In this implementation, when the peak or ridge cell is recognized,
the thread does not start the calculation procedure itself, but delegates
its execution in the form of a task. This task can be performed later by
any thread. The idea was to separate the raster search and the main
calculation procedure from each other, which in some situations could
lead to a better balance of workloads.

It is worth noting that the presented implementations based on
the top-down approach are naturally resistant to the issue of flow
direction cycles. Algorithms mark the processed cells with a certain
value in order to distinguish cells with no inflows from those with the
number of inflows reduced to zero during calculations. This mechanism
also ensures that the algorithm will never fall into an infinite loop
and the calculations will always be completed. Thus, the presented
implementations do not require additional memory or instructions to
address the issue of flow direction cycles.

5. Testing procedure

The testing procedure consisted of a series of steps, including pre-
processing of input data, verification of output results, and repeated
execution of a given algorithm with time measurements. The input for
our algorithms was files containing flow direction rasters based on filled
(hydrologically correct) DEMs. We made sure that the generated flow
direction rasters did not contain any cycles. Anomalies of this kind were
removed.

We agreed that one of the methods to verify the correctness of
our implementations could be to compare their results with the files
generated by the flow accumulation tool on the ArcGIS Desktop 10.6.
We used this tool to prepare our control data. Next, each of our
implementations was repeatedly run on different data sets, and the
results obtained were compared with the control data.

Each test consisted of starting the application, loading the flow
direction raster from the file, starting the time measurement, executing
the given algorithm, and ending the time measurement. All additional
calculations (including the preparation of an inverse flow direction
matrix and an inlet number matrix) were treated as the internal part
of the tested algorithm and were included in the measurements. An
application reset in each test was necessary to eliminate the impact of
cache warming.

Each of the six algorithms was tested on all prepared data sets
(59 subcatchments and 59 rectangular frames). The task-based bottom-
up implementation was tested for three different task creation limits
(maximum recursion levels at which new tasks can be created): 250,
500, and 1000. Parallel algorithms were tested on three different
thread affinity configurations (none, scatter, and compact) and four
different threads per core settings (1, 2, 3, and 4). When measuring
execution times, calculations were performed on all available cores.
Each implementation was executed ten times for all data sets in each
configuration.

6. Results of experiments

All experiments were performed on a computer with two Intel Xeon
E5-2670 v3 processors (in total 24 cores, 2.3 GHz), and one Intel Xeon
Phi Coprocessor 7120P (60 cores with multithreading, 1.238 GHz, 16
GB RAM) (Jeffers and Reinders, 2013). The computer equipped with
128 GB of RAM was running under Linux CentOS version 7.0. Our
implementations of flow accumulation algorithms were compiled using
the C++ Compiler which is a part of Intel Parallel Studio 2017. We used
the -O3 flag to optimize the code.

6.1. Performance comparison

The results generated by each of our implementations turned out to
be identical to those obtained with the use of the ArcGIS Desktop 10.6.
All output raster cells contained exactly the same values as the control
data. This confirms that our algorithms are correct.

According to our measurements, the first parallel version of the top-
down algorithm (without tasks) proved to be the fastest in all cases.
For each dataset and in each multithreading configuration, the average
and median execution time of this algorithm was the shortest among all
tested implementations. In all cases (including the largest datasets and
suboptimal configurations), it took less than 30 s to generate results
(the longest recorded execution time was 26.2 s).

The task-based top-down implementation turned out to be less
efficient than the version without tasks (on average, the processing
time for the same dataset was 21.1% longer for subcatchments and
32.7% longer for rectangular frames). Our analysis showed that this
approach leads to the creation of a huge number of tasks, many of
which process only a few cells. It seems that the overhead of task
creation and management has a significant impact on the performance
of this algorithm.

Among the parallel implementations, the bottom-up approach
proved to be much less efficient than the top-down approach. On av-
erage, the execution times of both parallel bottom-up implementations
were more than three times longer than those achieved by the fastest
top-down version (for both subcatchments and rectangular frames).

The size of the stack turned out to be an important issue in the
parallel bottom-up implementations. The default size of 4 MB for each
thread turned out to be insufficient for larger datasets. In some cases,
recursive calls overflowed the stack, leading to program termination.
To facilitate calculations for all data sets, it was necessary to increase
the stack size of each thread to 16 MB using OMP_STACKSIZE. The
other implementations did not cause such problems.

The comparison of the two bottom-up implementations (with and
without tasks) leads to interesting observations. In most cases, both
versions performed calculations at a similar time. However, for some
input data sets and configurations, the task-based version turned out to
be up to almost two times faster. In other cases, the average execution
time was several dozen percent longer (up to 38.4% in one case).
It seems that both input data characteristics and the multithreading
configuration have a significant impact on the performance of the
task-based version.

It is worth noting that the comparison of the execution times for
the different multithreading configurations revealed certain differences
between the top-down and bottom-up approaches. Parallel top-down
implementations seem to have the shortest execution times for con-
figurations with multiple threads per core. The results obtained for
the parallel bottom-up implementations were significantly different. In
most cases, they achieved the best results for configurations with a
single thread per core.

The comparison of the sequential top-down and bottom-up versions
leads to substantially different conclusions. The average execution
times of both sequential implementations were relatively similar. For
the vast majority of the subcatchments and all rectangular frames, the
average and median bottom-up execution times were slightly shorter

46

Computers and Geosciences 151 (2021) 104741

8

B. Kotyra et al.

Listing 2: Top-down algorithm - parallel implementation (excerpt)

#pragma omp parallel
{

#pragma omp for schedule(dynamic)
for (int row = 1; row <= matrixHeight; ++row)
{

for (int col = 1; col <= matrixWidth; ++col)
{

if ((inletNumberMatrix.value[row][col] == cellRidge) &&
(directionMatrix.value[row][col] != DIRECTION_NONE))

{
int pathRow = row;
int pathCol = col;
char pathInletNumber;

do
{

const unsigned int pathLoad = accumulationMatrix.value[pathRow][pathCol] + 1;
inletNumberMatrix.value[pathRow][pathCol] = cellCompleted;

switch (directionMatrix.value[pathRow][pathCol])
{

case DIRECTION_RIGHT: ++pathCol; break;
case DIRECTION_DOWN_RIGHT: ++pathRow; ++pathCol; break;
case DIRECTION_DOWN: ++pathRow; break;
case DIRECTION_DOWN_LEFT: ++pathRow; --pathCol; break;
case DIRECTION_LEFT: --pathCol; break;
case DIRECTION_UP_LEFT: --pathRow; --pathCol; break;
case DIRECTION_UP: --pathRow; break;
case DIRECTION_UP_RIGHT: --pathRow; ++pathCol; break;

}

#pragma omp atomic update
accumulationMatrix.value[pathRow][pathCol] += pathLoad;

#pragma omp atomic capture
pathInletNumber = --inletNumberMatrix.value[pathRow][pathCol];

}
while ((pathInletNumber == 0) &&

(directionMatrix.value[pathRow][pathCol] != DIRECTION_NONE));
}

}
}

}

Table 1
Average execution times (in milliseconds) for chosen subcatchments (best results selected across all multithreading configurations).

Dataset Cells (non-empty) Top-down
sequential

Top-down
parallel

Top-down
tasks

Bottom-up
sequential

Bottom-up
parallel

Bottom-up
tasks (250)

Bottom-up
tasks (500)

Bottom-up
tasks (1000)

0 169 586 945 8227 1331 1635 8228 4807 2971 2970 2973
8 276 862 675 12 468 1909 2326 11 944 7440 7444 7435 7421
12 368 445 621 17 778 2806 3326 17 628 10 065 10 215 10 118 10 163
22 460 794 411 25 854 3972 4683 24 858 12 506 12 320 12 311 12 362
24 575 105 179 30 737 4926 5893 31 092 15 758 15 826 15 820 15 855
26 630 348 921 34 672 5592 6709 35 231 17 450 17 162 17 281 17 312
42 2 049 527 215 101 788 14 708 18 563 99 790 55 333 55 086 55 714 55 594
58 2 489 411 697 122 402 17 570 22 179 119 057 67 421 66 850 66 992 66 817

than those achieved by the top-down implementation. Still, the average
speedup of the parallel top-down versions was much higher compared
to the bottom-up implementations (Table 3). Thus, after parallelization,
the top-down algorithms achieved much more attractive execution
times.

Tables 1 and 2 present the average execution times for selected
datasets. Detailed results of all measurements can be found in our
public repository.

6.2. Scalability analysis

Based on the results obtained, we considered the top-down algo-
rithm in the parallel version (without tasks) to be the most suitable
implementation for flow accumulation calculations. We performed ad-
ditional tests to further examine the properties of this algorithm. In
particular, we focused on analyzing the strong scalability of this im-
plementation. We conducted two studies of the relationship between
the number of computing cores used and the average execution time.

47

Computers and Geosciences 151 (2021) 104741

9

B. Kotyra et al.

Listing 3: Top-down algorithm - task-based implementation (excerpt)

#pragma omp for schedule(dynamic)
for (int row = 1; row <= matrixHeight; ++row)
{

for (int col = 1; col <= matrixWidth; ++col)
{

if ((inletNumberMatrix.value[row][col] == cellRidge) &&
(directionMatrix.value[row][col] != DIRECTION_NONE))

{
#pragma omp task
{

int pathRow = row;
int pathCol = col;
char pathInletNumber;

do
{

// the same as in the version without tasks
}
while ((pathInletNumber == 0) &&

(directionMatrix.value[pathRow][pathCol] != DIRECTION_NONE));
}

}
}

}

Table 2
Average execution times (in milliseconds) for chosen frames (best results selected across all multithreading configurations).

Dataset Cells (non-empty) Top-down
sequential

Top-down
parallel

Top-down
tasks

Bottom-up
sequential

Bottom-up
parallel

Bottom-up
tasks (250)

Bottom-up
tasks (500)

Bottom-up
tasks (1000)

0 328 524 987 12 427 1652 2190 11 228 5025 5038 5121 5227
8 456 220 275 17 384 2279 2978 15 386 7403 7454 7496 7644
12 697 485 292 26 978 3485 4558 24 024 10 215 10 167 10 350 10 457
22 999 276 228 42 903 5081 6665 35 943 12 563 12 460 12 456 12 587
24 1 290 109 002 51 153 6368 8536 45 877 16 288 16 316 16 077 16 443
26 1 492 618 476 59 392 7352 9885 53 238 17 372 17 470 17 394 17 306
42 3 879 244 800 153 488 18 453 25 226 138 017 56 686 56 899 56 132 56 851
58 4 600 417 303 181 914 21 956 29 634 162 793 67 224 66 674 66 800 66 827

Table 3
Average parallel algorithm speedups across all datasets and multithreading
configurations (with all 24 cores used).

Algorithm Average speedup
(subcatchments)

Average speedup
(frames)

Top-down parallel 6.07 7.33
Top down tasks 5.01 5.52
Bottom-up parallel 1.74 2.21
Bottom-up tasks (250) 1.65 1.95
Bottom-up tasks (500) 1.67 1.95
Bottom-up tasks (1000) 1.69 1.94

For this purpose, we used both the host architecture and the MIC
coprocessor.

Fig. 3 shows the relationship between the number of non-empty
cells in a frame and the average algorithm execution time. As expected,
the shape of the graph illustrates the linear time complexity of the
algorithm.

On the host, the algorithm scalability was measured in the scatter
configuration, using both sockets and assigning two threads per core.
The algorithm performance was tested for twelve different settings
(from 1 to 12 cores per socket). All tests were performed for frame 58,
which was our largest dataset. Ten measurements of the execution time
were made in each setting.

The MIC-based test was conducted in the compact configuration
with four threads per core. The number of cores used was gradually
increased from 1 to 60, allowing us to test the performance of this

Fig. 3. Top-down (parallel) - time complexity.

implementation for settings from 4 to 240 threads. Due to the smaller
amount of RAM available on this architecture, the calculations were
made for frame 17 (containing 1 643 792 696 cells). Similarly to the
procedure described earlier, ten measurements of the execution time
were made for each setting.

The results obtained show the high strong scalability of this im-
plementation. Figs. 4 and 5 show a strong relationship between the
number of cores used and the speedup compared to the sequential

48

Computers and Geosciences 151 (2021) 104741

10

B. Kotyra et al.

Fig. 4. Top-down (parallel) - speedup (host, scatter affinity, two sockets, two threads
per core).

Fig. 5. Top-down (parallel) - speedup (MIC, compact affinity, single socket, four
threads per core).

version. Increasing the number of computing cores up to 60 still reduces
the average computation time.

7. Conclusions

In this paper, we have presented six implementations of flow accu-
mulation algorithms, including two sequential and four parallel ver-
sions. We based our algorithms on both top-down and bottom-up
approaches. We compared their performance using 118 different data
sets (including 59 subcatchments and 59 full frames) of various sizes.

Our results clearly show that the parallel top-down algorithm (with-
out the use of tasks) is the most suitable implementation for flow
accumulation calculations of all we have tested. The mean and median
execution times of this algorithm were the shortest in all cases studied
(on all input data sets and in all multithreading configurations). The im-
plementation is characterized by high speedups. It should also be noted
that this approach does not require a large stack size for each thread,
which proved necessary in the parallel bottom-up implementations.

A simple comparison with the Flow Accumulation tool from Ar-
cGIS Desktop 10.6 showed that our parallel top-down implementation
achieves execution times shorter by two orders of magnitude on a
machine with the same specification. This is important considering the
performance of popular GIS platforms, where it can easily take hours to
perform the same kind of operations with the use of similar equipment.

It is worth noting that in the vast majority of cases the compu-
tation times for subcatchments were shorter than the corresponding
times for full frames. Considering repeated tests performed for all the
algorithms, data sets and configurations, the mean execution times for

subcatchments were shorter in over 95% of cases. On average (across
all the algorithms, data sets and configurations), the time needed to
process the subcatchment was 81.72% of the time needed to process
the corresponding frame (median 80.34%). However, this ratio seems
to differ significantly from case to case, depending on the dataset
and the algorithm used. It can be concluded that the use of cut-out
subcatchments (filled with NoData values outside the catchment area)
is an approach worth considering as it allows to reduce the necessary
calculation time in most cases. Further analysis could discover how this
advantage can be extended.

There are still many challenges related to GIS algorithms. Perfor-
mance issues, especially in the context of large datasets, occur in many
existing tools. In future work, we would like to focus on solving these
problems.

Computer Code Availability

The source code of all implementations discussed is available in the
public repository at https://github.com/bkotyra/high_performance_flo
w_accumulation/.

CRediT authorship contribution statement

Bartłomiej Kotyra: Conceptualization, Methodology, Software, Vi-
sualization, Writing - original draft. Łukasz Chabudziński: Data Cu-
ration, Validation, Visualization, Writing - review & editing. Prze-
mysław Stpiczyński: Conceptualization, Supervision, Writing - review
& editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

References

Almeida, R., Griebeler, N., Oliveira, M., Botelho, T., Moreira, A., 2019. Flow accumu-
lation based method for the identification of erosion risk points in unpaved roads.
Environ. Monit. Assess. 191. http://dx.doi.org/10.1007/s10661-019-7949-3.

Arge, L., Chase, J., Halpin, P., Toma, L., Vitter, J., Urban, D., Wickremesinghe, R.,
2003. Efficient flow computation on massive grid terrain datasets. GeoInformatica
7, 283–313. http://dx.doi.org/10.1023/A:1025526421410.

Arnold, N., 2010. A new approach for dealing with depressions in digital elevation
models when calculating flow accumulation values. Prog. Phys. Geogr. Earth
Environ. 34, 781–809. http://dx.doi.org/10.1177/0309133310384542.

Bai, R., Li, T., Huang, Y., Li, J., Wang, G., 2015. An efficient and comprehensive
method for drainage network extraction from DEM with billions of pixels using
a size-balanced binary search tree. Geomorphology 238, 56–67. http://dx.doi.org/
10.1016/j.geomorph.2015.02.028.

Barnes, R., 2017. Parallel non-divergent flow accumulation for trillion cell digital
elevation models on desktops or clusters. Environ. Model. Softw. 92, 202–212.
http://dx.doi.org/10.1016/j.envsoft.2017.02.022.

Barnes, R., Lehman, C., Mulla, D., 2014. An efficient assignment of drainage direction
over flat surfaces in raster digital elevation models. Comput. Geosci. 62, 128–135.
http://dx.doi.org/10.1016/j.cageo.2013.01.009.

Barták, V., 2009. How to extract river networks and catchment boundaries from DEM:
a review of digital terrain analysis techniques. J. Land. Stud. 2, 57–68.

Beven, K.J., Kirkby, M.J., 1979. A physically based, variable contributing area model
of basin hydrology. Hydrol. Sci. Bull. 24, 43–69. http://dx.doi.org/10.1080/
02626667909491834.

Brzezińska-Wójcik, T., 2013. Morfotektonika Annopolsko-Lwowskiego Segmentu Pasa
Wyzynnego W Świetle Analizy Cyfrowego Modelu WysokoŚciowego Oraz
WskaŹnikÓw Morfometrycznych. UMCS, Lublin.

Burt, T.P., Butcher, D.P., 1985. Topographic controls of soil moisture distributions. J.
Soil Sci. 36, 469–486. http://dx.doi.org/10.1111/j.1365-2389.1985.tb00351.x.

Chabudziński, L., Brzezińska-Wójcik, T., 2013. Zastosowanie ArcNEO do oceny prze-
jawów neotektoniki na przykładzie zlewni górnego Wieprza (Roztocze, środkowo-
wschodnia Polska). Land. Anal. 24, 11–22. http://dx.doi.org/10.12657/landfana.
024.002.

49

Computers and Geosciences 151 (2021) 104741

11

B. Kotyra et al.

Chandrasekaran, S., Juckeland, G. (Eds.), 2018. OpenACC for Programmers: Concepts
and Strategies. Addison-Wesley.

Chapman, B., Jost, G., Pas, R.v.d., 2007. Using OpenMP: Portable Shared Memory
Parallel Programming. the MIT Press.

Cheng, J., Grossman, M., McKercher, T. (Eds.), 2014. Professional CUDA C
Programming. Wiley and Sons..

Choi, Y., 2012. A new algorithm to calculate weighted flow-accumulation from a DEM
by considering surface and underground stormwater infrastructure. Environ. Model.
Softw. 30, 81–91. http://dx.doi.org/10.1016/j.envsoft.2011.10.013.

Do, H.T., Limet, S., Melin, E., 2011. Parallel computing flow accumulation in large
digital elevation models. Procedia Comput. Sci. 4, 2277–2286. http://dx.doi.
org/10.1016/j.procs.2011.04.248, proceedings of the International Conference on
Computational Science, ICCS 2011.

Du, C., Ye, A., Gan, Y., You, J., Duan, Q., Ma, F., Hou, J., 2017. Drainage network
extraction from a high-resolution DEM using parallel programming in the .NET
Framework. J. Hydrol. 555, 506–517. http://dx.doi.org/10.1016/j.jhydrol.2017.10.
034.

Freeman, T., 1991. Calculating catchment area with divergent flow based on a regu-
lar grid. Comput. Geosci. 17, 413–422. http://dx.doi.org/10.1016/0098-3004(91)
90048-I.

Garbrecht, J., Martz, L.W., 1997a. The assignment of drainage direction over flat
surfaces in raster digital elevation models. J. Hydrol. 193, 204–213. http://dx.
doi.org/10.1016/S0022-1694(96)03138-1.

Garbrecht, J., Martz, L.W., 1997b. Automated channel ordering and node indexing for
raster channel networks. Comput. Geosci. 23, 961–966. http://dx.doi.org/10.1016/
S0098-3004(97)00055-1.

Grimaldi, S., Nardi, F., Benedetto, F.D., Istanbulluoglu, E., Bras, R.L., 2007. A
physically-based method for removing pits in digital elevation models. Adv. Water
Resour. 30, 2151–2158. http://dx.doi.org/10.1016/j.advwatres.2006.11.016, recent
Developments in Hydrologic Analysis.

Gruber, R., Keller, V., 2010. HPC@Green IT: Green High Performance Computing
Methods, 1st Ed. Springer Publishing Company, Incorporated.

Gruber, S., Peckham, S., 2009. Land-surface parameters and objects in hydrology 33,
pp. 171–194 http://dx.doi.org/10.1016/S0166-2481(08)00007-X.

Güntner, A., Seibert, J., Uhlenbrook, S., 2004. Modeling spatial patterns of saturated
areas: an evaluation of different terrain indices. Water Resour. Res. 0, 40. http:
//dx.doi.org/10.1029/2003WR002864.

Heathwaite, A., Quinn, P., Hewett, C., 2005. Modelling and managing critical source
areas of diffuse pollution from agricultural land using flow connectivity simulation.
J. Hydrol. 304, 446–461. http://dx.doi.org/10.1016/j.jhydrol.2004.07.043.

Huang, P.C., 2020. Analysis of hydrograph shape affected by flow-direction assumptions
in rainfall-runoff models. Water 0 (12), http://dx.doi.org/10.3390/w12020452.

Irving, K., Kuemmerlen, M., Kiesel, J., Kakouei, K., Domisch, S., Jähnig, S.C., 2018. A
high-resolution streamflow and hydrological metrics dataset for ecological modeling
using a regression model. Sci. Data 0 (5), http://dx.doi.org/10.1038/sdata.2018.
224.

Jeffers, J., Reinders, J., 2013. Intel Xeon Phi Coprocessor High-Performance
Programming. Morgan Kaufman, Waltham, MA, USA.

Jenson, S.K., Domingue, J.O., 1988. Extracting topographic structure from digital
elevation data for geographic information system analysis. Photogramm. Eng.
Remote Sens. 54, 1593–1600.

Jones, R., 2002. Algorithms for using a DEM for mapping catchment areas of stream
sediment samples. Comput. Geosci. 28, 1051–1060. http://dx.doi.org/10.1016/
S0098-3004(02)00022-5.

Knight, J., Rampi, L., Lenhart, C., 2014. Comparison of flow direction algorithms in
the application of the CTI for mapping wetlands in Minnesota. Wetlands 0, 34.
http://dx.doi.org/10.1007/s13157-014-0517-2.

Kowalik, J.S., Puzniakowski, T., 2012. Using opencl - programming massively parallel
computers. In: Volume 21 of Advances in Parallel Computing. IOS Press, http:
//dx.doi.org/10.3233/978-1-61499-030-7-S1.

Lindsay, J.B., 2016. Efficient hybrid breaching-filling sink removal methods for flow
path enforcement in digital elevation models. Hydrol. Process. 30, 846–857. http:
//dx.doi.org/10.1002/hyp.10648.

López-Vicente, M., Ben-Salem, N., 2019. Computing structural and functional flow
and sediment connectivity with a new aggregated index: a case study in a large
mediterranean catchment. Sci. Total Environ. 651, 179–191. http://dx.doi.org/10.
1016/j.scitotenv.2018.09.170.

López-Vicente, M., Pérez-Bielsa, C., López-Montero, T., Lambán, L., Navas, A., 2014.
Runoff simulation with eight different flow accumulation algorithms: recommen-
dations using a spatially distributed and open-source model. Environ. Model. Softw.
62, 11–21. http://dx.doi.org/10.1016/j.envsoft.2014.08.025.

Magalhães, S.V.G., Andrade, M.V.A., Randolph Franklin, W., Pena, G.C., 2012. A
New Method for Computing the Drainage Network Based on Raising the Level
of an Ocean Surrounding the Terrain. Springer Berlin Heidelberg, pp. 391–407.
http://dx.doi.org/10.1007/978-3-642-29063-3_21.

Margielewski, W., Jankowski, L., Krąpiec, M., Garecka, M., Hałas, S., Urban, J.,
2017. Analysis of reworked sediments as a basis of the palaeogene-neogene
palaeogeography reinterpretation: case study of the roztocze region (se poland).
Sedim. Geol. 352, 14–29. http://dx.doi.org/10.1016/j.sedgeo.2017.02.009.

Martz, L., Garbrecht, J., 1992. Numerical definition of drainage network and sub-
catchment areas from digital elevation models. Comput. Geosci. 18, 747–761.
http://dx.doi.org/10.1016/0098-3004(92)90007-E.

Martz, L.W., Garbrecht, J., 1999. An outlet breaching algorithm for the treatment of
closed depressions in a raster DEM. Comput. Geosci. 25, 835–844. http://dx.doi.
org/10.1016/S0098-3004(99)00018-7.

Metz, M., Mitasova, H., Harmon, R.S., 2011. Efficient extraction of drainage networks
from massive, radar-based elevation models with least cost path search. Hydrol.
Earth Syst. Sci. 15, 667–678. http://dx.doi.org/10.5194/hess-15-667-2011.

Moore, I., Turner, A., Wilson, J., Jenson, S., Band, L., 1993. Gis and
land-surface-subsurface process modeling. Environ. Model. GIS 19, 6–230.

Mwakalila, S., 2003. Estimation of stream flows of ungauged catchments for river basin
management. Phys. Chem. Earth, Parts A/B/C 28, 935–942. http://dx.doi.org/10.
1016/j.pce.2003.08.039.

O’Callaghan, J.F., Mark, D.M., 1984. The extraction of drainage networks from digital
elevation data. Comput. Vis. Graph. Image Process. 28, 323–344. http://dx.doi.org/
10.1016/S0734-189X(84)80011-0.

Ortega, L., Rueda, A., 2010. Parallel drainage network computation on CUDA. Comput.
Geosci. 36, 171–178. http://dx.doi.org/10.1016/j.cageo.2009.07.005.

van der Pas, R., Stotzer, E., Terboven, C., 2017. Using OpenMP – The Next Step.
Affinity, Accelerators, Tasking, and SIMD. MIT Press, Cambridge MA.

Patterson, D.A., Hennessy, J.L., 2013. Computer Organization and Design, Fifth Edition:
The Hardware/Software Interface, 5th ed. Morgan Kaufmann Publishers Inc.

Qin, C.Z., Zhan, L., 2012. Parallelizing flow-accumulation calculations on graphics
processing units—from iterative DEM preprocessing algorithm to recursive multiple-
flow-direction algorithm. Comput. Geosci. 43, 7–16. http://dx.doi.org/10.1016/j.
cageo.2012.02.022.

Rathjens, H., Bieger, K., Chaubey, I., Arnold, J.G., Allen, P.M., Srinivasan, R.,
Bosch, D.D., Volk, M., 2016. Delineating floodplain and upland areas for hydrologic
models: a comparison of methods. Hydrol. Process. 30, 4367–4383. http://dx.doi.
org/10.1002/hyp.10918.

Rengers, F.K., McGuire, L.A., Coe, J.A., Kean, J.W., Baum, R.L., Staley, D.M., Godt, J.W.,
2016. The influence of vegetation on debris-flow initiation during extreme rainfall
in the northern colorado front range. Geology 44, 823–826. http://dx.doi.org/10.
1130/G38096.1.

Rueda, A.J., Noguera, J.M., Luque, A., 2016. A comparison of native GPU computing
versus OpenACC for implementing flow-routing algorithms in hydrological appli-
cations. Comput. Geosci. 87, 91–100. http://dx.doi.org/10.1016/j.cageo.2015.12.
004.

Rueda, A., Noguera, J.M., Martínez-Cruz, C., 2013. A flooding algorithm for extracting
drainage networks from unprocessed digital elevation models. Comput. Geosci. 59,
116–123. http://dx.doi.org/10.1016/j.cageo.2013.06.001.

Schäuble, H., Marinoni, O., Hinderer, M., 2008. A GIS-based method to calculate
flow accumulation by considering dams and their specific operation time. Comput.
Geosci. 34, 635–646. http://dx.doi.org/10.1016/j.cageo.2007.05.023.

Shahzad, F., Gloaguen, R., 2011. TecDEM: A MATLAB based toolbox for tectonic
geomorphology, part 1: Drainage network preprocessing and stream profile analysis.
Comput. Geosci. 37, 250–260. http://dx.doi.org/10.1016/j.cageo.2010.06.008.

Soille, P., Gratin, C., 1994. An efficient algorithm for drainage network extraction on
DEMs. J. Vis. Commun. Image Represent. 5, 181–189. http://dx.doi.org/10.1006/
jvci.1994.1017.

Solon, J., Borzyszkowski, J., Bidłasik, M., Richling, A., Badora, K., Balon, J., Brzezińska-
Wójcik, T., Chabudziński, L., Dobrowolski, R., Grzegorczyk, I., Jodłowski, M.,
Kistowski, M., Kot, R., Krąż, P., Lechnio, J., Macias, A., Majchrowska, A., Mali-
nowska, E., Migoń, P., Myga-Piątek, U., Nita, J., Papińska, E., Rodzik, J., Strzyż, M.,
Terpiłowski, S., Ziaja, W., 2018. Physico-geographical mesoregions of Poland:
Verification and adjustment of boundaries on the basis of contemporary spatial
data. Geogr. Polon. 0 (91), http://dx.doi.org/10.7163/GPol.0115.

Sten, J., Lilja, H., Hyväluoma, J., Aspnäs, M., 2016. Parallel flow accumulation
algorithms for graphical processing units with application to RUSLE model. Comput.
Geosci. 89, 88–95. http://dx.doi.org/10.1016/j.cageo.2016.01.006.

Stpiczyński, P., 2018. Language-based vectorization and parallelization using intrinsics,
OpenMP, TBB and Cilk Plus. J. Supercomput. 74, 1461–1472. http://dx.doi.org/
10.1007/s11227-017-2231-3.

Tang, W., Wang, S., 2020. High performance computing for geospatial applications.
http://dx.doi.org/10.1007/978-3-030-47998-5.

Tarboton, D.G., 1997. A new method for the determination of flow directions and
upslope areas in grid digital elevation models. Water Resour. Res. 33, 309–319.
http://dx.doi.org/10.1029/96WR03137.

Tillery, A.C., Rengers, F.K., 2020. Controls on debris-flow initiation on burned and
unburned hillslopes during an exceptional rainstorm in southern new mexico, usa.
Earth Surf. Proces. Land. 45, 1051–1066. http://dx.doi.org/10.1002/esp.4761.

50

Computers and Geosciences 151 (2021) 104741

12

B. Kotyra et al.

Turcotte, R., Fortin, J.P., Rousseau, A., Massicotte, S., Villeneuve, J.P., 2001. Deter-
mination of the drainage structure of a watershed using a digital elevation model
and a digital river and lake network. J. Hydrol. 240, 225–242. http://dx.doi.org/
10.1016/S0022-1694(00)00342-5.

Wallis, C., Watson, D., Tarboton, D., Wallace, R., 2009. Parallel flow-direction and
contributing area calculation for hydrology analysis in digital elevation models, In:
Proceedings of the International Conference on Parallel and Distributed Processing
Techniques and Applications, pp. 467–472.

Wang, X., Jin, J., 2001. Assessing the impact of urban growth on flooding with an
integrated curve number-flow accumulation approach. Water Int. 26, 215–222.
http://dx.doi.org/10.1080/02508060108686907.

Wang, Y.J., Qin, C.Z., Zhu, A.X., 2019. Review on algorithms of dealing with depres-
sions in grid DEM. Annals GIS 25, 83–97. http://dx.doi.org/10.1080/19475683.
2019.1604571.

Zhou, G., Sun, Z., Fu, S., 2016. An efficient variant of the priority-flood algorithm for
filling depressions in raster digital elevation models. Comput. Geosci. 90, 87–96.
http://dx.doi.org/10.1016/j.cageo.2016.02.021.

Zhou, G., Wei, H., Fu, S., 2019. A fast and simple algorithm for calculating flow
accumulation matrices from raster digital elevation. Front. Earth Sci. 13, 317–326.
http://dx.doi.org/10.1007/s11707-018-0725-9.

51

Dodatek B

High-performance watershed

delineation algorithm for GPU using

CUDA and OpenMP

52

Environmental Modelling and Software 160 (2023) 105613

Available online 22 December 2022
1364-8152/© 2022 Elsevier Ltd. All rights reserved.

Contents lists available at ScienceDirect

Environmental Modelling and Software

journal homepage: www.elsevier.com/locate/envsoft

High-performance watershed delineation algorithm for GPU using CUDA and
OpenMP
Bartłomiej Kotyra
Maria Curie-Skłodowska University, Institute of Computer Science, ul. Akademicka 9, 20-033 Lublin, Poland

A R T I C L E I N F O

Keywords:
Watershed delineation
GIS
Parallel algorithms
GPU
CUDA
OpenMP

A B S T R A C T

Watershed delineation is one of the fundamental tasks in hydrological studies. Tools for extracting watersheds
from digital elevation models and flow direction rasters are commonly implemented in GIS software packages.
However, the performance of available techniques and algorithms often turns out to be far from sufficient,
especially when working with large datasets. While modern hardware offers high computing performance
through massive parallelism, there is still a need for algorithms that can effectively use these capabilities.
This paper proposes an algorithm for rapid watershed delineation directly from flow direction rasters, using
the possibilities offered by modern GPU devices. Performance measurements show a significant reduction in
execution time compared to other parallel solutions proposed for this task in the literature. Moreover, this
implementation makes it possible to delineate multiple watersheds from the same dataset simultaneously,
each having one or more outlet cells, with virtually no additional computational cost.

1. Introduction

Watershed (also referred to as drainage area, basin or catchment)
is considered one of the basic concepts in hydrological studies (Tesfa
et al., 2011). It is defined as the area of land whose drainage eventually
concentrates in a single location, called the watershed outlet (Chow
et al., 1988). Delineating watersheds and their boundaries is one of the
fundamental tasks in this field and is used in many different contexts
within and beyond the area of hydrology (Daniel, 2011; Singh, 2018).

While watersheds can be delineated manually using topographic
data, automatic techniques are widely accepted as being much faster
and more precise (Karimipour et al., 2013). Procedures using dig-
ital elevation models (DEMs) as basic input data are well known
and widely implemented in GIS software (Barták, 2009). In recent
decades, the availability and precision of this type of data has increased
significantly, which considerably facilitates accurate calculations and
simulations, but at the same time creates new challenges related to the
processing of large datasets (Tang and Wang, 2020).

Currently, the market offers hardware architectures that enable
achieving previously unavailable high computing performance. Wide
access to multicore and many-core processors and graphics processing
units (GPUs) creates new possibilities for parallel processing, making it
possible to solve complex tasks on large datasets in a much shorter time.
Parallel programming standards like OpenMP and CUDA allow access
to these hardware capabilities with relatively little effort (Chapman
et al., 2007; Cheng et al., 2014). Still, the effective use of the possi-
bilities offered by modern devices requires creating suitable parallel

E-mail address: bartlomiej.kotyra@mail.umcs.pl.

algorithms, which remains a challenging task. There is a significant
time gap between the available technological solutions and their prac-
tical applications (Tang and Wang, 2020). Existing software often turns
out to be insufficiently scalable or simply unsuitable for working with
modern datasets.

The motivation behind this research was to investigate and address
issues related to the performance of existing watershed delineation
algorithms. Concluding from the available literature, this problem has
been discussed in multiple studies, but there is still room and need
for significant improvement. The goal of this work was to develop
and present a new raster-based algorithm for delineating watersheds
(operating on DEMs and derivative data), allowing this task to be
performed more efficiently compared to existing alternatives. Particular
attention was paid to the possibilities offered by modern GPU devices,
along with parallel processing capabilities on the host side.

1.1. Existing techniques

Many different methods and approaches for automatic watershed
delineation have been described in the literature. They differ signifi-
cantly in terms of technology and architecture applied, the type of input
and data structures used, as well as the computational complexity of
implemented algorithms.

Most of the existing research and practical implementations in this
area use square-grid DEMs and their derivatives (such as flow direction

https://doi.org/10.1016/j.envsoft.2022.105613
Received 4 October 2022; Received in revised form 18 December 2022; Accepted 20 December 2022

53

Environmental Modelling and Software 160 (2023) 105613

2

B. Kotyra

rasters) as the basis for further operations. The foundations of this
approach are well known (O’Callaghan and Mark, 1984; Jenson and
Domingue, 1988). However, it is worth noting that this is not the
only way to address the task. Some research works are focused on
delineating watershed areas from triangle-based terrain models (Jones
et al., 1990; Nelson et al., 1994; de Azeredo Freitas et al., 2016) or
hexagonal grids (Liao et al., 2020). There are also alternative methods
that may be useful when accurate DEMs are not available (Karimipour
et al., 2013).

The most common, well-established workflow for delineating wa-
tersheds from square-grid DEMs consists of several separate processing
stages (Baker et al., 2006; Eränen et al., 2014). Before a proper hydro-
logical analysis can be carried out, the elevation data must be corrected
by removing spurious sinks and local depressions. This is due to the
fact that many existing models and algorithms require each DEM cell to
have a downslope path leading to the edge of the raster (Wang and Liu,
2006). Depression filling is the most common method used to satisfy
this condition (Tarboton et al., 2009). However, many recent papers
suggest using other approaches, as they can produce the desired result
with much less modification to the original elevation values (Lindsay,
2016; Chen et al., 2021).

Once the depressions are removed, the hydrologically corrected
DEM can be used to calculate the flow direction data (Lindsay et al.,
2008). At this stage, each cell is assigned a value corresponding to
the expected direction of its further downstream flow. A variety of ap-
proaches and specific algorithms for determining flow directions exist
in the literature (O’Callaghan and Mark, 1984; Fairfield and Leymarie,
1991; Freeman, 1991; Tarboton, 1997; Seibert and McGlynn, 2007). In
essence, the purpose of this step is to determine how the outflow from
each cell is distributed to its immediate neighbors (Wilson et al., 2008).

The next step is usually to calculate the flow accumulation data,
where each cell is assigned the total number of cells that eventually
flow to it (Jenson and Domingue, 1988; Martz and Garbrecht, 1993).
These values can be used to delineate the drainage network, as well as
to precisely locate the watershed outlet cells (Lindsay et al., 2008).

Once the flow direction is determined and the outlet cells are lo-
cated, it is possible to perform the delineation of selected watersheds. In
general, this stage is usually carried out using algorithms that identify
all upslope cells connected to chosen outlet points by overland flow
paths (Lindsay et al., 2008).

The remaining sections of this paper mainly deal with the last stage
of this workflow, assuming that flow direction data and outlet cell
locations are already available.

1.1.1. Recursive algorithms
Among the algorithms that utilize square-grid DEMs, one of the first

and best known is the recursive approach. The earliest presentation
of this concept that the author is aware of comes from Marks et al.
(1984). In this approach, calculations start from a designated cell of
the watershed outlet. The algorithm analyzes the immediate neighbors
of this location, identifying the upstream cells (flowing to a given point)
and classifying them as part of the watershed area. The same procedure
is then performed recursively for each cell classified this way. The
algorithm moves in a bottom-up manner, starting from the outlet point
and following the flow paths upwards (opposite to the flow direction).

The main advantages of the recursive approach are its simplicity and
relative efficiency. Only cells belonging to the watershed area and their
direct neighborhood are analyzed (other cells are not entered through
the procedure). However, the nature of recursive algorithms in general
often leads to memory issues (especially on larger datasets) and proves
difficult to effectively parallelize (Wallis et al., 2009; Qin and Zhan,
2012).

1.1.2. Iterative algorithms
There are multiple references to iterative implementations of wa-

tershed delineation algorithms in the literature. Unfortunately, not all
papers discuss their approach in detail.

Jenson and Domingue (1988) described a procedure that uses a
flow direction dataset and a ‘‘starter’’ raster where outlet points are
marked with numerical values. The algorithm uses flow direction data
to iteratively fill all cells with the ‘‘start’’ values of the outlet to which
they flow.

Martz and Garbrecht (1993) mentioned a watershed boundary de-
lineation procedure based on flow vectors, determined with the use
of the D8 method. The algorithm identifies all cells that eventually
flow into the user-specified outlet cell. The details of this stage are not
extensively discussed, but it can be inferred from the context that the
procedure is based on following the steepest descent path starting from
each cell individually (this method was used there for accumulated
drainage area calculations).

A similar concept was used for TIN data in Nelson et al. (1994).
The algorithm starts at the centroid of each triangle and follows the
flow path until it hits one of the terminus points.

Another approach is described in Choi and Engel (2003). Here, an
iterative method using flow direction was used, which avoids scanning
the entire raster. The procedure starts with a single outlet cell selected
by the user. In each iteration, the algorithm considers only the closest
neighborhood of cells classified as part of the watershed in the previ-
ous step. Using the flow direction data, successive upstream cells are
identified. This procedure is repeated until no more matching cells can
be found.

1.1.3. Sorting and priority queues
Another type of approach is based on sorting DEM cells and visiting

them in a specific order. Arge et al. (2003) described an algorithm
that processes cells in a bottom-up manner (reverse topological order),
gradually propagating watershed labels from lower to higher cells.
However, it should be noted that ‘‘computing watersheds’’ is under-
stood here as part of a complex flooding procedure, rather than the
actual delineation of watershed areas. Unique labels are assigned to
each local sink and then propagated to the remaining cells. The idea is
to identify areas concentrating their drainage in common sinks and to
construct a graph of relationships between these areas. It is then used to
raise the elevations to ensure that for each cell there is a non-ascending
path to the edge of the terrain.

Barnes et al. (2014) integrated and improved on multiple related
works by several authors and presented a unified algorithm based on
a priority queue, primarily intended for filling depressions in DEMs. It
was pointed out that this concept can be adapted and used for labeling
watersheds as well. In this variant of the algorithm, unlabeled cells at
the edges of the available data are assumed to be watershed outlets
and are assigned unique labels. These values are then propagated to
the remaining cells by ‘‘flooding’’ the DEM inwards.

It is worth noting that this group of algorithms processes cells in
a relatively straightforward manner, but this comes at the expense
of additional computational time needed to perform the ordering. It
is also important to note that this type of approach is based on dis-
tinct assumptions, placing it outside the typical watershed delineation
workflow.

1.1.4. Other data models
Yet another approach to the problem can be found in Haag et al.

(2018, 2020). The algorithms presented here are intended to sig-
nificantly reduce the computational time by marching around the
watershed boundary, without entering or leaving its area. However, it
is necessary to note that these techniques require converting the flow
direction to other data models, specifically designed for this task, which
entails additional computational and storage costs. Performing such an
operation directly on the flow direction is not possible.

54

Environmental Modelling and Software 160 (2023) 105613

3

B. Kotyra

Castronova and Goodall (2014) highlighted the issues related to
processing large datasets and demonstrated an alternative approach to
watershed delineation. However, this technique relies on the availabil-
ity of additional datasets, without which the DEM-based approach still
appears to be a valid choice.

1.1.5. Parallel algorithms
Parallel algorithms are a separate category. In general, this ap-

proach aims to make better use of hardware capabilities and reduce
computational time.

The earliest application of SIMD (Single Instruction, Multiple Data)
computers to watershed delineation that the author is aware of can be
found in Mower (1994). The data-parallel approach was used in two
different iterative algorithms developed for Thinking Machines CM-5.
Both ideas are based on copying watershed labels from neighboring
cells. Conceptually, in the first algorithm, each thread ‘‘pushes’’ its own
label to uphill cells, and in the second one, it ‘‘pulls’’ the label up
from lower neighbors. In both cases, each iteration of the algorithm
propagates the watershed label by only one cell along the flow path,
but for multiple paths in parallel. According to the results presented,
the label pulling approach turned out to be significantly more effective.

Some of the more recent works use the capabilities of SIMD archi-
tectures available on the graphics processing units. One of the steps
described in Eränen et al. (2014) is the watershed delineation algorithm
that performs all computations on the GPU. In this implementation,
each thread starts at the assigned cell and follows the entire flow path
until a defined stream section or DEM boundary is reached. Cells whose
flow path ends in the defined stream section are marked as belonging to
the watershed area. The work presented in Makinen et al. (2016) adapts
a similar concept, but extends its use to a multi-GPU environment.

Another work addressing the problem of fast delineation of the
watershed area was presented in Sit et al. (2019). Both sequential and
parallel approaches were described here. The basic iterative sequential
algorithm finds cells belonging to the watershed in a bottom-up man-
ner, starting from the outlet. In subsequent iterations, the procedure
analyzes the flow direction of the nearest neighborhood of cells classi-
fied in the previous step. The parallel approach takes advantage of the
GPU capabilities using WebGL shaders. The algorithm runs for each
cell independently. Its main idea is to use flow direction to identify
the downstream neighbor and repeatedly read its label in each cycle. If
the downstream cell is identified as belonging to the catchment area,
the current cell is also marked as such. This procedure is repeated
iteratively until there are no more updates.

1.2. Other related studies

Many published papers focus on developing efficient algorithms re-
lated to other aspects of hydrological modeling. Aside from delineating
watershed areas, issues such as filling depressions in DEMs or calculat-
ing flow accumulation are often considered (Planchon and Darboux,
2002; Wang and Liu, 2006; Barnes et al., 2014; Zhou et al., 2016,
2019). Particularly noteworthy are works considering the paralleliza-
tion of computations (Wallis et al., 2009; Do et al., 2011; Barnes, 2017;
Zhu et al., 2019), including the use of graphics processing units (Ortega
and Rueda, 2010; Qin and Zhan, 2012; Rueda et al., 2016; Sten et al.,
2016; Wu et al., 2019).

1.2.1. SIMD pointer processing
Although this research focuses on hydrological modeling topics,

some related work outside of this area should also be mentioned.
In particular, a specific, decades-old SIMD technique for processing
pointers is relevant to the rest of this work.

Hillis and Steele (1986) described a set of data-parallel algorithms,
designed to be performed on machines with a large number of proces-
sors. One of the concepts presented here was dedicated to locating the
last element in a linear linked list. It was pointed out that although this

task appears to be inherently sequential, the work can be organized in a
parallel manner, allowing it to be completed in less time. The core idea
starts with expressing the order of elements as a series of pointers, each
referring to the one immediately behind it. These are then repetitively
reassigned by acquiring the addresses stored in the pointers to which
they currently refer. This operation is performed for all elements in
parallel, quickly leading to a state where all pointers refer to the last
element of the list (except for the last one, which is marked with a
special null value). Hillis and Steele (1986) described this technique as
surprising and counterintuitive, but also pointed out that it had been
discovered in other contexts before.

While coming from different fields, some of the problems considered
in mathematical morphology, digital image processing and computer
vision share certain similarities with GIS-related issues. Traces of the
same SIMD technique can also be found in these areas.

One of the best known and most important problems in digital
image processing is called segmentation (Beucher and Meyer, 1993).
It can be broadly defined as the task of separating objects present in
the image from their background (Roerdink and Meijster, 2000). Over
the years, many techniques and approaches to this task have been
developed, ranging from the simplest grayscale threshold methods to
solutions based on neural networks and deep learning (Yuheng and
Hao, 2017; Dmitruk et al., 2021; Minaee et al., 2022).

One of the classic approaches to image segmentation, first intro-
duced in Digabel and Lantuéjoul (1978), is called the watershed trans-
formation. Both the name and the intuitive idea come from the area
of hydrology, metaphorically referring to a landscape being flooded
by water or immersed in a lake (Roerdink and Meijster, 2000). The
method operates on grayscale images, aiming at segmenting them into
regions representing separate objects. The key idea is to interpret gray
value discontinuity points as object boundaries. Despite significant
advancements in the development of modern techniques, the watershed
transformation can still be used for some specific issues (Kornilov et al.,
2022).

Many noteworthy publications focus on developing efficient imple-
mentations of the watershed transformation, often taking advantage of
parallel processing and GPU capabilities. The amount of research in
this area is substantial and has been reviewed and summarized mul-
tiple times over the years (Roerdink and Meijster, 2000; Kornilov and
Safonov, 2018; Kornilov et al., 2022). Some of these works implement
variants of the pointer processing technique described previously. The
key idea here is to treat the pixels of a two-dimensional image as
pointers to one another and reduce the dependencies between them in a
way similar to the one presented in Hillis and Steele (1986). Vitor et al.
(2010) referred to this concept as path compressing and representative
propagation, while Yeghiazaryan and Voiculescu (2018) called it path
reduction and label propagation.

The only adaptation of this technique to a GIS-related context
that the author was able to find comes from McGough et al. (2012).
The paper focuses on applying parallel processing to the landscape
evolution model in order to reduce the required computational time.
One of the repetitively performed steps of the model is the sink filling
procedure, which was implemented here using the general workflow
presented in Arge et al. (2003) (described in earlier sections). The
procedure consists of assigning unique identifiers to each local sink,
propagating them to all connected cells, building a relationship graph
between the identified areas and raising the elevation values so that
each cell has a non-ascending path to the edge of the DEM. Similarly
to Arge et al. (2003), watersheds are understood here as collections
of cells flowing into common local sinks in a pre-filled DEM, rather
than actual hydrologic units (the authors point out that thousands of
watersheds can be identified during this procedure). The propagation
of identifiers was implemented using a variant of the discussed SIMD
technique. Here, two rasters are processed simultaneously, one with
interrelated pointers and the other containing progressively propagated
identifiers. The authors refer to this concept as index pointer jumping.

55

Environmental Modelling and Software 160 (2023) 105613

4

B. Kotyra

Since the flow direction rasters can be interpreted as matrices of
pointers referring to their neighboring cells, the discussed technique
can be seamlessly adapted to the watershed delineation workflow used
in hydrological modeling.

2. Watershed delineation algorithms

2.1. Problem specification

Considering the numerous references to watershed delineation algo-
rithms appearing in the literature, as well as many attempts to develop
more efficient methods, it can be concluded that there is a need for a
highly efficient algorithm allowing this operation to be performed on
large datasets in a relatively short time.

When specifying the problem to be solved by the algorithm, it
was assumed that the input data consists of a two-dimensional flow
direction raster and a set of labeled outlet cell locations. The possibility
of delineating multiple watersheds in a single algorithm run, as well as
marking more than one cell as the outlet of the same watershed, was
taken into account. Many techniques existing in the literature consider
delineating only a single watershed at a time, and as noted in Haag
et al. (2020), most of them use only a single outlet point, which is
not always suitable. The author of this paper believes that it is worth
extending the problem specification to include the possibility of using
many such points belonging to the same or different watersheds. This
will not only address specific practical use cases, but also allow for a
more detailed analysis of the differences between algorithms, especially
in the context of parallel data processing.

There are two main ways to define flow direction in the litera-
ture. In the single-flow approach, each raster cell points to only one
downstream neighbor. Thus, all drainage is directed to a single neigh-
boring cell. In the multiple-flow approach, drainage can be transferred
proportionally to more than one neighbor. There are papers compar-
ing the two approaches and pointing to the advantages and specific
applications of both (Barták, 2009; López-Vicente et al., 2014).

The algorithms presented in this work use single-flow direction
rasters as the main input data. As noted in Barták (2009), this approach
seems more appropriate for watershed delineation as it avoids flow
dispersion and catchment overlap. Specific flow direction algorithms
are beyond the scope of this work and are not discussed here. In fact,
any single-flow direction algorithm could be used to prepare input
rasters (which is one of the main reasons why this form of data was
chosen as the main input over raw DEMs). The only requirement is
that the input dataset is hydrologically correct and does not contain
recurring flow paths.

It is assumed that no additional input datasets (other than the flow
direction raster and the set of outlet point markers) are needed. In this
work, any possible transformation of this basic data or conversion to
alternative models is considered as part of the watershed delineation
procedure. Any processing of raw flow direction data is considered an
internal part of the algorithm and taken into account when measuring
its performance.

The output of the algorithm will be a raster of numerical values. In
a correct solution, each cell will contain the index of the watershed it
belongs to, or the NONE value if its flow path does not end at any of
the specified outlet points or goes beyond the DEM boundary.

Since it should be possible to delineate multiple watersheds in a
single algorithm run, a scenario of simultaneously delineating a larger
watershed and its smaller sub-watersheds must be considered. In such
cases, the cells in the output raster will be labeled as part of the
innermost sub-watershed to which they belong.

It is assumed that the algorithm is executed on a single GPU-
equipped machine, and the size of available memory is sufficient for
the data to be processed.

2.2. Implementation details

All implementations developed as part of this work were written in
C++11. The code dedicated to the GPU was implemented using CUDA.
Additionally, some parts of the code executed on the host were par-
allelized using OpenMP for faster performance. Only the fundamental
constructs introduced in the early versions of these two standards were
used.

The implementations store the watershed labels in 8-bit unsigned
char cells. This makes it possible to delineate up to 255 watersheds in
a single algorithm run (one of the 256 possible values is reserved for
the NONE value). In case more unique labels were needed, implemen-
tations could be easily extended by changing the variable type.

Wherever it was necessary to index raster cells with single numbers,
unsigned 32-bit ints were used to store the indices. This imposes a
technical constraint on these implementations, limiting the maximum
number of cells to 232. Again, in case larger data sizes are needed, it is
possible to increase this limit by changing the variable type.

2.3. Flow path reduction algorithm

The algorithm developed as a key part of this work is designed for
GPU devices and takes advantage of the specific properties associated
with their massive parallelism. In essence, each raster cell is processed
in parallel by a separate thread.

The core idea behind the algorithm can be divided into three main
stages. First, an array of cell indices is prepared using the flow direction
data — initially, each index points to its nearest downstream neighbor.
The flow paths are then reduced so that each cell ultimately contains
the index of the outlet cell to which it eventually flows. Finally, these
indices are converted to watershed labels.

2.3.1. Data preparation (host side)
Before executing the key parts of the algorithm, the host reshapes

and adjusts the data to the required form.
In this work, the data structure developed in Kotyra et al. (2021)

was used to store flow direction rasters on the host. In essence, the
data is stored in a two-dimensional array with an additional frame of
cells containing neutral values (a single row or column of neutral cells
on each of the four edges of the raster). As a result, rows and columns
containing relevant data are indexed from 1 (one-based indexing). This
design was developed due to the large number of raster algorithms
using the values of neighboring cells (the frame of neutral values often
makes it possible to simplify the code and reduce execution time).
While this feature has no significant application in this paper, this
structure was chosen to maintain work continuity and consistency in
the published code.

The first step in preparing the data for the GPU is to flatten a two-
dimensional flow direction raster into a one-dimensional array. This
approach aims to simplify and speed up the transfer and data processing
on the device. Consecutive rows are rewritten without gaps, skipping
the frame of neutral cells. While this operation is trivial, it can take a
noticeable amount of time for large datasets. To accelerate this step,
the code was parallelized using OpenMP clauses.

The next step is to remove the direction from all cells marked as
outlets (setting their direction values to NONE). Due to the design of
some parts of the algorithm, it is required to ensure that the outlet cells
are the endpoints of the flow paths and do not point to subsequent
cells. As the number of the outlet cells was assumed to be rather small
(a single cell being the most common scenario), this operation did not
seem worth parallelizing.

The prepared one-dimensional flow direction array is then trans-
ferred to the GPU, where it can be further processed.

56

Environmental Modelling and Software 160 (2023) 105613

5

B. Kotyra

2.3.2. Calculation of downstream cell indices
The first kernel to run on the device performs a relatively simple

transformation of the flow direction data into cell indices. A new one-
dimensional array is prepared, where each cell contains the index of its
downstream neighbor (the cell immediately next in the flow path). For
this purpose, the index of each cell is shifted by an appropriate offset
according to the corresponding flow direction.

The outlet cells (marked with the NONE direction) receive their own
index and thus point to themselves. The cells directing the flow outside
the raster boundaries are treated in the same way. Consequently, the
endpoint cell of each flow path is marked with its own index. The
hydrological correctness of the input data is assumed, therefore all
remaining cells should receive the index of one of their neighbors.

This stage requires a single kernel run. Each thread processes a
single cell by reading its flow direction value, calculating the index, and
storing it in a new array. As each cell can be processed independently,
parallelizing this operation was straightforward.

2.3.3. Reduction of flow paths
When the indices of all downstream neighbors are calculated, the

data is ready to be processed by the main loop of the algorithm.
Conceptually, it is now possible to traverse a flow path from any cell
to its endpoint by reading the indices of successive cells (each pointing
to the next downstream neighbor), until reaching a cell that points to
itself. The aim of this stage is to reduce these flow paths to just a single
step. The index array is transformed so that each cell points to the final
endpoint of its flow path. When this stage is done, each cell should
either point to itself (being an endpoint) or directly to another cell
pointing to itself. After this transformation, by reading the index stored
in any cell, it will be possible to immediately identify the watershed
outlet to which it flows.

The transformation of the array is done by executing the path
reduction kernel multiple times (this is considered the main loop of
the algorithm). In a single kernel run, the index of each cell is estab-
lished by reaching its target cell, reading the index stored there and
updating its own if necessary. Conceptually, the following procedure is
performed on each cell:

• read your target index
• reach the target cell and read its index
• if the target cell does not point to itself, save its target index as

your own

The kernel is iteratively executed as long as any changes to the array
are made.

It is important to emphasize why this approach is highly efficient.
The GPU architecture allows this operation to be performed in a mas-
sively parallel manner (each cell is processed in parallel by a separate
thread). Conceptually, the moment a cell is updated with a new target
index, that target cell is also updated in a similar way. Although the first
iteration of the kernel shifts the target indices only a single step in the
flow paths, each subsequent execution allows for a jump approximately
twice as long, using the knowledge accumulated in the previous steps.
As a result, the processing of even large datasets is possible in a
relatively small number of iterations.

It is worth noting that the number of iterations needed is directly
dependent on the longest flow path (as measured by the number of
cells) present in the input data. It can be shown that the time complex-
ity of this stage of the algorithm is sublinear, as a flow path containing
twice as many cells requires just one additional iteration. Conceptually,
the number of cells identified as flowing into a given endpoint grows
exponentially with each step. It is also worth emphasizing that the
number of outlet cells (belonging to the same or different watersheds)
does not affect the execution time.

The first implementation of this idea (labeled ‘‘back buffer’’) uses
two data buffers. In each iteration, the current state of the cells is
read from one buffer, while new values are written into the other. The
roles of the buffers are swapped before the next step. This approach
easily eliminates the scenario where some cells might be read by one
thread and modified by another in a single iteration. This guarantees
completely predictable results at every step. However, the obvious
disadvantage of this implementation is the additional memory require-
ment, as data is continuously transferred between two buffers of the
same size.

The second implementation uses a single buffer, allowing both
reading and writing of the same cells within the same iteration. Al-
though this makes the result of a single step less predictable (it is
not obvious whether a given cell will be read before or after being
modified by another thread), it does not have a negative impact on the
final result of the entire procedure. In fact, this implementation allows
not only lower memory consumption, but in some scenarios also fewer
iterations required and consequently faster execution time. A similar
approach was discussed in Golub and Ortega (1993), where bypassing
synchronization in iterative methods was used to reduce the overhead.
The authors referred to this solution as the asynchronous method.

In assessing this solution, some concern may be related to the
atomicity of the cell modification. While it is not possible to predict
whether a cell will be read before or after being modified by another
thread, it is necessary to guarantee that the value will be correct in both
cases (being either the value from the previous or the current step).
The Device Memory Accesses section of the CUDA C++ Programming
Guide (NVIDIA, 2022) states that an access to data in global memory
is compiled into a single instruction under certain conditions, namely
when the data size is 1, 2, 4, 8, or 16 bytes, and when the data is natu-
rally aligned (meaning the memory address is a multiple of that size).
If these conditions are not met, the data access can be compiled into
multiple instructions, creating potential problems in a multithreaded
context. As the presented implementation meets the above conditions,
any additional synchronization of data access would be redundant.

2.3.4. Assignment of watershed labels
The last step performed on the GPU is converting the target indices

to watershed labels. At this stage, each cell points to its flow path end-
point. Conceptually, this operation assigns each cell a label associated
with the watershed outlet it points to (or NONE if its flow path does
not end at any of the specified outlets).

In the simplest case, assuming a single watershed with only one
outlet point, the operation would be to compare the target index of
each cell with the outlet location. Cells pointing to it would be labeled
as belonging to the watershed area, while the remaining ones as being
located outside of it. However, it was decided that the algorithm should
be able to delineate multiple watersheds at once, each with one or more
outlet cells, so a more general solution had to be implemented.

First, the algorithm prepares an array where the outlet cells contain
the labels of the corresponding watersheds, and all other cells are
marked as NONE. In order to reduce the memory consumption on the
GPU, the same array that originally stored the flow direction values
is used. The array is cleared (filled with NONE values) in parallel by
a simple kernel, then the watershed labels are copied into the outlet
cells.

The conversion is performed in a single kernel execution (all cells
are processed independently of each other in a parallel manner). For
each cell, a thread reads its target index, and then assigns it a label
located at that index in the label array. Consequently, cells with flow
paths ending at specified outlet points receive valid labels. All other
cells are marked with the NONE value. The result of this operation is
saved in the label array. It is worth noting that the outlet cells point to
themselves, so their labels essentially do not change.

Next, the array prepared in this way is transferred back to the host
memory. It is then unpacked into a two-dimensional raster containing a

57

Environmental Modelling and Software 160 (2023) 105613

6

B. Kotyra

Listing 1: CUDA kernel used for determining downstream cell indices

__global__ void directionToTargetKernel(unsigned char* directionArray ,
unsigned int* targetArray ,
int height,
int width)

{
const unsigned int index = blockIdx.x * blockDim.x + threadIdx.x;

if (index < height * width)
{

int row = index / width;
int col = index % width;

switch (directionArray[index])
{

case DIRECTION_RIGHT: ++col; break;
case DIRECTION_DOWN_RIGHT: ++row; ++col; break;
case DIRECTION_DOWN: ++row; break;
case DIRECTION_DOWN_LEFT: ++row; --col; break;
case DIRECTION_LEFT: --col; break;
case DIRECTION_UP_LEFT: --row; --col; break;
case DIRECTION_UP: --row; break;
case DIRECTION_UP_RIGHT: --row; ++col; break;

}

targetArray[index] = ((row >= 0) && (row < height) &&
(col >= 0) && (col < width))
? row * width + col : index;

}
}

Listing 2: Main CUDA kernel used by the flow path reduction algorithm (single-buffer implementation)

__global__ void pathReductionKernel(unsigned int* targetArray ,
unsigned int size,
bool* changes)

{
const unsigned int index = blockIdx.x * blockDim.x + threadIdx.x;

if ((index < size) && (targetArray[index] != targetArray[targetArray[index]]))
{

targetArray[index] = targetArray[targetArray[index]];
*changes = true;

}
}

frame of neutral cells (similar to the structure used to store the original
flow direction data). Early measurements showed that parallelizing this
operation can noticeably reduce its execution time, therefore OpenMP
clauses were used for this section of the code as well.

It is worth noting that the data arrays transferred to the GPU (flow
direction) and from it (watershed labels) are both of 8-bit values. The
index array, which requires considerably more memory, is created and
processed solely on the GPU, never being transferred. This design aims
to minimize the time needed for data transfers.

2.4. Reference algorithms

In order to be able to compare the performance of the proposed
algorithm to the existing solutions, several reference algorithms were
implemented. These implementations were prepared by the author of
this paper, but are based on concepts from the existing literature. Spe-
cial attention was paid to related studies involving parallel processing
and GPU devices — the main techniques described there were adapted
and used in performance comparisons.

2.4.1. Sequential recursive algorithm
As one of the simplest and most intuitive solutions to the prob-

lem, the recursive algorithm was implemented in a straightforward,
single-threaded version. In the first step, the inverse flow direction
matrix is prepared with each cell pointing to its inflow neighbors. Then,
starting with the outlet cells, a recursive procedure is performed. The
procedure ‘‘climbs’’ in a bottom-up manner, recursively invoking itself
for each inflow neighbor. Each cell traversed in this way is marked as
part of the watershed area, as it eventually flows down to the outlet
point where the procedure started.

Since the reference algorithms should be able to work with multiple
outlet points as well, it was necessary to handle a scenario where one of
the outlet cells belongs to another, larger watershed area, marked with
some other outlet point. A simple mechanism was implemented to limit
recursive bottom-up climbing when one of these cells is reached. This
approach eliminates scenarios where any sub-area is traversed more
than once.

It is worth noting that the execution time of this algorithm depends
on the total size of the watershed areas marked in the input data. The

58

Environmental Modelling and Software 160 (2023) 105613

7

B. Kotyra

recursive procedure only moves within these regions, ignoring the cells
outside.

It is also worth emphasizing that in practical applications, this class
of algorithms can lead to memory problems such as stack overflows.
In this paper, these issues are not discussed in detail, as this imple-
mentation is treated purely as a simple benchmark for performance
measurements.

2.4.2. Flow path tracing algorithm (GPU)
This implementation is based on the concept described in Eränen

et al. (2014). In this algorithm, each raster cell is assigned its own
individual thread on the GPU device. The main idea is to follow the
flow path of each cell individually, until a specified stream section or
the DEM boundary is reached. Depending on where the cell’s flow path
ends, a corresponding watershed label is assigned to it.

The algorithm begins with the preparation and transfer of input data
(flow direction and outlet cell markers) to the GPU memory. There, a
working array is prepared where the outlet cells are initialized with
their watershed labels. Initially, all other cells contain the NONE value.
The goal of the algorithm is to assign each cell to the correct watershed
and update its label.

The main part of this implementation is the path tracing kernel,
based on an inner loop. The procedure is performed for each cell that
initially does not have a watershed label assigned to it. Each thread
starts by reading the flow direction value of its cell and then follows it
to its downstream neighbor. This step is repeated until a given thread
reaches the outlet point (marked with no flow direction value) or
crosses the DEM boundary. If the flow path ends at one of the outlet
points, the watershed label is copied from there to the thread’s starting
cell. When this stage is completed, the array can be transferred back to
the host memory.

It should be highlighted that this idea involves different threads
doing the same work multiple times. A single cell in the flow path will
be repeatedly traversed by different threads starting from its upstream
cells. While the parallel nature of GPU devices accelerates processing,
this way of organizing work is a significant drawback of this algorithm.

As in the flow path reduction algorithm, data reshaping and manip-
ulation steps on the host side (both at the first and the last stage) were
parallelized using OpenMP.

2.4.3. Label pulling algorithm (GPU)
Another reference implementation is inspired by the concepts pre-

sented in Mower (1994) and Sit et al. (2019). Again, each cell in the
raster is assigned its own individual thread on the GPU device. The
main idea is to use the flow direction of a cell to locate its downstream
neighbor, and then iteratively reach for the neighbor’s watershed label.
When a valid label becomes available, it is copied (‘‘pulled up’’) to the
thread’s cell (and consequently becomes available to other threads).

The algorithm starts by adjusting the input data format and trans-
ferring it to the GPU (again, data manipulation on the host side is
performed in parallel). There, the flow direction is used to calculate
and store the downstream neighbor index for each cell.

Next, a working array is prepared, where the outlet cells are initial-
ized with the corresponding labels and all other cells are initially set to
NONE. The goal of the algorithm is to propagate the labels from these
outlet points, gradually updating successive upstream cells.

The main loop of this algorithm iteratively calls the GPU kernel.
Each thread reads its own cell first. If the cell does not have a valid
(other than NONE) label yet, the label of its downstream neighbor is
read. If this label is found to be valid, it is copied into the current cell.
The kernel is iteratively invoked as long as at least one thread reports
that a modification has been made.

It should be emphasized that although many threads work in paral-
lel here, only a small fraction of all operations are meaningful. In each
iteration, a given thread reads the label from its cell and reaches its
downstream neighbor if needed. Of all these cycles, only one results

in an actual modification of that thread’s cell. In all other iterations,
the thread either does not yet have a valid label from its neighbor or
has already copied it. The number of kernel calls needed to produce
a complete result is directly, linearly related to the length of the flow
path with the highest cell count.

3. Performance measurements

3.1. Data

The largest dataset used in this work was a DEM with over two
billion cells, originating from publicly available resources of the Head
Office of Geodesy and Cartography (GUGiK). The data covered a part
of south-eastern Poland (one-meter resolution, PL-1992 coordinate sys-
tem). The DEM underwent a depression-filling procedure to ensure its
hydrological correctness. More than 90% of all cells in this dataset
belong to a single watershed area.

This DEM was used to prepare flow direction rasters, later used
as input data for the algorithms. The largest raster was generated
directly from the entire DEM. Next, the dataset was scaled down
to prepare smaller test cases with approximately the same internal
characteristics (covering the same area of land, but at different scales).
A total of 30 input datasets were prepared (one with original size
and 29 scaled down), with the number of cells increasing linearly
between approximately 67.5 million and 2 billion. This approach was
adopted to make it easier to examine the relationship between data size
and algorithm performance, while minimizing other differences in data
characteristics.

3.2. Testing procedure

The direct input for all tested algorithms were flow direction rasters,
loaded from previously prepared files. Before starting the actual tests,
their correctness was verified.

Before the measurements, each algorithm passed through multiple
series of automated tests to confirm that its implementation was cor-
rect. Various scenarios, including specific corner cases, different data
sizes and multithreading configurations were taken into account.

The performance of the algorithms was measured by repeatedly
running each one on every dataset and recording execution times.
In each test, the measurement application was restarted to reflect a
realistic use case and eliminate the potential distortion of execution
times related to the cache memory. Every test included loading a flow
direction file, starting time measurement, executing a given algorithm
and stopping the measurement. All operations needed to produce the
final result (performed after successfully loading the flow direction file
into memory) were treated as part of the algorithm and included in
the time measurements. Additionally, the generated result was verified
after each execution.

All tests were performed on a machine equipped with two Intel Xeon
E5-2670 v3 processors (24 cores in total), 128 GB RAM and NVIDIA
A100 Tensor Core GPU (in 40 GB memory version). The computer was
running under AlmaLinux 8.4. The source code was compiled with the
NVCC compiler from the CUDA Toolkit v11.2. Code optimization (-O3
flag) and OpenMP support were enabled.

For GPU computation, the maximum available thread block size
(1024) was used. It was assumed that the device is initialized and
synchronized. The code sections executed in parallel on the host had
all 24 cores available.

As part of the performance comparison, each tested algorithm was
executed ten times on every input dataset. The task was to delineate
the single largest watershed area in the dataset (a single outlet cell was
marked).

59

Environmental Modelling and Software 160 (2023) 105613

8

B. Kotyra

Table 1
Average execution times (in milliseconds) for selected datasets.

Dataset scale Cells Flow path reduction (single buffer) Flow path reduction (back buffer) Recursive sequential Flow path tracing Label pulling

0.1 202,492,900 159 200 4280 8733 39,596
0.2 404,995,500 292 372 8755 23,449 102,122
0.3 607,499,256 419 488 13,680 41,727 177,975
0.4 810,000,060 537 618 17,886 62,076 257,470
0.5 1,012,480,580 664 778 22,194 84,676 341,582
0.6 1,214,975,592 780 962 26,640 107,384 426,723
0.7 1,417,484,850 927 1127 31,091 130,595 514,730
0.8 1,620,022,250 998 1234 35,478 153,706 599,035
0.9 1,822,478,790 1078 1315 39,286 175,091 680,408
1.0 2,025,045,000 1286 1541 41,628 191,538 761,085

4. Results

4.1. Performance comparison

All results generated in each test passed the automated validation.
The time measurements clearly show that the flow path reduction

algorithm performed by far the best in all cases. Both implementations
of this approach achieved significantly shorter execution times than all
the other tested algorithms.

The single-buffer version of the algorithm achieved execution times
shorter by over 18% on average, compared to the back buffer im-
plementation. This result is not surprising, considering the memory
access patterns and differences in the number of iterations needed, as
described earlier.

Averaging across all datasets, the recursive implementation took
approximately 33 times longer to generate the result than the single-
buffer flow path reduction algorithm. Taking the sequential recursive
approach as a straightforward reference solution, this can be considered
a significant improvement.

The flow path reduction algorithm also proved to be significantly
more efficient than the GPU-based reference solutions. In general, the
measured execution times varied by two orders of magnitude. Across all
datasets, the flow path tracing algorithm took, on average, as much as
119 times longer to execute than the single-buffer implementation. For
the label pulling algorithm, the average ratio was even greater, reach-
ing 483 times. In both cases, the difference becomes more significant
as the data size increases.

It is worth emphasizing that the two GPU-based reference algo-
rithms turned out to be actually less efficient than simple sequential
recursion. As mentioned earlier, much of the computation performed
by parallel versions of these techniques is in fact redundant, which
may help explain these results. The label pulling algorithm achieved by
far the longest execution times of all tested implementations. Although
these measurements are not directly comparable to those presented
in Sit et al. (2019), the results appear to be somewhat in line with the
fact that the GPU-based label pulling technique tested there achieved
longer execution times than some sequential implementations.

Table 1 shows the average execution times for selected datasets.
Fig. 1 presents a visual comparison of the average execution times for
all datasets (results of the back buffer version are not present here
as they were indistinguishable from the single-buffer version at this
scale). Detailed results of all measurements are available in the public
repository.

4.2. Further analysis

After the performance comparison, additional tests and measure-
ments were performed to further investigate the properties of the flow
path reduction algorithm (in the single-buffer version). In particular, it
was examined which stages of the algorithm require the most compu-
tational time. A series of tests was performed using the largest dataset
to measure the execution time of each stage individually.

Fig. 1. Average execution times of tested algorithms across all datasets.

Although the main loop of the algorithm (repeatedly invoking the
GPU kernel) is the most time-consuming step, it turned out to account
for only 28.8% of the total execution time on average. This may seem
surprising, but it can be explained by the fact that this key operation is
effectively parallelized on the GPU and is performed relatively quickly
compared to the other stages.

Data transfers accounted for a large part of the execution time —
transferring input data to the GPU and retrieving the results back to
the host added up to 34.5% of the total time on average. Also data
reshaping operations, despite being parallelized on the host side, added
up to a significant 33.1%. Table 2 presents the averaged measurements
of all individual stages.

Another series of tests was carried out to verify whether the al-
gorithm is able to delineate multiple watersheds simultaneously with-
out the need for additional computational time. Measurements were
performed using the largest dataset. Up to eight watersheds were
delineated simultaneously. Table 3 shows the average execution times.
There were no significant deviations from the time needed to delineate
a single watershed using the same dataset.

5. Conclusions

As part of this work, the watershed delineation algorithms available
in the literature were reviewed. Issues related to their performance
were identified, indicating a need for improvement. A new algorithm
was developed and presented, proposing an approach that effectively
uses the massive parallelism of GPU devices to rapidly delineate water-
shed areas. Its performance was measured and compared with reference
algorithms based on concepts existing in the literature.

The results show that the proposed approach allows for a significant
reduction in the computational time needed to perform the watershed
delineation compared to other tested algorithms. As noted in Haag

60

Environmental Modelling and Software 160 (2023) 105613

9

B. Kotyra

Table 2
Flow path reduction algorithm (single buffer) — computational time of individual stages.
Algorithm stage Average execution time (in milliseconds) Percentage share of total execution time

GPU allocation 11 0.8%
Input reshaping 158 12.2%
Transfer to GPU 231 17.9%
Direction to index 23 1.8%
Main loop 373 28.8%
Index to label 13 1.0%
Transfer from GPU 216 16.6%
Result reshaping 271 20.9%

Table 3
Flow path reduction algorithm (single buffer) — delineating multiple watersheds
simultaneously.

Number of watersheds Average execution time (in milliseconds)

2 1283
3 1304
4 1275
5 1258
6 1263
7 1259
8 1293

et al. (2018), the existing techniques are insufficient to delineate the
watershed boundaries ‘on the fly’. The author believes that this work
can help fill this gap, allowing for a fast delineation of watersheds
directly from basic flow direction data, even on larger datasets.

The author decided not to use existing GIS software packages as
references in performance comparisons, instead focusing on parallel
algorithms available in the literature. Although accurate measurements
were not carried out, some early tests showed that it is not unusual for
popular GIS platforms to take several orders of magnitude longer to
perform similar operations on a machine with the same specification.
It seems clear that there is still room for significant improvement.

It is worth emphasizing that the solution presented in this paper
makes it possible to delineate multiple watersheds simultaneously (as
well as use multiple outlet cells for the same watershed) with prac-
tically zero additional computational costs. This can be considered a
significant advantage of this method, especially in the context of the
cited literature.

In fact, delineating a single watershed area could be considered a
special case of the more general task discussed here. An implemen-
tation focusing specifically on this scenario could possibly reduce the
computation time of some stages even further.

While the techniques and ideas presented in this paper were de-
signed for square-grid DEMs, they seem to be easily applicable to
other types of data as well. This may prove important, as recent
studies focused on hexagonal grids have shown promising results (Liao
et al., 2020). In addition, although the presented concepts were devel-
oped specifically for watershed delineation, perhaps they could also be
adapted to other similarly structured modeling issues.

Software availability

• Software: Watershed delineation algorithms
• Description: Source code of all algorithms developed, tested and

presented as part of this work (including a simple measurement
application)

• Developer: Bartłomiej Kotyra
• Contact address: bartlomiej.kotyra@mail.umcs.pl
• Language: C++11, CUDA, OpenMP
• Libraries required: GDAL (Geospatial Data Abstraction Library)
• Availability: Freely available at https://github.com/bkotyra/wat

ershed_delineation_gpu/

Declaration of competing interest

The author declares that he has no known competing financial inter-
ests or personal relationships that could have appeared to influence the
work reported in this paper. This research did not receive any specific
grant from funding agencies in the public, commercial, or not-for-profit
sectors.

Data availability

The source code is available in a public repository. The data used in
performance measurement originate from publicly available resources
(referenced in the manuscript).

References

Arge, L., Chase, J., Halpin, P., Toma, L., Vitter, J., Urban, D., Wickremesinghe, R.,
2003. Efficient flow computation on massive grid terrain datasets. GeoInformatica
7, 283–313. http://dx.doi.org/10.1023/A:1025526421410.

Baker, M.E., Weller, D.E., Jordan, T.E., 2006. Comparison of automated watershed
delineations: Effects on Land Cover Areas, percentages, and relationships to nutrient
discharge. Photogramm. Eng. Remote Sens. 72 (2), 159–168. http://dx.doi.org/10.
14358/PERS.72.2.159.

Barnes, R., 2017. Parallel non-divergent flow accumulation for trillion cell digital
elevation models on desktops or clusters. Environ. Model. Softw. 92, 202–212.
http://dx.doi.org/10.1016/j.envsoft.2017.02.022.

Barnes, R., Lehman, C., Mulla, D., 2014. Priority-flood: An optimal depression-filling
and watershed-labeling algorithm for digital elevation models. Comput. Geosci. 62,
117–127. http://dx.doi.org/10.1016/j.cageo.2013.04.024.

Barták, V., 2009. How to extract river networks and catchment boundaries from DEM:
a review of digital terrain analysis techniques. J. Landsc. Stud. 2, 57–68.

Beucher, S., Meyer, F., 1993. The morphological approach to segmentation: The water-
shed transformation. 34, pp. 433–481. http://dx.doi.org/10.1201/9781482277234-
12,

Castronova, A.M., Goodall, J.L., 2014. A hierarchical network-based algorithm for multi-
scale watershed delineation. Comput. Geosci. 72, 156–166. http://dx.doi.org/10.
1016/j.cageo.2014.07.014.

Chapman, B., Jost, G., Pas, R.v.d., 2007. Using OpenMP: Portable Shared Memory
Parallel Programming. The MIT Press.

Chen, B., Ma, C., Xiao, Y., Gao, H., Shi, P., Zheng, J., 2021. Retaining relative height
information: An enhanced technique for depression treatment in digital elevation
models. Water 13 (23), http://dx.doi.org/10.3390/w13233347.

Cheng, J., Grossman, M., McKercher, T. (Eds.), 2014. Professional CUDA C
Programming. Wiley and Sons.

Choi, J.-Y., Engel, B., 2003. Real-time watershed delineation system using Web-GIS.
J. Comput. Civ. Eng. 17, http://dx.doi.org/10.1061/(ASCE)0887-3801(2003)17:
3(189).

Chow, V., Maidment, D., Mays, L., 1988. Applied Hydrology. McGraw-Hill.
Daniel, E., 2011. Watershed modeling and its applications: A state-of-the-art review.

Open Hydrol. J. 5, 26–50. http://dx.doi.org/10.2174/1874378101105010026.
de Azeredo Freitas, H.R., da Costa Freitas, C., Rosim, S., de Freitas Oliveira, J.R., 2016.

Drainage networks and watersheds delineation derived from TIN-based digital
elevation models. Comput. Geosci. 92, 21–37. http://dx.doi.org/10.1016/j.cageo.
2016.04.003.

Digabel, H., Lantuéjoul, C., 1978. Iterative algorithms. In: Verlag, R. (Ed.), Proceedings
of the 2nd European Symposium Quantitative Analysis of Microstructures in
Material Science, Biology and Medicine. pp. 85–99.

Dmitruk, K., Denkowski, M., Mikołajczak, P., Benedykciuk, E., 2021. The method for
adaptive material classification and pseudo-coloring of the baggage X-Ray images.
In: Computer Analysis of Images and Patterns. Springer International Publishing,
Cham, pp. 75–87. http://dx.doi.org/10.1007/978-3-030-89131-2_7.

61

Environmental Modelling and Software 160 (2023) 105613

10

B. Kotyra

Do, H.-T., Limet, S., Melin, E., 2011. Parallel computing flow accumulation in large
digital elevation models. Procedia Comput. Sci. 4, 2277–2286. http://dx.doi.
org/10.1016/j.procs.2011.04.248, Proceedings of the International Conference on
Computational Science, ICCS 2011.

Eränen, D., Oksanen, J., Westerholm, J., Sarjakoski, T., 2014. A full graphics processing
unit implementation of uncertainty-aware drainage basin delineation. Comput.
Geosci. 73, 48–60. http://dx.doi.org/10.1016/j.cageo.2014.08.012.

Fairfield, J., Leymarie, P., 1991. Drainage networks from grid digital elevation models.
Water Resour. Res. 27 (5), 709–717. http://dx.doi.org/10.1029/90WR02658.

Freeman, T., 1991. Calculating catchment area with divergent flow based on a regular
grid. Comput. Geosci. 17 (3), 413–422. http://dx.doi.org/10.1016/0098-3004(91)
90048-I.

Golub, G., Ortega, J.M., 1993. Chapter 8 - iterative methods. In: Golub, G., Ortega, J.M.
(Eds.), Scientific Computing. Academic Press, San Diego, pp. 321–369. http://dx.
doi.org/10.1016/B978-0-12-289253-0.50012-9.

Haag, S., Schwartz, D., Shakibajahromi, B., Campagna, M., Shokoufandeh, A., 2020. A
fast algorithm to delineate watershed boundaries for simple geometries. Environ.
Model. Softw. 134, 104842. http://dx.doi.org/10.1016/j.envsoft.2020.104842.

Haag, S., Shakibajahromi, B., Shokoufandeh, A., 2018. A new rapid watershed delin-
eation algorithm for 2D flow direction grids. Environ. Model. Softw. 109, 420–428.
http://dx.doi.org/10.1016/j.envsoft.2018.08.017.

Hillis, W.D., Steele, G.L., 1986. Data parallel algorithms. Commun. ACM 29 (12),
1170–1183. http://dx.doi.org/10.1145/7902.7903.

Jenson, S.K., Domingue, J.O., 1988. Extracting topographic structure from digital
elevation data for geographic information system analysis. Photogramm. Eng.
Remote Sens. 54 (11), 1593–1600.

Jones, N., Wright, S., Maidment, D., 1990. Watershed delineation with triangle-
based terrain models. J. Hydraul. Eng. 116, http://dx.doi.org/10.1061/(ASCE)
0733-9429(1990)116:10(1232).

Karimipour, F., Ghandehari, M., Ledoux, H., 2013. Watershed delineation from the
medial axis of river networks. Comput. Geosci. 59, 132–147. http://dx.doi.org/10.
1016/j.cageo.2013.06.004.

Kornilov, A.S., Safonov, I.V., 2018. An overview of watershed algorithm implemen-
tations in open source libraries. J. Imaging 4 (10), http://dx.doi.org/10.3390/
jimaging4100123.

Kornilov, A., Safonov, I., Yakimchuk, I., 2022. A review of watershed implementations
for segmentation of volumetric images. J. Imaging 8 (5), http://dx.doi.org/10.
3390/jimaging8050127.

Kotyra, B., Chabudziński, L., Stpiczyński, P., 2021. High-performance parallel imple-
mentations of flow accumulation algorithms for multicore architectures. Comput.
Geosci. 151, 104741. http://dx.doi.org/10.1016/j.cageo.2021.104741.

Liao, C., Tesfa, T., Duan, Z., Leung, L.R., 2020. Watershed delineation on a hexagonal
mesh grid. Environ. Model. Softw. 128, 104702. http://dx.doi.org/10.1016/j.
envsoft.2020.104702.

Lindsay, J.B., 2016. Efficient hybrid breaching-filling sink removal methods for flow
path enforcement in digital elevation models. Hydrol. Process. 30 (6), 846–857.
http://dx.doi.org/10.1002/hyp.10648.

Lindsay, J.B., Rothwell, J.J., Davies, H., 2008. Mapping outlet points used for watershed
delineation onto DEM-derived stream networks. Water Resour. Res. 44 (8), http:
//dx.doi.org/10.1029/2007WR006507.

López-Vicente, M., Pérez-Bielsa, C., López-Montero, T., Lambán, L., Navas, A., 2014.
Runoff simulation with eight different flow accumulation algorithms: Recommen-
dations using a spatially distributed and open-source model. Environ. Model. Softw.
62, 11–21. http://dx.doi.org/10.1016/j.envsoft.2014.08.025.

Makinen, V., Sarjakoski, T., Oksanen, J., Westerholm, J., 2016. A multi-GPU program
for uncertainty-aware drainage basin delineation: Scalability benchmarking with
country-wide data sets. IEEE Geosci. Remote Sens. Mag. 4 (3), 59–68. http://dx.
doi.org/10.1109/MGRS.2016.2561405.

Marks, D., Dozier, J., Frew, J., 1984. Automated basin delineation from digital elevation
data. Geo-Processing 2, 299–311.

Martz, L.W., Garbrecht, J., 1993. Automated extraction of drainage network and
watershed data from digital elevation models. J. Am. Water Resour. Assoc. 29
(6), 901–908. http://dx.doi.org/10.1111/j.1752-1688.1993.tb03250.x.

McGough, A.S., Liang, S., Rapoportas, M., Grey, R., Vinod, G.K., Maddy, D., True-
man, A., Wainwright, J., 2012. Massively parallel landscape-evolution modelling
using general purpose graphical processing units. In: 2012 19th International
Conference on High Performance Computing. pp. 1–10. http://dx.doi.org/10.1109/
HiPC.2012.6507488.

Minaee, S., Boykov, Y., Porikli, F., Plaza, A., Kehtarnavaz, N., Terzopoulos, D., 2022.
Image segmentation using deep learning: A survey. IEEE Trans. Pattern Anal. Mach.
Intell. 44 (7), 3523–3542. http://dx.doi.org/10.1109/TPAMI.2021.3059968.

Mower, J.E., 1994. Data-parallel procedures for drainage basin analysis. Comput.
Geosci. 20 (9), 1365–1378. http://dx.doi.org/10.1016/0098-3004(94)90060-4.

Nelson, E., Jones, N., Miller, A., 1994. Algorithm for precise drainage-basin delin-
eation. J. Hydraul. Eng. 120, http://dx.doi.org/10.1061/(ASCE)0733-9429(1994)
120:3(298).

NVIDIA, 2022. CUDA C++ Programming Guide, version 11.7.1. URL: https://docs.
nvidia.com/cuda/cuda-c-programming-guide/.

O’Callaghan, J.F., Mark, D.M., 1984. The extraction of drainage networks from digital
elevation data. Comput. Vis. Graph. Image Process. 28 (3), 323–344. http://dx.doi.
org/10.1016/S0734-189X(84)80011-0.

Ortega, L., Rueda, A., 2010. Parallel drainage network computation on CUDA. Comput.
Geosci. 36 (2), 171–178. http://dx.doi.org/10.1016/j.cageo.2009.07.005.

Planchon, O., Darboux, F., 2002. A fast, simple and versatile algorithm to fill the
depressions of digital elevation models. CATENA 46 (2), 159–176. http://dx.doi.
org/10.1016/S0341-8162(01)00164-3.

Qin, C.-Z., Zhan, L., 2012. Parallelizing flow-accumulation calculations on graph-
ics processing units—From iterative DEM preprocessing algorithm to recursive
multiple-flow-direction algorithm. Comput. Geosci. 43, 7–16. http://dx.doi.org/10.
1016/j.cageo.2012.02.022.

Roerdink, J., Meijster, A., 2000. The watershed transform: Definitions, algorithms and
parallelization strategies. Fund. Inform. 41, http://dx.doi.org/10.3233/FI-2000-
411207.

Rueda, A.J., Noguera, J.M., Luque, A., 2016. A comparison of native GPU computing
versus OpenACC for implementing flow-routing algorithms in hydrological appli-
cations. Comput. Geosci. 87, 91–100. http://dx.doi.org/10.1016/j.cageo.2015.12.
004.

Seibert, J., McGlynn, B.L., 2007. A new triangular multiple flow direction algorithm
for computing upslope areas from gridded digital elevation models. Water Resour.
Res. 43 (4), http://dx.doi.org/10.1029/2006WR005128.

Singh, V., 2018. Hydrologic modeling: progress and future directions. Geosci. Lett. 5,
http://dx.doi.org/10.1186/s40562-018-0113-z.

Sit, M., Sermet, Y., Demir, I., 2019. Optimized watershed delineation library for server-
side and client-side web applications. Open Geospat. Data Softw. Stand. 4, 8.
http://dx.doi.org/10.1186/s40965-019-0068-9.

Sten, J., Lilja, H., Hyväluoma, J., Westerholm, J., Aspnäs, M., 2016. Parallel flow
accumulation algorithms for graphical processing units with application to RUSLE
model. Comput. Geosci. 89, 88–95. http://dx.doi.org/10.1016/j.cageo.2016.01.006.

Tang, W., Wang, S., 2020. High performance computing for geospatial applications.
http://dx.doi.org/10.1007/978-3-030-47998-5.

Tarboton, D.G., 1997. A new method for the determination of flow directions and
upslope areas in grid digital elevation models. Water Resour. Res. 33 (2), 309–319.
http://dx.doi.org/10.1029/96WR03137.

Tarboton, D., Watson, D., Wallace, R., Schreuders, K., Tesfa, T., 2009. Hydrologic
Terrain Processing Using Parallel Computing. Civil and Environmental Engineering
Faculty Publications. Paper 2715, p. 0867.

Tesfa, T.K., Tarboton, D.G., Watson, D.W., Schreuders, K.A., Baker, M.E., Wallace, R.M.,
2011. Extraction of hydrological proximity measures from DEMs using parallel
processing. Environ. Model. Softw. 26 (12), 1696–1709. http://dx.doi.org/10.1016/
j.envsoft.2011.07.018.

Vitor, G., Körbes, A., Lotufo, R., Ferreira, J., 2010. Analysis of a step-based watershed
algorithm using CUDA. Int. J. Nat. Comput. Res. 1, 16–28. http://dx.doi.org/10.
4018/jncr.2010100102.

Wallis, C., Watson, D., Tarboton, D., Wallace, R., 2009. Parallel flow-direction and
contributing area calculation for hydrology analysis in digital elevation models. In:
Proceedings of the International Conference on Parallel and Distributed Processing
Techniques and Applications. pp. 467–472.

Wang, L., Liu, H., 2006. An efficient method for identifying and filling surface
depressions in digital elevation models for hydrologic analysis and modelling. Int. J.
Geogr. Inf. Sci. 20 (2), 193–213. http://dx.doi.org/10.1080/13658810500433453.

Wilson, J., Aggett, G., Deng, Y., Lam, C., 2008. Water in the landscape: A review
of contemporary flow routing algorithms. Adv. Digit. Terrain Anal. 213–236.
http://dx.doi.org/10.1007/978-3-540-77800-4_12.

Wu, Q., Chen, Y., Wilson, J.P., Liu, X., Li, H., 2019. An effective parallelization
algorithm for DEM generalization based on CUDA. Environ. Model. Softw. 114,
64–74. http://dx.doi.org/10.1016/j.envsoft.2019.01.002.

Yeghiazaryan, V., Voiculescu, I., 2018. Path reducing watershed for the GPU. In: 2018
IEEE Winter Conference on Applications of Computer Vision. WACV, pp. 577–585.
http://dx.doi.org/10.1109/WACV.2018.00069.

Yuheng, S., Hao, Y., 2017. Image segmentation algorithms overview. http://dx.doi.org/
10.48550/ARXIV.1707.02051.

Zhou, G., Sun, Z., Fu, S., 2016. An efficient variant of the Priority-Flood algorithm for
filling depressions in raster digital elevation models. Comput. Geosci. 90, 87–96.
http://dx.doi.org/10.1016/j.cageo.2016.02.021.

Zhou, G., Wei, H., Fu, S., 2019. A fast and simple algorithm for calculating flow
accumulation matrices from raster digital elevation. Front. Earth Sci. 13 (2),
317–326. http://dx.doi.org/10.1007/s11707-018-0725-9.

Zhu, L.-J., Liu, J., Qin, C.-Z., Zhu, A.-X., 2019. A modular and parallelized watershed
modeling framework. Environ. Model. Softw. 122, 104526. http://dx.doi.org/10.
1016/j.envsoft.2019.104526.

62

Dodatek C

Fast parallel algorithms for �nding the

longest �ow paths in �ow direction

grids

63

Environmental Modelling and Software 167 (2023) 105728

Available online 24 May 2023
1364-8152/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Contents lists available at ScienceDirect

Environmental Modelling and Software

journal homepage: www.elsevier.com/locate/envsoft

Position Paper

Fast parallel algorithms for finding the longest flow paths in flow direction
grids
Bartłomiej Kotyra a,∗, Łukasz Chabudziński b

a Maria Curie-Skłodowska University, Institute of Computer Science, ul. Akademicka 9, 20-033 Lublin, Poland
b Maria Curie-Skłodowska University, Institute of Earth and Environmental Sciences, al. Kraśnicka 2d, 20-718 Lublin, Poland

A R T I C L E I N F O

Keywords:
Longest flow path
GIS
Hydrology
Parallel algorithms
High-performance computing
OpenMP

A B S T R A C T

In hydrological modeling, the longest flow path is an important feature used to characterize a catchment.
Many existing GIS platforms offer dedicated software tools for its identification and delineation, generally
implementing methods based on searching through the flow direction data. Unfortunately, currently available
algorithms for this task often turn out to be inefficient, especially when working with modern large datasets.
Moreover, existing methods often rely on incorrect assumptions or perform calculations in a way that can lead
to precision issues. In this work, new parallel algorithms were developed, tested and presented. Measurements
show that two of the newly proposed implementations are able to identify the longest flow paths in significantly
less time compared with other existing methods.

Software availability

Software: Algorithms for finding the longest flow paths
Description: Source code of all algorithms developed, tested and
presented as part of this work (including a simple measurement
application)
Developer: Bartłomiej Kotyra
Contact address: bartlomiej.kotyra@mail.umcs.pl
Language: C++11, OpenMP
Libraries required: GDAL (Geospatial Data Abstraction Library)
Availability: Freely available at
https://github.com/bkotyra/longest_flow_path/

1. Introduction

In the area of hydrological modeling, catchments are characterized
and described using multiple features and various parameters. One of
the important ones is the longest flow path, also referred to as the
longest watercourse or the longest drainage path (Dawson et al., 2006;
Huang and Lee, 2016; Michailidi et al., 2018).

In the hydrological context, a flow path is understood as a route
followed by water draining from one point to another. There are
multiple flow paths of varying lengths in any given catchment. The
longest one leads to the watershed outlet, usually starting at some
location on the watershed boundary, although this is not always the
case (Cho, 2020).

∗ Corresponding author.
E-mail addresses: bartlomiej.kotyra@mail.umcs.pl (B. Kotyra), lukasz.chabudzinski@mail.umcs.pl (Ł. Chabudziński).

The longest flow path is typically used to determine the attributes
for hydrological model parameterization, mainly the time of concen-
tration and the lag time of a watershed (Michailidi et al., 2018; Sultan
et al., 2022). It can also be used as a basis for calculating some
of the properties and characteristics of a catchment (Maathuis and
Wang, 2006; Jaffrés et al., 2021). The longest flow path, as well as
other features derived from it, may be useful in estimating certain
flood-related indices (Karalis et al., 2014; Latt et al., 2015).

Both early and modern GIS software packages consider the longest
flow path as an essential element in hydrological modeling and pro-
vide tools for its delineation and analysis (Gallant and Wilson, 1996;
Maidment and Morehouse, 2002; Merkel et al., 2008; Ramly and Tahir,
2016). Recent literature draws attention to the time-consuming nature
of this operation and the low processing speed of the commonly used
tools (Castro and Maidment, 2020). Attempts are still being made to
develop new, more efficient algorithms for this task (Cho, 2020).

The geospatial data available today offers high resolution and un-
precedented precision, but this comes at the cost of significant dataset
sizes, creating new computational challenges (Sten et al., 2016). At
the same time, modern hardware architectures make the access to
multicore and many-core processors more and more common. Program-
ming standards like OpenMP make it relatively easy to achieve high
computing performance on these devices due to parallelism (Chapman
et al., 2007). However, designing and implementing parallel algorithms
still remains a non-trivial task, leading to a significant gap between

https://doi.org/10.1016/j.envsoft.2023.105728
Received 25 November 2022; Accepted 16 May 2023

64

Environmental Modelling and Software 167 (2023) 105728

2

B. Kotyra and Ł. Chabudziński

the existing technology and its practical applications (Tang and Wang,
2020). The available software often fails to efficiently use the underly-
ing hardware and proves to be impractical in the context of modern,
large datasets.

The main motivation behind this research was the need for more
efficient tools and techniques for finding the longest flow paths in
geospatial data. As can be concluded from a review of the available
software and literature, there is still room for significant improvement.
The goal of this study was to develop and present new, fast raster-
based algorithms for solving this task, with particular attention to the
possibilities offered by modern multicore architectures. The authors
believe that this work improves upon existing solutions and takes a
significant step towards higher performance.

The remainder of this chapter outlines the foundations of exist-
ing techniques for finding the longest flow paths in raster data, and
describes the available algorithms and software tools for this task.
Section 2 specifies the constraints of the problem to be solved (along
with its specific variants) and describes the approach used in this work
to design and implement new, more efficient solutions. In Section 3, all
the developed algorithms (a total of seven implementations, including
two reference ones) are presented and discussed in detail. Section 4
describes the data and procedures used to measure and evaluate the
performance of the proposed algorithms, including comparisons with
existing GIS software. The results of these measurements are presented
and discussed in Section 5. Finally, the conclusions of this study,
its limitations and possible future work are briefly summarized in
Section 6.

1.1. Existing techniques

The existing literature related to finding the longest flow path, as
well as the available software tools, generally refer to and build upon
the approach based on square-grid digital elevation models (DEMs)
and their derivative data (specifically flow direction rasters). The basic
concepts behind these methods are well known and have been widely
used for decades (O’Callaghan and Mark, 1984; Jenson and Domingue,
1988).

In the literature, there are two significantly different approaches to
the concept of flow direction. In the single-flow approach, each raster
cell points to one of its immediate neighbors, directing all flow to a
single downstream cell. In the multiple-flow approach, the flow may
be proportionally divided among more than one neighbor (Schäuble
et al., 2008). Both approaches have multiple practical applications, as
some problems are naturally better expressed in terms of one or the
other (Barták, 2009). However, different algorithms for determining
the flow direction can lead to significantly varying results (Huang and
Lee, 2016). The single-flow approach is most often considered more
appropriate for determining and analyzing flow paths, as multiple-
flow algorithms lead to excessive dispersion and overestimated path
lengths (Orlandini and Moretti, 2009; Li et al., 2020).

The length of a given flow path is typically estimated as the sum of
the distances between successive raster cells belonging to that path (Paz
et al., 2008). Fig. 1 illustrates this fundamental idea. The flow path
can be conceptually expressed as a line connecting the centers of
consecutive downstream cells. The center-to-center distance between
orthogonal (horizontal and vertical) neighbors is considered equal to
the dimension of a single cell, and the distance between diagonal
neighbors is calculated as the dimension of the cell multiplied by the
square root of 2 (≈1.414). Although this measure is essentially a simple
approximation, it is generally regarded as being relatively consistent
with the actual length of the flow path (Fairfield and Leymarie, 1991;
Paz et al., 2008). The flow direction raster is used as fundamental data
in these calculations, as it allows any flow path to be traced cell by
cell (Smith, 1997; Cho, 2020; Lindsay, 2022). It should be noted that
while this kind of approach may be considered unsuitable for some
other hydrological modeling tasks (i.e. requiring consideration of a

Fig. 1. Estimating the length of a flow path by accumulating distances between its
successive cells.

wider range of factors), it is broadly accepted and implemented as a
standard method for quickly comparing flow paths when searching for
the longest one.

The remaining sections of this paper deal with techniques, algo-
rithms and tools based on these foundations.

1.1.1. Algorithms described in the literature
The earliest published works discussing the algorithmic determi-

nation of the longest flow path, of which the authors are aware,
were presented in Smith (1995, 1997). The papers are focused on the
architecture of a software system called the Hydrologic Data Develop-
ment System (HDDS). It uses spatial-analysis techniques to determine
multiple hydrologic parameters, including the length and location of
the longest flow path.

The approach used in the HDDS is based on square-grid DEMs.
The procedure of determining the longest flow path begins with the
preparation of two additional rasters, which are calculated using the
flow direction data. In the first one, each cell contains its downstream
flow length (which is defined as the downslope distance to a pour
point). The second one consists of upstream flow length values (defined
as the distance to the drainage divide). The values of the corresponding
cells from both rasters are then added together. The highest values
obtained in this way are equal to the length of the longest flow path.
Importantly, only cells belonging to the longest path can obtain the
maximum value, which allows them to be easily identified (all other
cells obtain lower values).

Olivera and Maidment (1998) presented another grid-based geo-
graphic information system for hydrologic modeling. The method for
determining the longest flow path described here is generally the
same as in Smith (1997). The system requires both the upstream and
downstream flow length rasters as input data. These rasters are added
together, and then the set of cells with the highest sum is identified as
the longest flow path. This approach was later described in more detail
by the same author in Olivera (2001).

Cho (2020) proposed using a recursive approach to improve perfor-
mance over existing techniques and reduce computational time needed.
The basic idea behind this method is to search the flow direction
raster by starting at the outlet point and moving upstream (recursively
invoking the calculation of the longest flow path for topographically
higher cells). This approach makes it possible to avoid calculating
downstream and upstream flow length rasters. Due to memory issues
typical of recursion (i.e. stack overflows), an iterative version of the
algorithm was also presented and recommended for use.

Developing this concept further, Cho (2020) proposed a strategy
based on Hack’s law (Hack, 1957) to filter out some of the flow
direction branches as early as possible and stop the recursive procedure
from traversing them. This method uses flow accumulation values
(calculated using flow direction data) to estimate potential longest
flow lengths. The cells that cannot lead to the longest flow path are
rejected early. While this approach does avoid traversing some of the
suboptimal areas, it requires flow accumulation to be calculated, which
is a time-consuming step in itself.

65

Environmental Modelling and Software 167 (2023) 105728

3

B. Kotyra and Ł. Chabudziński

Apart from the mentioned works, little attention has been paid to
the problem of algorithmic determination of the longest flow paths.
Huang and Lee (2016) investigated the impact of various flow di-
rection algorithms on selected geomorphological properties, including
the longest watercourse, but specific methods for determining the
longest path were not discussed here. Related studies discussing the
accuracy of flow paths derived from DEMs were presented in Paz et al.
(2008), Orlandini and Moretti (2009) and Li et al. (2020).

The authors of this work are unaware of any previous studies
focused on developing parallel algorithms for identifying the longest
flow paths.

1.1.2. Existing software tools
The widespread use of the longest flow path in hydrological analysis

has led to the development of dedicated tools for its delineation in
various GIS applications (Maidment and Morehouse, 2002; Cho, 2020;
Lindsay, 2022) and hydrological modeling software (Arnold et al.,
1998; Feldman, 2000). Depending on the tool, different methods may
be used to calculate the result.

On many GIS platforms, it is possible to delineate the longest flow
path by following a procedure similar to the one proposed in Smith
(1997). Even if a dedicated tool for this task is not available, it may still
be possible to identify the longest flow path, as long as the platform
provides the ability to compute flow-length rasters. For this kind of
approach, the flow direction raster is used as the main input data.

Using dedicated tools to find the longest flow path is usually
straightforward. Unfortunately, the underlying algorithms and proce-
dures are not always openly described by their developers.

The Longest Flow Path tool from the Arc Hydro package requires a
catchment (or possibly multiple ones) as a vector layer, along with a
flow direction raster (Djokic et al., 2011). The vector layer attributes
must include a HydroID field with unique values identifying each sub-
catchment. It is important to note that this tool does not take outlet
points as input, and the algorithm can in fact delineate the longest path
beyond the catchment boundary (stopping at the edge of the available
data). Therefore, in order to correctly determine the path within a given
catchment, it is necessary to first remove the flow direction values
outside its boundaries (by setting them to NoData) or to properly clip
the raster to the area.

Regardless of the characteristics of the drainage network, Arc Hydro
delineates only a single path. By the underlying assumption, the path
can only begin in the watershed boundary zone (which, in fact, is not
always the case). The result is returned as a vector layer.

It is worth noting that due to the widespread popularity of Arc
Hydro, some of its features (including the Longest Flow Path tool)
are often directly integrated into other hydrological modeling applica-
tions (Olivera et al., 2003; Merkel et al., 2008).

Multiple modules for determining the longest flow path were de-
veloped and made available for the open-source GRASS GIS plat-
form (Neteler et al., 2012). The most recent one, named r.accumulate,
was described in detail by the developer in Cho (2020). As input, it
takes outlet points (marking the endpoints of the paths searched) and
a drainage direction raster (which can be generated in the GRASS
environment using the r.watershed tool). Depending on the drainage
network, the end result may be a single path or multiple alternative
ones. The tool returns them as a vector layer where each path is a
separate object.

WhiteboxTools is another advanced, although less known platform
with a dedicated tool for determining the longest flow path (Lindsay,
2016, 2022). The LongestFlowpath tool operates on a depressionless
DEM (calculating the flow direction internally), along with a raster
that defines one or more areas to be analyzed. The design assumes that
the longest flow paths must start at the watershed boundaries (which,
again, may not be true in some cases). The results are returned as vector
objects.

In recent years, an increasing number of software solutions, includ-
ing GIS and hydrological modeling platforms, base their architecture on
web services and cloud computing (Goodall et al., 2011; Ames et al.,
2012; Vitolo et al., 2015; Gichamo et al., 2020). Just a single example
of such a tool is SCALGO Live (SCALGO, 2022). The platform, designed
and built on a web-based architecture, is intended for broadly under-
stood water management. Implementing a wide set of raster algorithms,
the tool is able to automatically perform a variety of hydrological
modeling operations, including determining the longest flow path in
a given catchment.

To the knowledge of the authors of this work, there are currently
no tools available that determine the longest flow paths using parallel
algorithms.

2. Methods

Considering the numerous applications of the longest flow path in
hydrological modeling, as well as the existence of various software tools
for its determination and the attempts to improve their performance, it
can be concluded that there is a need to develop new, more efficient
algorithms for solving this task.

2.1. Adopted terminology

For referring to specific cell types in raster data, this paper adopts
a vocabulary based on that proposed in Tarboton et al. (1991):

• source cell — a cell with no inflow neighbors (the most upstream
cell in a given flow path, and thus its starting point)

• link cell — a cell with a single inflow neighbor
• junction cell — a cell with more than one inflow neighbor (where

two or more drainage channels merge into one)
• outlet cell — the most downstream cell in a given catchment

(where all drainage is eventually concentrated)

2.2. Problem specification

The key problem to be solved by each of the developed algorithms
is to identify the longest flow path among all those ending at a given
outlet point.

It is assumed that the underlying spatial data can be expressed in
the form of square-grid rasters. The input dataset for the algorithms
consists of a hydrologically correct flow direction raster (generated
by any single-flow algorithm) and the location (possibly multiple lo-
cations) of the outlet point for which the longest flow path is to be
found. As there are many single-flow direction algorithms with different
properties (any of which could be preferred by the user), this form of
data was chosen as the basic input rather than the raw digital elevation
model. The location of the outlet cell (possibly multiple outlet cells) is
determined by the user and considered as part of the input data.

While some existing tools require auxiliary input (e.g. a watershed
mask raster), it is assumed that the algorithms considered in this work
do not have access to any additional datasets. Any processing of the
basic input data is considered part of the algorithm (and therefore
reflected in performance measurements).

It is important to note that, in this work, the resolution of the input
data (and thus the cell size) is generally treated as irrelevant. Assuming
that all cells in the raster have the same dimensions, the process of
identifying the longest flow path does not depend on their particular
sizes. In fact, it is possible to find the longest path in a flow direction
raster without knowing the resolution of the dataset. For this reason, all
algorithms considered in this work were designed and implemented as
resolution-independent. As a unit of measurement for comparing the
lengths of different flow paths, the dimension of a single raster cell
was adopted. An orthogonal step between cells is simply counted as
1, while a diagonal step is counted as the square root of 2 (e.g. a flow

66

Environmental Modelling and Software 167 (2023) 105728

4

B. Kotyra and Ł. Chabudziński

path consisting of three vertical steps is considered to be 3 units long,
regardless of raster resolution).

In terms of the expected result, it is important to allow the identified
flow path to be precisely delineated, usually by marking all raster cells
belonging to it or generating a corresponding vector shape. Therefore,
the correct result of the algorithm will be the location of the starting
point (possibly multiple locations of such points) of the longest flow
path existing for the given input data. This approach allows for high
flexibility in the presentation and use of the result obtained. Assuming
the availability of flow direction data, delineating the path in any
chosen form (e.g. vector object or raster with labeled cells) can be
quickly performed by traversing successive cells from the starting point
downwards.

It is important to emphasize that the longest flow path could po-
tentially start from any cell within the catchment. Some existing tools
implicitly assume that the longest path always starts at the watershed
boundary, but this is simply not correct and may lead to inaccurate
results (Cho, 2020).

2.2.1. Different variants of the problem
Considering the possible use cases, the distinctive needs of the end

users, and the expected characteristics of the input data, it is possible
to define several variants of the task to be solved.

In some cases, it is possible to find more than one longest flow path
within the same catchment (each being equally long). Fig. 2 illustrates
how different paths can be estimated to have the same length. It is
necessary to specify the expected behavior of the algorithm in such
scenarios, as this kind of decision may substantially reshape the task
to be solved, and consequently lead to a different algorithm design.
Finding any of the longest paths might be sufficient in some use cases
(e.g. when only its length is relevant), while identifying all of the
alternatives may be required in others (e.g. when the location of the
selected path may affect subsequent stages of the analysis, and it would
be reasonable to leave this choice to the user).

In this paper, both use cases are considered relevant. For datasets
where more than one longest flow path could be found, the minimum
requirement for all algorithms under development was the ability
to correctly identify at least one of them (each being considered a
valid result). However, the possibility of identifying all alternative
longest paths for the same outlet point was also included in some
designs. While not required of all algorithms, this capability was con-
sidered valuable and implemented where the underlying concept was
compatible.

Another use case to consider is identifying the longest flow paths
for multiple outlet points (e.g. analyzing more than one catchment
within the same dataset simultaneously). As a practical scenario, this
capability is offered by some of the existing tools. While it is always
possible to sequentially execute the search for individual outlet points,
a design that allows them to be processed together in a single algorithm

Fig. 2. Two flow paths of equal estimated lengths leading to the same outlet cell.

run could have significant performance advantages. Depending on how
the calculations are organized, it may be possible to reduce the time
required to identify all the paths individually.

In this work, the minimum requirement for all considered algo-
rithms was to be able to work with a single outlet cell. However, for
some designs, the simultaneous identification of the longest flow paths
for different outlet points would require little or virtually no additional
computational cost. As a valuable property, this mode of operation
was included in compatible implementations. It should be noted that
this capability is only considered for performance reasons and does not
affect the results generated by the algorithm.

2.3. Precision issues and proposed solution

Although the main focus of this study is related to algorithmic effi-
ciency and performance, it is important to also highlight some common
issues related to the accuracy of the calculations and their results. In
particular, the typical way of implementing the path length estimation
method can lead to unnecessary, gradual accumulation of round-off
errors, which in turn may prevent the correct identification of the
longest flow path. It should be emphasized that the issues discussed in
this section are not related to imperfections in the input data, but rather
to the way algorithms and software tools perform their computations
on them.

Precision issues with floating point calculations are well known and
have been considered since the early decades of computers (Wilkinson,
1963). One of the classic problems is sequence summation, where
round-off errors accumulate with each step and can quickly become
significant (Linz, 1970). It is well known that summing a set of floating
point numbers by simply adding consecutive values to the total sum is
not a reliable approach (Caprani, 1975).

As noted in Paz et al. (2008), the length of the flow path is usually
calculated step by step, accumulating the distances between successive
cells. Across all the literature and available source code known to the
authors of this work, this operation is implemented using floating point
calculations, by simply adding consecutive distances to the total sum.
In practice, this approach can lead to a noticeable degree of inaccuracy
in path length estimates.

It is relatively easy to find a case where the accumulation of round-
off errors in existing GIS software results in an inaccurate length
measurement, leading to the incorrect flow path being identified as
the longest. To clearly describe and demonstrate the issue, two simple,
hypothetical flow paths of similar lengths were chosen. Path A con-
sisted of 14 143 vertically connected cells (including the outlet cell),
having a total center-to-center length of 14 142 units. Path B consisted
of 10 001 diagonally connected cells (also including the outlet cell),
thus containing 10000 diagonal center-to-center distances and having
a total length of 10000 ×

√

2 ≈ 14142.136 units. Although the difference
between these estimates is relatively small, the values indicate that path
B is slightly longer and should be considered as the expected, correct
result of an algorithm searching for the longest flow path.

Fig. 3 illustrates the results obtained by following the identification
method from Smith (1997) under ArcGIS Pro 3.0.2. A flow direction
raster with both flow paths (leading to the same outlet cell) was
prepared and used as input dataset. It can be seen that although path A
was measured as might be expected, the length of path B was underesti-
mated. Due to the accumulation of round-off errors, the value obtained
in the flow-length raster is lower than the correct sum of the distances
between successive cells. As a result, path A was incorrectly selected
as the longer one. Although the discrepancy between the calculated
length and the expected, mathematically correct value is not large, the
accumulated error is sufficient to reach the incorrect conclusion.

In this work, an alternative approach is proposed. Instead of a float-
ing point value, a pair of integers can be used to precisely express the
path length, avoiding the accumulation of round-off errors entirely. The
main idea is to count and store the numbers of orthogonal and diagonal

67

Environmental Modelling and Software 167 (2023) 105728

5

B. Kotyra and Ł. Chabudziński

Fig. 3. Inaccurate path length obtained under ArcGIS Pro 3.0.2 (flow-length raster
method).

steps between cells separately. Although eight distinct directions are
considered in single-flow rasters, only these two kinds of distance are
relevant for path length measurements in square-grid data.

The length of a flow path can still be measured by traversing it step
by step, but instead of accumulating the distances between successive
cells, one of the two counters is incremented with each step. Only when
the path length needs to be expressed as a single number, the values are
converted by multiplying the counter of diagonal steps by the square
root of 2 and adding the number of orthogonal steps to it. This method
effectively minimizes the use of floating point calculations by relying
primarily on error-free integer incrementations. Fig. 4 illustrates the
concept.

It should be noted that this approach is mathematically equivalent
to the method of accumulating distances between successive cells.
However, the key difference lies in how the calculations are organized,
and therefore how they are performed by the machine. In practical
implementation, the proposed approach avoids the accumulation of
round-off errors and leads to more precise results. The tests carried out
in the early stages of this work confirmed that this method correctly
solves the case presented in Fig. 3.

It should be emphasized that the concepts presented in this section
are not directly related to algorithmic performance, but to the accuracy
of path length measurements. All algorithms developed and presented
in this work are based on the proposed approach.

Fig. 4. Estimating the length of a flow path by counting orthogonal and diagonal steps
separately.

2.4. Design and implementation

All algorithms developed as part of this work were implemented
in C++. Code sections intended to be executed by multiple threads
simultaneously were parallelized using OpenMP directives.

The data structure developed in Kotyra et al. (2021) was used to
store the rasters in memory. The cells are stored in a two-dimensional
array with an additional (external) single-cell frame of neutral values.
Due to the large number of GIS algorithms accessing the values of the
nearest neighboring cells, this design often makes it possible to simplify
the code and increase its efficiency.

The aim during the design and implementation phase was to achieve
the shortest possible execution times while maintaining the maximum
possible precision of the results. It was assumed that the task of
identifying the longest flow paths is solvable in linear time. Thus, only
algorithms with linear time complexity were considered in this work.

3. Developed algorithms

3.1. Reference implementations

As the first step in the development and evaluation of new algo-
rithms, the basic recursive approach was adapted and expanded upon.
Two relatively straightforward implementations were prepared, one
sequential and the other attempting to parallelize computations using
OpenMP tasks. Although both of them were treated mainly as reference
solutions, they were also the starting point for the development of
entirely new algorithms, and therefore they are presented here first.

Only solving the fundamental version of the problem (with a single
outlet point and identifying any of the longest paths) was required of
the reference implementations. It is worth noting that the developed
adaptations of the recursive approach still follow the requirements and
incorporate the concepts introduced in this work (e.g. their methods of
comparing path lengths are based on counting orthogonal and diagonal
steps separately).

3.1.1. Recursive approach (sequential)
The underlying idea of the recursive approach is to search through

all flow paths within a catchment by starting at the outlet cell and
‘‘climbing’’ upstream (contrary to the flow direction). The recursive
procedure calls itself for successive higher cells, effectively traversing
the entire catchment area in a depth-first manner. Fig. 5 illustrates the
general concept.

The algorithm starts the search by calling the recursive procedure
for the designated outlet cell. The procedure uses the flow direction
data to identify the inflow neighbors of the cell, and recursively invokes
itself for each of them. The same process is repeated for successive

Fig. 5. Recursive procedure traversing successive upstream cells in a depth-first
manner.

68

Environmental Modelling and Software 167 (2023) 105728

6

B. Kotyra and Ł. Chabudziński

Fig. 6. Recursive procedure identifying the longest flow path leading to the outlet cell.

cells, effectively climbing up from the outlet towards topographically
higher locations. The earlier, pending calls (for lower cells) wait for the
subsequent invocations to complete and return their results.

Conceptually, the aim of the recursive procedure, invoked for any
given cell, is to identify the longest flow path leading to that particular
location. Thus, the initial call (for the outlet cell) carries out the task of
finding the longest flow path for the entire catchment. The procedure
accomplishes this by delegating subtasks (partial searches covering
smaller areas) to its successive, recursive calls. Similarly, each partial
search is broken down into even smaller subtasks, which are then
delegated to subsequent invocations. The results obtained and returned
for these partial searches are captured and used by earlier, pending
calls.

The result produced for any given cell contains the length of the
longest flow path leading to this particular point, along with the
location of the source cell where that path begins. Since the source
cells have no inflow neighbors (and are thus the starting points of the
flow paths), the result returned for any of them contains a zero path
length and the location of the cell itself. For all other types of cells, the
procedure captures the results returned by its subsequent invocations,
increments the appropriate step counter in each of them, selects the one
with the longest path length, and returns it as its own result. Ultimately,
the initial call (for the outlet cell) returns a catchment-wide search
result containing the length and starting location of the longest flow
path leading to the outlet. Fig. 6 illustrates the process.

The algorithm was implemented with the intention of minimizing its
execution time. The implementation has a linear time complexity, and
the time needed to perform the search depends directly on the number
of cells belonging to the catchment (the recursive climbing procedure
does not cross the watershed boundary, thus ignoring any cells beyond
it). It is worth noting that this solution does not require raster storage
for partial results during calculations.

Multiple well-known problems are related to recursive implementa-
tions in general. Although this approach generally leads to relatively
simple and efficient code, it is also inherently related to memory
issues (i.e. stack overflows), often making it impractical for larger
datasets (Wallis et al., 2009). Since this approach was implemented
mainly as a reference solution, these issues are not discussed in detail
here.

3.1.2. Recursive approach (parallel)
Recursive implementations frequently prove to be difficult, counter-

intuitive, or even impossible to efficiently parallelize (Qin and Zhan,
2012; Stpiczyński, 2018). As an attempt to introduce parallelism to the
presented recursive algorithm, an implementation based on OpenMP
tasks was developed.

Assuming a single outlet point, only one thread starts the recursive
procedure at the beginning. However, in this implementation, OpenMP

tasks are created for each identified inflow neighbor, allowing other
threads to join the processing and start performing partial computa-
tions. This makes it possible for separate flow direction branches to be
searched through in parallel.

Unfortunately, this approach introduces the additional overhead of
creating and managing a large number of tasks. The implementation
prepared as part of this work aims to limit this cost by allowing
the creation of new tasks only to a certain level of recursion. Above
the limit, a thread stops generating tasks and performs the rest of
the computations in the branch on its own. This idea optimistically
assumes that it may be possible to reasonably distribute the work
between threads at lower levels of recursion (close to the outlet point).
However, given the realistic underlying landform, this may prove to
be rare or even impossible. Considering that a large fraction of flow
direction branches may contain only one or a few cells, the benefits of
parallelization may turn out to be moderate and easily outweighed by
the overhead.

3.2. New algorithms

During the design and implementation phase, two distinct, gen-
eral concepts for the new algorithms were developed. In the follow-
ing sections, they are referred to as ‘‘top-down’’ and ‘‘double drop’’
approaches. Based on these two fundamental ideas, a total of five
new algorithms were implemented, including three sequential and two
parallel versions.

3.2.1. Top-down: maximum length (sequential)
The fundamental concept underlying the approach referred to here

as ‘‘top-down’’ is to traverse the raster along the flow direction, starting
from source cells (‘‘tops’’, the most upstream locations) and moving
downstream. In a way, this is the opposite of the recursive approach.
In a typical flow direction raster, a large number of source cells are the
starting points of flow paths that gradually merge and eventually end at
the same outlet point. Approaching the problem from this perspective
creates new possibilities for parallelization.

Conceptually, the algorithm can start from any source cell in the
raster. The flow path is traversed cell by cell along the flow direction,
while its length is measured by counting successive orthogonal and
diagonal steps. A naive implementation of this idea would be to fully
traverse and measure each existing flow path separately (sequentially
starting at each source cell in the raster and moving downstream until
the endpoint is reached) and compare their lengths (e.g. by recording
the longest one found so far). However, this would not be a well-
performing approach, since a large fraction of the cells in the raster
would be unnecessarily traversed multiple times (common parts of
converging flow paths would be needlessly re-measured for each of
them). A much more efficient solution would be to compare the partial

69

Environmental Modelling and Software 167 (2023) 105728

7

B. Kotyra and Ł. Chabudziński

flow paths as soon as they merge in junction cells and only proceed
downstream with the longest one, discarding the other candidates
(since it is already clear that they cannot be the longest path in the
catchment).

Incorporating this concept, the algorithm starts traversing and mea-
suring a flow path from its source cell, and moves downstream until it
encounters a junction cell. Here, the traversing procedure is temporar-
ily stopped, and the algorithm starts another, separate measurement
from a different source cell. Only after measuring all partial flow paths
leading to a given junction cell, the algorithm proceeds downstream to
further traverse and measure the longest of them. With this approach,
each cell in the raster can only be traversed downstream once (a
junction cell cannot be passed until the longest upstream path leading
to it is identified). This property is directly related to the linear time
complexity of the algorithm.

The first implementation of this approach (called ‘‘top-down max’’
for short) uses a specific data structure to compute and store partial
results, namely a raster of two-integer cells (each cell containing two
numbers). A single cell can be used to store either a distance (as
separate numbers of orthogonal and diagonal steps) or a location of
another cell in the raster (as row and column coordinates). This concept
was implemented as a union of two structures (representing distance
and location data separately), allowing for two possible interpretations
of the same cell in the code. Ultimately, every source cell is used to
store distance, while every non-source cell stores location.

Initially, all cells of the working raster are set to a special UNDETER-
MINED state (being marked as not containing any valid value yet). The
source cells are then used as working memory to calculate, store and
compare the partial lengths of the analyzed flow paths. The main part
of the algorithm aims to fill the raster so that every other (non-source)
cell points to the source location where the longest path leading to that
particular cell begins. This then makes it possible to immediately locate
the beginning of the longest flow path leading to any given point (most
importantly, to the outlet cells specified in the input data). Extracting
the source location for any completed cell can be done by checking
the cell type (as source cells are a special case, being their own source
locations) and reading the coordinates stored in it.

Fig. 7 shows a conceptual example of how the search for the longest
flow path is performed. The algorithm identifies the source cells and

starts the downstream traversing procedure for each of them. The inte-
gers stored in each source cell are treated as orthogonal and diagonal
step counters, first set to zero, and then incremented accordingly with
each step along the path. At the same time, each traversed non-source
cell is updated with the coordinates of a source location that begins the
longest currently known path to this particular cell. Eventually, when
this process is complete, the outlet cell contains the final search result,
pointing to the source location of the longest flow path in the entire
catchment.

For each non-source cell encountered, a path-comparison operation
is performed to select the longer of the two partial paths leading to
that point — the one currently being traversed and the one starting
from a location previously stored in the cell (if the cell still contains the
UNDETERMINED value, the current path is immediately selected). The
lengths of both partial paths (distances traversed so far — from their
starting points to the junction) are extracted from their source cells
and compared, and the junction cell is updated with the new source
location if necessary (if the path currently being traversed turns out to
be shorter than the one already found for that cell, the current path
is discarded and the cell does not change its state). Thus, comparisons
of partial paths effectively take place in junction cells, and only the
selected, longer path is further considered. The lengths of the discarded
paths (stored in their source cells) are no longer incremented. Link cells
(having a single inflow neighbor) are only entered and updated once,
changing their state from UNDETERMINED to valid source coordinates.

It is necessary to establish the final value of the junction cell (and
thus identify the longest path leading to it) before proceeding further to
its downstream cells. As noted earlier, this requires traversing all partial
paths leading to the junction cell and comparing their lengths (using
the path-comparison operation in the junction). For this reason, the
traversal procedure has to be temporarily stopped in cells for which the
lengths of all inflow paths are not yet known. Only when the final value
of the cell is determined, the data needed to continue the downstream
traverse is available. This property was implemented using an inlet
number matrix, where each cell is first initialized with the number of
its inflow neighbors (except for the source cells, which receive a prede-
fined value for easy identification). Each time the traversing procedure
reaches a given cell, its inlet number in the matrix is decremented. Only
when this value reaches zero (meaning that all paths leading to this
point are completely processed), the algorithm is allowed to proceed

Fig. 7. Top-down: maximum length algorithm — conceptual example: (a) identifying the first source cell; (b) measuring the first partial flow path (stopping at the junction cell);
(c) measuring the second partial flow path and selecting the longer candidate (updating the junction cell); (d) measuring the further section of the selected candidate path; (e)
identifying the longest flow path leading to the outlet cell (by extracting the coordinates stored in it).

70

Environmental Modelling and Software 167 (2023) 105728

8

B. Kotyra and Ł. Chabudziński

to the subsequent, downstream cells. This technique of temporarily
stopping computations in junction cells was previously described for
flow accumulation algorithms (Zhou et al., 2019; Kotyra et al., 2021).
The processing order of the partial flow paths is irrelevant to the final
result.

Although this algorithm was developed with parallelization in mind,
ultimately only a sequential version was implemented. The non-atomic
nature of the path-comparison operation would require the heavy use
of synchronization mechanisms to prevent data races between threads,
resulting in impractical overhead levels. To address this issue, another
version of the top-down approach was implemented with the intention
of eliminating potential conflicts between threads through a different
workflow.

3.2.2. Top-down: single update (sequential)
The next algorithm (called ‘‘top-down single’’ for short) is based on

the top-down max implementation, but with some important modifica-
tions. The key idea was to reorganize the workflow so that the value
of each non-source cell in the raster is determined and set only once.
Fig. 8 presents a conceptual example.

As in the top-down max implementation, the algorithm aims to fill
each non-source cell with the coordinates of the source point where
the longest flow path leading to that particular cell begins. However,
instead of storing and repeatedly updating the partial result (the source
location of the longest path to that point identified so far) in the
junction cell, the algorithm leaves it uninitialized until the lengths of
all its inflow paths are determined. Only when the values of all inflow
neighbors are established, the algorithm compares all paths leading
to that point and determines the cell value. This implementation also
uses the inlet number matrix, but here the decrementation to zero is
required to enter and update the cell, rather than to proceed down-
stream from it. Algorithm 1 presents a simplified pseudocode covering
this concept.

It is worth noting that only junction cells are processed and updated
in this specific way, based on reaching out to their inflow neighbors
once all their values are determined. Single-inflow cells are processed
in a straightforward manner and simply filled with the starting point
of the path that is currently being advanced.

An important advantage of this design is that it no longer requires
raster cells to be initialized. As each cell is updated only once, its previ-
ous state is irrelevant and does not affect the final result. The algorithm
has a linear time complexity (each cell is traversed downstream only
once).

3.2.3. Top-down: single update (parallel)
The idea of a single cell update eliminates problematic conflicts

between threads and makes it possible to parallelize this algorithm in
a relatively simple manner.

In this implementation, multiple threads traverse partial flow paths
simultaneously, starting from different source cells. Junction cells are
still locations of potential conflicts, but the single update workflow
reduces the issue significantly. In fact, the only synchronization mech-
anism required is the atomicity of the decrementation in the inlet
number matrix (with direct capture of the result). Since different
threads may reach the same junction cell and simultaneously attempt to
decrement its number of unprocessed inflow paths, it has to be ensured
that this will not result in data races.

The last thread that decreases the value of the junction cell in the
inlet number matrix (reaching zero) compares all paths leading to the
cell and selects the longest one. At this point, it is guaranteed that
all inflow neighbors contain correct values. The thread updates the
junction cell and proceeds to traverse its successive downstream cells.

The inlet number counters (and their atomic decrementation) are
only needed for junction cells. All other cells are traversed only once,
therefore there is no possibility of any conflict between threads. As
synchronization is not needed there, it is not used, and, as a result,
non-junction cells are updated in an unsynchronized, straightforward
manner.

In all the top-down implementations developed in this work, the
final result is obtained by extracting the coordinates stored in the
outlet cell specified in the input data. Each non-source cell in the
raster indicates where the longest path leading to this cell begins.
These coordinates are treated as the end result of the algorithm. The
only special (though impractical) case is a scenario where the specified
outlet point is actually a source cell (which does not store location but
distance). To ensure the correctness of the algorithm for each case, this
scenario has to be recognized and handled properly.

Fig. 8. Top-down: single update algorithm — conceptual example: (a) measuring the first partial flow path (without modifying the junction cell); (b) measuring the second partial
flow path; (c) selecting the longer candidate path and setting the value of the junction cell; (d) measuring the further section of the selected candidate path; (e) identifying the
longest flow path leading to the outlet cell (by extracting the coordinates stored in it).

71

Environmental Modelling and Software 167 (2023) 105728

9

B. Kotyra and Ł. Chabudziński

input : flowDirectionRaster, outletLocation
output: source location of the longest flow path leading to the outletLocation

1 calculate inletNumberMatrix, mark SOURCE and LINK cells with special values;
2 allocate pathMatrix without initializing it;

3 for each location start in the raster do
4 if the start cell is a SOURCE and has a valid flow direction then
5 pathSource = start;
6 pathMatrix[pathSource] = (0, 0);

7 incompleteInflows = 0;
8 current = start;
9 do
10 move current location to the next cell (by flow direction);
11 update pathMatrix[pathSource] by incrementing the appropriate step counter;

12 if the current cell is a LINK then
13 pathMatrix[current] = pathSource;

14 else
15 incompleteInflows = −−inletNumberMatrix[current];

16 if incompleteInflows == 0 then
17 maxLength = pathMatrix[pathSource];

18 for each inflow neighbor of the current cell do
19 neighborSource = extractSourceLocation(neighbor);

20 if pathMatrix[neighborSource] > maxLength then
21 maxLength = pathMatrix[neighborSource];
22 pathSource = neighborSource;
23 end
24 end

25 pathMatrix[current] = pathSource;
26 end
27 end
28 while incompleteInflows == 0 and the current cell has a valid flow direction;
29 end
30 end

31 return extractSourceLocation(outletLocation);

Algorithm 1. Top-down: single update — sequential version (simplified pseudocode).

It should be emphasized that all the top-down implementations have
a natural ability to determine the longest flow paths for multiple outlet
points in the same run. As the main part of the algorithm fills all
non-source cells with the correct source coordinates, determining the
longest flow paths for other outlet points only requires extracting these
additional starting locations. Thus, determining the longest paths for
multiple outlet points in the same run involves only a small (negligible
in practice) additional cost. Each of these algorithms has been imple-
mented in a way that allows both single and multiple outlet points to
be taken as input and processed.

3.2.4. Double drop (sequential)
Another approach to the problem, developed as part of this research,

is referred to in this paper as the ‘‘double drop’’. Although it is also
based on traversing flow paths along the flow direction, the concept
differs significantly from the top-down approach.

The main idea behind the algorithm is relatively straightforward.
The most characteristic property is that it passes the same sections
of the flow paths twice. Conceptually, the traversing procedure can
be started from any cell (it does not have to be a source cell). The
algorithm first moves downstream (along the flow direction), evaluat-
ing whether a given flow path leads to the specified outlet point and
measuring the distance traveled from the starting cell. Then the same
path is traversed again, this time recording the remaining distance to

the outlet in each passed cell (or marking it as not leading to the outlet
point).

The algorithm also uses a working raster of two-integer cells, but
here the content of each cell is always interpreted as a distance (ex-
pressed as separate numbers of orthogonal and diagonal steps). The
main part of the algorithm aims to fill the raster so that each cell
contains the path length from itself to the watershed outlet specified
in the input (or the predefined OUT_OF_BASIN value if the path does
not lead to the outlet). Fig. 9 shows a conceptual example. Algorithm
2 presents a simplified pseudocode of this approach.

As the first step, the working raster is initialized with the UNDETER-
MINED values (the external frame is filled with OUT_OF_BASIN values
for easy handling of boundary crossings). Only the outlet cell is set to a
valid distance value of zero (being the correct distance to itself). Next,
the algorithm starts traversing and measuring subsequent flow paths,
gradually filling the raster with the calculated distances to the outlet
point.

As mentioned, the most distinctive property of this approach is
that each partial flow path is traversed twice. On the first pass of a
given path, no modifications are made to the raster, only the distance
traveled from the starting cell is measured using the orthogonal and
diagonal step counters (by incrementing them accordingly with each
step). As soon as the traverse procedure enters a cell with any value
other than UNDETERMINED or crosses the raster boundary, the second
pass begins, starting again from the same location and following the

72

Environmental Modelling and Software 167 (2023) 105728

10

B. Kotyra and Ł. Chabudziński

Fig. 9. Double drop algorithm — conceptual example: (a) measuring the first flow path (first pass); (b) recording the remaining distances to the outlet cell (second pass); (c)
measuring another (partial) flow path (first pass); (d) recording the calculated distances to the outlet cell (second pass); (e) identifying the longest flow path leading to the outlet
cell (by selecting the longest recorded distance).

same path. This time, each cell passed through is modified (and thus
set to its final value).

If the first pass ends with crossing the raster boundary or entering
a cell with the OUT_OF_BASIN value, the second pass sets all cells
along the entire path to OUT_OF_BASIN (a special case of reaching
a cell without a valid flow direction value is handled in the same
way). Any cell marked with this value is already known not to lead
to the outlet point specified in the input. Entering such a cell while
traversing downstream means that the entire path is located outside
the catchment.

Cells containing a valid distance are known to lead to the outlet
point (and their value describes the remaining length of that path).
When the algorithm enters such a cell during the first pass, the distance
traversed so far (downstream from the starting point) is summed up
with the value stored in that cell. In this way, the total distance from
the starting point to the outlet cell is obtained. The second pass fills
all cells along the path with the remaining distance to the outlet point.
This time, the orthogonal and diagonal step counters (expressing the
remaining distance) are appropriately decremented with each step.

The algorithm records the length and starting location of the longest
path identified so far. Comparisons between potential candidates are
made when a cell with a valid distance is entered during the first pass,
and the total distance from the starting point to the outlet is calculated.
Alternatively, a simple one-time raster scan to find the maximum length
could be implemented at the end of the algorithm, but this would
require significantly more comparisons.

As with the top-down approach, the order in which the partial flow
paths are traversed is irrelevant. However, the double drop algorithm
does not require the traversing procedure to be started from a source
cell (in fact, it can be started from any unprocessed cell, regardless
of its type). This makes the detection of source cells unnecessary,
significantly simplifying the workflow. Once all cells are processed, the
algorithm returns the starting location of the longest identified flow
path as the final result.

It should be emphasized that although this algorithm traverses each
location twice, it treats all types of cells in the same way and does not
require detection or special handling of either source or junction cells.
This simple workflow could be considered a significant advantage of
this approach. The implementation has a linear time complexity.

3.2.5. Double drop (parallel)
The parallel implementation of the double drop algorithm allows

multiple threads to process partial flow paths simultaneously. The fun-
damental idea remains the same as in the sequential version, although
some minor changes were introduced.

As long as there are unprocessed cells in the raster, the threads
select them as starting points and proceed to the downstream travers-
ing procedure. The same raster is being filled in multiple locations
simultaneously, allowing the threads to share their results with each
other.

Each thread individually stores the length and starting location
of the longest path it has identified so far. These local results are
compared with the global maximum only at the end of the algorithm
run. This approach minimizes the need for synchronization between
threads comparing large numbers of paths.

It is possible for multiple threads, starting from different locations,
to traverse the same common part of their flow paths in the first
pass simultaneously. The design of the algorithm allows for such a
scenario, considering the cost of possible synchronization mechanisms
as inviable. Apart from potential additional, partially redundant work,
this property has no negative effects on the operation of the algorithm.
In the second pass, such cases are generally eliminated early, as the
thread stops the filling procedure as soon as it reaches the first cell
with a value other than UNDETERMINED.

It is worth noting that the double drop approach allows for straight-
forward determination of all alternative longest flow paths leading to
the same outlet point. As the length of the longest path is known at the
end of the algorithm, it is possible to simply search the entire raster
for all cells containing a distance equal to the maximum length. In this
way, the algorithm can return not just one, but all alternative longest
paths with little additional cost. Both implementations of this approach,
developed as part of this work, include this mode of operation.

Although this algorithm was designed to work with a single outlet
cell, it is possible to extend these implementations to handle multiple
outlets in the same run. This would require computing and storing
additional data for each cell (perhaps a single integer index), indicating
to which outlet point its flow path leads. Instead of being marked with
OUT_OF_BASIN, cells flowing to other outlet points would store valid
distances and still be easily identifiable. While requiring more memory,
it would likely reduce the time needed for individual algorithm runs
when working with multiple outlets.

73

Environmental Modelling and Software 167 (2023) 105728

11

B. Kotyra and Ł. Chabudziński

input : flowDirectionRaster, outletLocation
output: source location of the longest flow path leading to the outletLocation

1 initialize lengthMatrix: all cells to UNDETERMINED, external frame to OUT_OF_BASIN;
2 lengthMatrix[outletLocation] = (0, 0);

3 longestPathSource = outletLocation;
4 longestPathLength = (0, 0);

5 for each location start in the raster do
6 if the start cell is UNDETERMINED and has a valid flow direction then
7 pathLength = (0, 0);

8 current = start;
9 do
10 move current location to the next cell (by flow direction);
11 update pathLength by incrementing the appropriate step counter;
12 while the current cell is UNDETERMINED and has a valid flow direction;

13 if the reached current cell contains a valid distance then
14 pathLength += lengthMatrix[current];

15 if pathLength > longestPathLength then
16 longestPathSource = start;
17 longestPathLength = pathLength;
18 end

19 current = start;
20 do
21 lengthMatrix[current] = pathLength;
22 move current location to the next cell (by flow direction);
23 update pathLength by decrementing the appropriate step counter;
24 while the current cell is UNDETERMINED;

25 else
26 lengthMatrix[current] = OUT_OF_BASIN;

27 current = start;
28 do
29 lengthMatrix[current] = OUT_OF_BASIN;
30 move current location to the next cell (by flow direction);
31 while the current cell is UNDETERMINED;
32 end
33 end
34 end

35 return longestPathSource;

Algorithm 2. Double drop — sequential version (simplified pseudocode).

4. Performance measurements

4.1. Data

The Bystrzyca catchment was selected as the first source area for
measurements and analyses. It is a third-order watershed with a total
area of 94 km2, located in the south-eastern part of Poland. Square-grid
DEM data with one-meter resolution was obtained from the publicly
available resources of the Head Office of Geodesy and Cartography
(GUGiK). The source dataset was referenced in the PL-1992 system
(National Geodetic Coordinate System 1992 for Poland).

The original data was processed to generate a wide variety of
input datasets for performance measurements. In the first stage, the
outlet point was determined and the entire catchment, along with the
longest flow path belonging to it, was delineated. Subsequently, the
division into sub-catchments was carried out, adopting two different
approaches. As for the first one, the main catchment was divided along
the longest flow path every two kilometers, starting from the watershed
boundary. This resulted in 47 sub-catchments with varying areas. The
same procedure was carried out on the source data scaled down to
2 × 2 m, 4 × 4 m, 6 × 6 m, 8 × 8 m and 10 × 10 m resolutions.

The generated datasets were intended mainly for comparing the exe-
cution times of various algorithms and tools, as well as examining the
relationship between their performance and the size of the input data.

As for the second approach, the ten-meter resolution data was used.
Based on the drainage network, a set of sub-catchments was delineated,
with 3.0 km2 chosen as a surface threshold. In this way, 118 relatively
small sub-catchments were generated, with areas ranging from 3.0
to 3.4 km2. These datasets were mainly intended for controlling and
analyzing the results of the developed algorithms, as well as comparing
them with those generated by selected GIS software.

Additional source areas were selected in order to obtain larger, more
computationally demanding datasets. Four other watersheds located in
Poland were chosen (the Kamienna, Tanew, Barycz and Wieprz) with
areas ranging from approximately 1,300 to 4,440 km2. The acquired
DEMs (with one-meter resolution, originating from the GUGiK) were
used to generate datasets ranging in size from approximately two to
seven billion cells (Table 1 shows the details). These datasets were
intended for examining the performance and characteristics of the
developed algorithms, as well as comparing them with each other.

Each flow direction raster used in performance measurements was
prepared in two variants. In the first kind (referred to as ‘‘full frames’’),

74

Environmental Modelling and Software 167 (2023) 105728

12

B. Kotyra and Ł. Chabudziński

Table 1
Dimensions of the largest datasets used for algorithm comparisons.

Dataset Area in km2 Raster dimensions Raster cells

Kamienna 1300.37 29,954 × 64,080 1,919,452,320
Tanew 1411.16 45,553 × 47,023 2,142,038,719
Wieprz 4026.48 84,463 × 71,540 6,042,483,020
Barycz 4440.21 104,326 × 66,747 6,963,447,522

each cell contained a valid direction value. In the second one (simply
referred to as ‘‘basins’’), all cells outside the catchment boundaries had
a direction value set to NONE (only cells belonging to the catchment
contained a valid value). Previous research by the authors has shown
that using data filtered in this way can have a noticeable impact on the
computational times of some algorithms (Kotyra et al., 2021).

Fig. 10 shows both the selected source areas and sub-catchments ob-
tained with the methods described. All datasets were precisely clipped
to the selected catchments (each row and column of every raster
contained at least one cell belonging to the catchment).

4.2. Testing procedure for C++ algorithms

Before running any measurements, all implementations were vali-
dated against a suite of automated tests. The algorithms were tested for
multiple scenarios, including both standard and special cases, as well as
a variety of runtime configurations. All files with input data intended
for measurements were also verified for correctness.

Performance measurements were based on repeatedly executing
each algorithm on multiple datasets while measuring and recording
computational times. Each test, performed by an automated bash script,
consisted of restarting the measurement application, loading input data

Fig. 10. Study area with catchment locations.

75

Environmental Modelling and Software 167 (2023) 105728

13

B. Kotyra and Ł. Chabudziński

files, executing the selected algorithm and verifying the correctness
of its output. Time measurements were started immediately after the
input dataset was loaded into memory and stopped after the algorithm
generated the final result.

As the recursive implementations were included in the tests, stack
overflows were expected. In such cases, the thread stack size was
doubled in the runtime configuration (more than once if needed), and
the test was repeated.

Measurements were performed in two separate test environments.
Machine A, running under AlmaLinux 8.4, was equipped with a dual
Intel Xeon E5-2670 v3 processor (24 cores in total) and 128 GB RAM.
Machine B, with two operating systems (Windows 10 Enterprise LTSC
64-bit and Ubuntu 22.04.1 LTS), was equipped with a dual Intel Xeon
CPU E5-2620 v4 processor (16 cores in total) and 112 GB RAM. On
machine B, algorithm performance measurements were carried out
under Ubuntu.

All source code was compiled using the GNU C++ compiler (version
8.4.1 on machine A, version 11.2.0 on machine B) with O3 level
optimization and OpenMP support enabled. Parallel implementations
were allowed to use all available cores.

In order to precisely compare the performance of the developed
algorithms, each of them was executed and measured 30 times on
each of the eight large datasets (Kamienna, Tanew, Barycz and Wieprz;
both full frame and basin variants). For a fair comparison, only the
fundamental variant of the problem (assuming one outlet point and
requiring a single path to be identified) was taken into account. This
procedure was performed on both machines.

Two parallel implementations of the newly presented algorithms
were also tested in a similar manner on a set of 564 sub-catchments
of the Bystrzyca (47 areas, each in six resolutions and two variants).
These measurements provided the basis for a more detailed analysis,
including comparisons with other existing software.

In order to examine the efficiency of the two new parallel algo-
rithms in various multithreading configurations, additional measure-
ments were performed on machine A. Using the largest frame dataset
(Barycz), the algorithms were tested with thread limits ranging from 1
to 48. Performance was measured 30 times for each configuration.

The task-based recursive implementation requires a parameter that
specifies the highest level of recursion at which new tasks can still be
created. Based on the foundations of this concept, a relatively low limit
of 100 was selected and then doubled several times, reaching 200, 400,
800 and 1600. Separate tests were performed for each of these values.
It was assumed that this variety should allow for an overall evaluation
of this approach.

4.3. Testing procedure for existing GIS software

To obtain reference computational times for the algorithms de-
veloped in this work, the performance of the r.accumulate tool was
measured. It was selected as the most recent module for determining
the longest flow paths available on the GRASS GIS platform. The
measurements presented in Cho (2020) showed significant advantages
of this tool over existing alternatives.

Tests were performed using GRASS GIS version 8.0.2. Unfortu-
nately, due to the limitations inherent in this platform, larger datasets
(greater than approximately 2 billion cells) could not be used. Mea-
surements were carried out on machine B, under both Windows 10
and Ubuntu. The r.accumulate tool was executed 30 times on each
of the selected datasets, under both operating systems. An automated
script monitored the calculation runs and retrieved the times needed to
generate the results.

5. Results and discussion

5.1. Performance comparison of the developed algorithms

Tables 2 and 3 present the average execution times of the developed
algorithms, measured using the eight large datasets on both machines.
The two approaches to data preparation were denoted by FF for full
frames and B for basins.

The parallel implementation of the double drop approach turned
out to be the most efficient in the vast majority of cases (Table 3).
However, while the parallel version of the top-down single algorithm
performed slightly worse on average, it turned out to be the fastest
in some instances. The performance differences between these two
implementations are more apparent for the measurements made on
machine B (in favor of the double drop algorithm). It appears that both
the data characteristics (basins versus full frames) and the underlying
hardware (particularly the different number of CPU cores) contribute
to the relative performance of these algorithms.

Among the sequential implementations, the recursive approach
turned out to achieve the shortest execution times in all cases, on both
machines (Table 2). The sequential double drop algorithm achieved
times ranging from approximately 54% to 126% longer, and the se-
quential top-down implementations from 151% to 291% longer than
the recursive algorithm. As both the double drop and top-down ap-
proaches are relatively more complex and require processing of all cells
in the raster (as opposed to the recursive algorithm, which only visits
cells belonging to the catchment), these results are not surprising.

However, the results turned out to be completely different for par-
allel implementations. While the newly developed algorithms achieved
significant speedups over their respective sequential versions, the task-
based implementation did not improve the performance of the recursive
approach. The execution times of the parallel recursive implementation
were on average several percent longer than those achieved by the
sequential version. This observation holds for all tested task creation
limits. Moreover, while the differences in computational times between
the sequential and parallel implementations are relatively small, there
seems to be a strong positive correlation between the task creation
limit and the average time achieved by the task-based version. This
may suggest that increasing the limit further will only degrade the
performance more.

The parallel double drop implementation achieved an average
speedup of 11.2 on machine A and 8.5 on machine B, across all
the datasets. For the top-down single algorithm, the average speedup
was significantly higher: 18.3 on machine A and 11.7 on machine
B. It is worth emphasizing that the sequential implementation of the
double drop approach achieved on average 41% shorter times than
the sequential top-down single algorithm. While the top-down single
approach achieves higher speedups, the double drop algorithm seems
to excel when the number of threads is lower. This could help explain
why, while the double drop algorithm achieved the shortest execution
times in the vast majority of cases, the top-down approach turned out
to be slightly faster on a few occasions.

It is worth noting the differences in computational times achieved
on both types of datasets. For the recursive approach (both sequential
and parallel versions), there is no particular difference between process-
ing full frames and basins from the same source area. However, for all
the other implementations, the differences are significant. Depending
on the algorithm, calculations on the basin variant of the data (with
cells outside the catchment boundary set to NONE) turned out to be
approximately 20% to 31% faster on average.

As expected, the recursive implementations (both sequential and
parallel) repeatedly caused stack overflows and consequently applica-
tion crashes. In some cases, it was necessary to double the stack size
several times before the test could be successfully completed. This can
be considered as a confirmation that the recursive approach is in fact
impractical, especially for larger datasets.

76

Environmental Modelling and Software 167 (2023) 105728

14

B. Kotyra and Ł. Chabudziński

Table 2
Average execution times (in seconds) on the largest datasets: sequential implementations.
Machine A (single thread):

Dataset Recursive
(sequential)

Top-down max
(sequential)

Top-down single
(sequential)

Double drop
(sequential)

Kamienna FF 25.9 87.1 93.1 54.6
Tanew FF 28.9 98.4 106.3 59.9
Wieprz FF 80.5 280.0 305.0 166.2
Barycz FF 91.1 326.4 356.6 206.0

Kamienna B 25.9 64.9 66.5 40.6
Tanew B 28.8 72.6 74.6 44.3
Wieprz B 80.0 207.1 211.6 125.1
Barycz B 91.3 232.9 238.6 155.0

Machine B (single thread):

Dataset Recursive
(sequential)

Top-down max
(sequential)

Top-down single
(sequential)

Double drop
(sequential)

Kamienna FF 27.7 90.8 95.1 57.9
Tanew FF 30.6 102.0 108.4 64.1
Wieprz FF 84.9 299.3 326.5 182.0
Barycz FF 96.7 336.9 378.2 208.4

Kamienna B 27.9 68.2 68.7 44.3
Tanew B 30.7 75.3 76.9 48.6
Wieprz B 84.7 221.6 226.7 139.3
Barycz B 96.9 241.5 248.4 153.2

Table 3
Average execution times (in seconds) on the largest datasets: parallel implementations.
Machine A (24 cores, 48 threads):

Dataset Recursive
(tasks, 100)

Recursive
(tasks, 200)

Recursive
(tasks, 400)

Recursive
(tasks, 800)

Recursive
(tasks, 1600)

Top-down single
(parallel)

Double drop
(parallel)

Kamienna FF 25.9 26.0 26.2 26.1 26.2 5.2 4.6
Tanew FF 29.3 29.1 29.4 29.9 30.2 5.7 5.2
Wieprz FF 81.7 81.3 81.6 81.8 82.1 16.4 14.7
Barycz FF 91.5 92.6 92.1 93.1 93.5 18.8 17.2

Kamienna B 25.9 26.0 26.1 26.2 26.1 3.8 3.7
Tanew B 29.1 29.3 29.3 29.6 30.2 4.0 4.2
Wieprz B 80.8 81.0 80.7 81.2 81.6 11.7 12.2
Barycz B 91.8 92.9 92.9 92.4 94.0 12.9 13.5

Machine B (16 cores, 32 threads):

Dataset Recursive
(tasks, 100)

Recursive
(tasks, 200)

Recursive
(tasks, 400)

Recursive
(tasks, 800)

Recursive
(tasks, 1600)

Top-down single
(parallel)

Double drop
(parallel)

Kamienna FF 28.1 28.4 28.6 28.7 28.7 8.1 6.3
Tanew FF 31.3 31.2 31.3 31.2 31.6 9.3 7.2
Wieprz FF 85.9 86.8 86.8 87.1 86.5 27.8 21.7
Barycz FF 97.6 98.2 97.4 97.7 99.1 31.1 25.5

Kamienna B 28.2 28.4 28.7 29.0 28.8 5.9 5.0
Tanew B 31.0 31.0 31.2 31.4 31.6 6.6 5.8
Wieprz B 85.9 86.7 85.7 86.4 86.3 19.7 17.4
Barycz B 97.4 98.3 97.6 98.1 98.3 21.0 19.7

5.2. Comparison with existing GIS software

Across all the datasets used, the newly proposed parallel algorithms
achieved significantly better performance compared with the reference
times generated using the r.accumulate tool. Fig. 11 shows a compar-
ison of the average execution times obtained on machine B, using the
full frame datasets.

For the top-down single algorithm, the reference times were on av-
erage 10.3 times longer on Ubuntu and 12.9 times longer on Windows,
across all the datasets used. It is worth noting that in some cases this
ratio reached almost 17 on Ubuntu and exceeded 30 on Windows.

For the double drop algorithm, the reference times obtained on
Ubuntu were on average 14.6 times longer, exceeding 26 times in some
cases. On Windows, the average ratio was 18.1, reaching almost 46 for
some datasets.

It is worth noting that the times obtained by the r.accumulate tool
are relatively similar on the two operating systems for smaller datasets,
but differ significantly for the larger ones. The exact reason is unknown

to the authors. It is also necessary to emphasize that the r.accumulate
module operates in a specific environment of the GRASS GIS platform,
not as a standalone tool. For this reason, these measurements were
intended mainly to provide some external context rather than to serve
as a direct comparison.

5.3. Scalability analysis

Fig. 12 shows the average computational times of the two newly
proposed parallel algorithms for different multithreading configura-
tions.

The double drop algorithm clearly outperforms the top-down single
implementation for smaller numbers of threads. However, as can be
seen in Table 4, the top-down single algorithm benefits more from
parallel processing when the number of active threads is higher. Ul-
timately, as the thread limit increases, the differences between the
execution times of these two algorithms seem to become more and
more insignificant. It is worth noting that both algorithms achieve high
speedups even for relatively small numbers of threads.

77

Environmental Modelling and Software 167 (2023) 105728

15

B. Kotyra and Ł. Chabudziński

Fig. 11. Average execution times — r.accumulate tool and newly proposed algorithms,
machine B.

Fig. 12. Average execution times for different thread limits — Barycz FF dataset,
machine A.

Table 4
Average speedups of parallel algorithms over their respective sequential versions —
Barycz FF dataset, machine A.

Number of active threads 8 16 24 32 40 48

Top-down: single update 5.8 10.5 14.8 16.5 18.3 19.9
Double drop 5.7 8.2 9.4 10.0 10.8 11.9

5.4. Analysis of the generated results

Using the 118 relatively small test datasets (covering the Bystrzyca
sub-catchments in ten-meter resolution), the paths identified by the
developed algorithms were analyzed and evaluated. In addition to
detailed validation, the results were compared to the longest flow
paths delineated under ArcGIS Pro 3.0.2 using the flow-length raster
approach from Smith (1997). Locations, courses and numbers of cells
belonging to the paths confirmed the correctness of the generated
results.

Out of the 118 analyzed datasets, the vast majority (104 cases) were
found to contain only a single longest flow path. For the remaining 14,
it was possible to identify more than one valid outcome. In ten cases,
two different paths with the same maximum length were found. Four
datasets contained as many as three equally valid alternatives.

However, for all 14 datasets containing more than one longest flow
path, the differences between the alternative outcomes were rather
small. The number of differently located cells ranged from one to

nine, with a median of just two. Alternative source cells were located
relatively close to each other.

In five out of 118 cases, the longest flow path did not start at the
watershed boundary, but inside the catchment.

6. Conclusions

In this work, the existing algorithms and software tools for finding
the longest flow paths were reviewed. Issues were identified with
respect to both their performance and precision. Addressing the need
for more efficient solutions, new algorithms were developed, tested and
presented. Their performance was measured and compared with both
other implementations and selected GIS software.

Measurements show that the two new parallel algorithms are able
to identify the longest flow paths much more efficiently compared
with existing alternatives. These two implementations have distinct
properties, and therefore both of them could be considered useful
and noteworthy. Depending on the context of use and the needs of
a particular user (e.g. requiring all alternative longest paths to be
identified, or only estimating maximum path lengths for multiple outlet
points), one may be more suitable than the other.

Scalability analysis shows that both new algorithms achieve high
speedups even for small numbers of threads. This makes them suitable
not only for high performance hardware, but also for widely available
low-cost multicore devices.

It is worth noting the differences in the ability of these algorithms
to solve specific variants of the problem. The top-down approach is
naturally capable of working with multiple outlet points simultane-
ously, but its data structure allows it to identify only a single longest
path leading to each location. On the other hand, the double drop
approach is designed to work with a single outlet point, but is capable
of recognizing all alternative longest paths at a low additional cost.
Moreover, the double drop implementations can be extended relatively
easily to process multiple outlet points simultaneously. Thus, the choice
of a suitable implementation should depend on the needs of the end
user.

Both new algorithms achieve shorter execution times on the flow
direction data with cells outside the studied catchment set to NONE.
This observation is consistent with the conclusions presented in Kotyra
et al. (2021) regarding flow accumulation algorithms. Although this
gain may not be large enough to intentionally prepare data in this way
for just this operation, it seems worthwhile to use such datasets when
available.

It should be noted that the algorithms, techniques and ideas pre-
sented in this work are based on the use of flow direction data.
Although this kind of approach is generally accepted and used in virtu-
ally every available tool for finding the longest flow paths, modeling
the underlying terrain and drainage processes in this way may be
considered a simplification and therefore a limitation of this study. Per-
haps the development of algorithms and tools based on more complex
models could be a valuable direction for future research.

CRediT authorship contribution statement

Bartłomiej Kotyra: Conceptualization, Methodology, Software, In-
vestigation, Formal analysis, Validation, Visualization, Writing. Łukasz
Chabudziński: Data curation, Validation, Visualization, Writing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

78

Environmental Modelling and Software 167 (2023) 105728

16

B. Kotyra and Ł. Chabudziński

Data availability

The source code is freely available in a public GitHub repository.
The data used for performance measurements originated from publicly
available resources.

References

Ames, D.P., Horsburgh, J.S., Cao, Y., Kadlec, J., Whiteaker, T., Valentine, D., 2012.
HydroDesktop: Web services-based software for hydrologic data discovery, down-
load, visualization, and analysis. Environ. Model. Softw. 37, 146–156. http://dx.
doi.org/10.1016/j.envsoft.2012.03.013.

Arnold, J.G., Srinivasan, R., Muttiah, R.S., Williams, J.R., 1998. Large area hydrologic
modeling and assessment part I: Model development. J. Am. Water Resour. Assoc.
34 (1), 73–89. http://dx.doi.org/10.1111/j.1752-1688.1998.tb05961.x.

Barták, V., 2009. How to extract river networks and catchment boundaries from DEM:
a review of digital terrain analysis techniques. J. Landscape Stud. 2, 57–68.

Caprani, O., 1975. Roundoff errors in floating-point summation. BIT Numer. Math. 15
(1), 5–9. http://dx.doi.org/10.1007/BF01932993.

Castro, C.V., Maidment, D.R., 2020. GIS preprocessing for rapid initialization of HEC-
HMS hydrological basin models using web-based data services. Environ. Model.
Softw. 130, 104732. http://dx.doi.org/10.1016/j.envsoft.2020.104732.

Chapman, B., Jost, G., Pas, R.v.d., 2007. Using OpenMP: Portable Shared Memory
Parallel Programming. The MIT Press.

Cho, H., 2020. A recursive algorithm for calculating the longest flow path and its
iterative implementation. Environ. Model. Softw. 131, 104774. http://dx.doi.org/
10.1016/j.envsoft.2020.104774.

Dawson, C., Abrahart, R., Shamseldin, A., Wilby, R., 2006. Flood estimation at
ungauged sites using artificial neural networks. J. Hydrol. 319 (1), 391–409.
http://dx.doi.org/10.1016/j.jhydrol.2005.07.032.

Djokic, D., Ye, Z., Dartiguenave, C., 2011. Arc Hydro Tools overview. Redland, Canada,
ESRI 5.

Fairfield, J., Leymarie, P., 1991. Drainage networks from grid digital elevation models.
Water Resour. Res. 27 (5), 709–717. http://dx.doi.org/10.1029/90WR02658.

Feldman, A.D., 2000. Hydrologic Modeling System HEC-HMS: Technical Reference
Manual. US Army Corps of Engineers, Hydrologic Engineering Center, Davis, CA.

Gallant, J.C., Wilson, J.P., 1996. TAPES-G: A grid-based terrain analysis program for
the environmental sciences. Comput. Geosci. 22 (7), 713–722. http://dx.doi.org/
10.1016/0098-3004(96)00002-7.

Gichamo, T.Z., Sazib, N.S., Tarboton, D.G., Dash, P., 2020. HydroDS: Data services
in support of physically based, distributed hydrological models. Environ. Model.
Softw. 125, 104623. http://dx.doi.org/10.1016/j.envsoft.2020.104623.

Goodall, J.L., Robinson, B.F., Castronova, A.M., 2011. Modeling water resource systems
using a service-oriented computing paradigm. Environ. Model. Softw. 26 (5),
573–582. http://dx.doi.org/10.1016/j.envsoft.2010.11.013.

Hack, J.T., 1957. Studies of longitudinal stream profiles in Virginia and Maryland.
Geological Survey Professional Paper 294-B, http://dx.doi.org/10.3133/pp294B.

Huang, P.-C., Lee, K.T., 2016. Distinctions of geomorphological properties caused by
different flow-direction predictions from digital elevation models. Int. J. Geogr. Inf.
Sci. 30 (2), 168–185. http://dx.doi.org/10.1080/13658816.2015.1079913.

Jaffrés, J.B., Cuff, B., Cuff, C., Faichney, I., Knott, M., Rasmussen, C., 2021. Hydrological
characteristics of Australia: relationship between surface flow, climate and intrinsic
catchment properties. J. Hydrol. 603, 126911. http://dx.doi.org/10.1016/j.jhydrol.
2021.126911.

Jenson, S.K., Domingue, J.O., 1988. Extracting topographic structure from digital
elevation data for geographic information system analysis. Photogramm. Eng.
Remote Sens. 54 (11), 1593–1600.

Karalis, S., Karymbalis, E., Valkanou, K., Chalkias, C., Katsafados, P., Kalogeropou-
los, K., Batzakis, V., Bofilios, A., 2014. Assessment of the relationships among
catchments’ morphometric parameters and hydrologic indices. Int. J. Geosci. 05
(13), 1571–1583. http://dx.doi.org/10.4236/ijg.2014.513128.

Kotyra, B., Chabudziński, L., Stpiczyński, P., 2021. High-performance parallel imple-
mentations of flow accumulation algorithms for multicore architectures. Comput.
Geosci. 151, 104741. http://dx.doi.org/10.1016/j.cageo.2021.104741.

Latt, Z., Wittenberg, H., Urban, B., 2015. Clustering Hydrological Homogeneous Regions
and neural network based index flood estimation for ungauged catchments: an
example of the Chindwin River in Myanmar. Water Resour. Manag. 29, http:
//dx.doi.org/10.1007/s11269-014-0851-4.

Li, Z., Yang, T., Xu, C.-Y., Shi, P., Yong, B., Huang, C.-S., Wang, C., 2020. Evaluating
the area and position accuracy of surface water paths obtained by flow direc-
tion algorithms. J. Hydrol. 583, 124619. http://dx.doi.org/10.1016/j.jhydrol.2020.
124619.

Lindsay, J.B., 2016. Whitebox GAT: A case study in geomorphometric analysis. Comput.
Geosci. 95, 75–84. http://dx.doi.org/10.1016/j.cageo.2016.07.003.

Lindsay, J., 2022. WhiteboxTools user manual, version 2.2.0. URL https://www.
whiteboxgeo.com/manual/wbt_book/.

Linz, P., 1970. Accurate floating-point summation. Commun. ACM 13 (6), 361–362.
http://dx.doi.org/10.1145/362384.362498.

Maathuis, B.H.P., Wang, L., 2006. Digital elevation model based hydro-processing.
Geocarto Int. 21 (1), 21–26. http://dx.doi.org/10.1080/10106040608542370.

Maidment, D., Morehouse, S., 2002. Arc Hydro: GIS for Water Resources (3rd Edition).
ESRI Press.

Merkel, W.H., Kaushika, R.M., Gorman, E., 2008. NRCS GeoHydro—A GIS interface
for hydrologic modeling. Comput. Geosci. 34 (8), 918–930. http://dx.doi.org/10.
1016/j.cageo.2007.05.020.

Michailidi, E.M., Antoniadi, S., Koukouvinos, A., Bacchi, B., Efstratiadis, A., 2018.
Timing the time of concentration: shedding light on a paradox. Hydrol. Sci. J.
63 (5), 721–740. http://dx.doi.org/10.1080/02626667.2018.1450985.

Neteler, M., Bowman, M.H., Landa, M., Metz, M., 2012. GRASS GIS: A multi-purpose
open source GIS. Environ. Model. Softw. 31, 124–130. http://dx.doi.org/10.1016/
j.envsoft.2011.11.014.

O’Callaghan, J.F., Mark, D.M., 1984. The extraction of drainage networks from digital
elevation data. Comput. Vis. Graph. Image Process. 28 (3), 323–344. http://dx.doi.
org/10.1016/S0734-189X(84)80011-0.

Olivera, F., 2001. Extracting hydrologic information from spatial data for HMS
modeling. J. Hydrol. Eng. 6 (6), 524–530. http://dx.doi.org/10.1061/(ASCE)1084-
0699(2001)6:6(524).

Olivera, F., Dodson, R., Djokic, D., 2003. Use of Arc Hydro for integration of hydrologic
applications. In: World Water &Amp; Environmental Resources Congress 2003. pp.
1–9. http://dx.doi.org/10.1061/40685(2003)249.

Olivera, F., Maidment, D., 1998. Geographic information system use for hydrologic data
development for design of highway drainage facilities. Transp. Res. Rec. 1625 (1),
131–138. http://dx.doi.org/10.3141/1625-17.

Orlandini, S., Moretti, G., 2009. Determination of surface flow paths from grid-
ded elevation data. Water Resour. Res. 45 (3), http://dx.doi.org/10.1029/
2008WR007099.

Paz, A.R.d., Collischonn, W., Risso, A., Mendes, C.A.B., 2008. Errors in river lengths
derived from raster digital elevation models. Comput. Geosci. 34 (11), 1584–1596.
http://dx.doi.org/10.1016/j.cageo.2007.10.009.

Qin, C.-Z., Zhan, L., 2012. Parallelizing flow-accumulation calculations on graph-
ics processing units—From iterative DEM preprocessing algorithm to recursive
multiple-flow-direction algorithm. Comput. Geosci. 43, 7–16. http://dx.doi.org/10.
1016/j.cageo.2012.02.022.

Ramly, S., Tahir, W., 2016. Application of HEC-GeoHMS and HEC-HMS as Rainfall–
Runoff model for flood simulation. In: Tahir, W., Abu Bakar, P.I.D.S.H.,
Wahid, M.A., Mohd Nasir, S.R., Lee, W.K. (Eds.), ISFRAM 2015. Springer Singapore,
Singapore, pp. 181–192. http://dx.doi.org/10.1007/978-981-10-0500-8_15.

SCALGO, 2022. SCALGO Live documentation. URL https://scalgo.com/en-US/scalgo-
live-documentation.

Schäuble, H., Marinoni, O., Hinderer, M., 2008. A GIS-based method to calculate
flow accumulation by considering dams and their specific operation time. Comput.
Geosci. 34 (6), 635–646. http://dx.doi.org/10.1016/j.cageo.2007.05.023.

Smith, P.N., 1995. Hydrologic data development system. (Master’s thesis). University
of Texas, Austin, URL http://hdl.handle.net/2152/6732.

Smith, P.N., 1997. Hydrologic data development system. Transp. Res. Rec. 1599 (1),
118–127. http://dx.doi.org/10.3141/1599-15.

Sten, J., Lilja, H., Hyväluoma, J., Westerholm, J., Aspnäs, M., 2016. Parallel flow
accumulation algorithms for graphical processing units with application to RUSLE
model. Comput. Geosci. 89, 88–95. http://dx.doi.org/10.1016/j.cageo.2016.01.006.

Stpiczyński, P., 2018. Language-based vectorization and parallelization using intrinsics,
OpenMP, TBB and Cilk Plus. J. Supercomput. 74 (4), 1461–1472. http://dx.doi.
org/10.1007/s11227-017-2231-3.

Sultan, D., Tsunekawa, A., Tsubo, M., Haregeweyn, N., Adgo, E., Meshesha, D.T.,
Fenta, A.A., Ebabu, K., Berihun, M.L., Setargie, T.A., 2022. Evaluation of lag
time and time of concentration estimation methods in small tropical watersheds
in Ethiopia. J. Hydrol.: Reg. Stud. 40, 101025. http://dx.doi.org/10.1016/j.ejrh.
2022.101025.

Tang, W., Wang, S., 2020. High Performance Computing for Geospatial Applications.
http://dx.doi.org/10.1007/978-3-030-47998-5.

Tarboton, D.G., Bras, R.L., Rodriguez-Iturbe, I., 1991. On the extraction of channel
networks from digital elevation data. Hydrol. Process. 5 (1), 81–100. http://dx.
doi.org/10.1002/hyp.3360050107.

Vitolo, C., Elkhatib, Y., Reusser, D., Macleod, C.J., Buytaert, W., 2015. Web technologies
for environmental big data. Environ. Model. Softw. 63, 185–198. http://dx.doi.org/
10.1016/j.envsoft.2014.10.007.

Wallis, C., Watson, D., Tarboton, D., Wallace, R., 2009. Parallel flow-direction and
contributing area calculation for hydrology analysis in digital elevation models. In:
Proceedings of the International Conference on Parallel and Distributed Processing
Techniques and Applications. pp. 467–472.

Wilkinson, J.H., 1963. Rounding Errors in Algebraic Processes. H’M’s Stationery Office,
London.

Zhou, G., Wei, H., Fu, S., 2019. A fast and simple algorithm for calculating flow
accumulation matrices from raster digital elevation. Front. Earth Sci. 13 (2),
317–326. http://dx.doi.org/10.1007/s11707-018-0725-9.

79

	Lista publikacji zawartych w rozprawie doktorskiej
	Streszczenie
	Abstract
	Wstęp
	Obliczenia równoległe
	Komputery sekwencyjne
	Procesory wielordzeniowe
	Procesory GPU
	Standard OpenMP
	Platforma CUDA

	Wybrane zagadnienia z zakresu modelowania hydrologicznego i systemów informacji geograficznej
	Numeryczne modele terenu
	Rastry kierunku spływu
	Akumulacja spływu powierzchniowego
	Wyznaczanie zlewni
	Identyfikacja najdłuższych ścieżek spływu

	Omówienie uzyskanych wyników
	High-performance parallel implementations of flow accumulation algorithms for multicore architectures
	High-performance watershed delineation algorithm for GPU using CUDA and OpenMP
	Fast parallel algorithms for finding the longest flow paths in flow direction grids

	Podsumowanie
	Bibliografia
	High-performance parallel implementations of flow accumulation algorithms for multicore architectures
	High-performance watershed delineation algorithm for GPU using CUDA and OpenMP
	Fast parallel algorithms for finding the longest flow paths in flow direction grids

