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Abstract

We present the nuclear structure theory project focussed on the large-scale, sys-
tematic, total energy calculations using a realistic phenomenological mean-field theory
approach with newly adjusted parameters with parametric correlations eliminated.

Traditional methods of the mean-field theory are combined with the powerful for-
mal methods of the applications of the group and group representation theories to
illustrate symmetry properties of – as it turns out – universal octupole magic num-
ber N = 136 persisting at all four octupole deformations α3µ=0,1,2,3 simultaneously.
The implied shell effects generate exotic symmetry shapes at quadrupole deformation
α20 = 0 and octupole deformations α3µ 6= 0, corresponding to the point groups C∞,
D2v, Td, and D3h. These effects are predicted to take place in nuclei around Pb for
Z ≥ 82. Experimental identification criteria of these exotic symmetries are formulated
and discussed in detail.

In order to study nuclear shape evolution in multidimensional spaces, an often ap-
plied description in terms of one-dimensional trajectories is considered. Based on these
considerations, the method of the quasi-classical Wentzel-Kramers-Brillouin (WKB)
approximation to evaluate the barrier penetration probabilities is employed. To find
trajectories of maximum probabilities, the WKB method is combined with the meth-
ods of Graph Theory of applied mathematics, in particular the well known Dijkstra
algorithm.

Our total potential energy calculations predict the presence of static equilibrium de-
formations with significant octupole components in many nuclei with proton numbers
Z = 82 − 90, particularly strong in nuclei around N = 136. We estimate the dynam-
ical (most probable) equilibrium deformations by solving the corresponding collective
Schrödinger equation; a comparison is presented and discussed.

Our realistic mean-field calculations also address the issue of the coexistence be-
tween the quadrupole and octupole shapes and implied symmetries. The comparative
calculations including the higher-order multipole deformations λ ≥ 4 are presented
and a certain impact of α60 is detected in heavy nuclei in the ranges of Z ≈ 98− 110
and N ≈ 144− 160. We extend our multi-dimensional calculations to the super-heavy
nuclei. The predictive power of the new parametrisation of the Hamiltonian is exam-
ined and the impact of the octupole deformations is discussed. The tetrahedral (α32)
magic number at N = 196 is predicted as well as the new geometrical configurations
combining quadrupole oblate shapes with octupole-α33; the corresponding results are
presented and discussed.
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Streszczenie

Prezentowany projekt teori struktury jądra atomowego oparty jest na obliczeniach
jądrowych energii potencjalnych w wielowymiarowych przestrzeniach deformacji ksz-
tałtu. Użyto fenomenologicznej teorii pola średniego z nowo dopasowanymi parame-
trami Hamiltonianu. Użyte metody dopasowania parametrów pozwalają na wykrycie
i usunięcie korelacji parametrycznych, których obecność prowadzi, jak dzisiaj dobrze
wiadomo, do destabilizacji przewidywań modelowych.

W prezentowanej pracy połączono tradycyjne metody teorii jądrowego pola śred-
niego z zastosowaniami teorii grup i reprezentacji grup co prowadzi do matematy-
cznie precyzyjnych form opisu właściwości badanych symetrii. Obliczenia pokazują
istnienie uniwersalnej magicznej liczby oktupolowej N = 136 towarzyszącej wszys-
tkim czterem deformacjom oktupolowym α3µ=0,1,2,3 jednocześnie. Sugerowane efekty
powłokowe generują egzotyczne kształty jądrowe przy deformacji kwadrupolowej α20 =
0 i deformacjach oktupolowych α3µ 6= 0, odpowiadających grupom punktowym C∞,
D2v, Td, and D3h. Przewiduje się, że efekty te będą miały miejsce w jądrach wokół Pb
dla Z > 82. Sformułowano i szczegółowo omówiono eksperymentalne kryteria identy-
fikacji tych egzotycznych symetrii.

Aby badać ewolucję kształtu jądra w przestrzeniach wielowymiarowych, w liter-
aturze rozważany jest często opis w kategoriach trajektorii jednowymiarowych. W tym
kontekście wykorzystano metodę quasi-klasycznego przybliżenia Wentzela-Kramersa-
Brillouina (WKB) do oceny prawdopodobieństw przenikania przez bariery. Aby wyz-
naczyć trajektorie maksymalnego prawdopodobieństwa przenikania barier potencjal-
nych oddzielaja̧cych minima o znaczeniu fizycznym, metodę WKB połączyliśmy z meto-
dami teorii grafów z matematyki stosowanej, w szczególności ze znanym algorytmem
Dijkstry.

Nasze obliczenia całkowitej energii potencjalnej przewidują obecność deformacji
równowagi statycznej ze znaczącymi składowymi oktupolowymi w wielu jądrach o
liczbach protonów Z = 82−90, efektów szczególnie silnych w jądrach w okolicach N =
136. Obliczyliśmy dynamiczne (najbardziej prawdopodobne) deformacje równowagi,
rozwiązując odpowiednie kolektywne równanie Schrödingera. Przedsawiliśmy odpowied-
nie porównania i dyskusję.

Nasze realistyczne obliczenia pola średniego dotyczą również kwestii współistnienia
kształtów o wyższych multipolowościach. Przedstawiono wyniki porównawcze obejmu-
jące deformacje multipolowe wyższych rzędów, λ ≥ 4, oraz omówiono w szczegółach
wpływ α60 na ciężkie jądra w zakresach Z ≈ 98 − 110 i N ≈ 144 − 160. Rozszer-
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zono nasze wielowymiarowe obliczenia na obszar super cieężkich jąder. Zbadano moc
przewidywawczą nowej parametryzacji i omówiono wpływ deformacji oktupolowych.
Przewidziano istnienie nowej tetrahedralnej liczby magicznej N = 196 związanej z de-
formacją α32 oraz nowe egzotyczne konfiguracje kształtów spłaszczonych w połączeniu
z deformacją oktupolową α33.
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Chapter 1

Introduction

One of the most important issues on the subatomic physics research agenda is the
problem of nuclear stability, which turns out to be strongly related to nuclear shapes
and their symmetries. In terms of the experimental research these interests translate
into important investments (at the level of billions of Euro/Dollars of research budgets)
in the studies of exotic, in particular very heavy and super-heavy nuclei, within strongly
developing international collaborations.

The present PhD research project has been realised following Memorandum
of Understanding between the Maria Curie Skłodowska University of Lublin,
Poland, and the University of Zhengzhou, China, with one of the important
goals being the training of young researchers in our domain of physics.
To this end, efforts were undertaken to present in this thesis document
several elements of description of the nuclear structure theory methods to
facilitate entering into our research field to the new-coming PhD students
or post-doctoral fellows who will choose working in our domain.

During the last year of the preparation of this thesis, the financing of a new
nuclear physics related European Project Theo4Exp via EuroLabs initiative
has been announced. This project consists in preparation of the specialised
internet based service allowing to the nuclear experimentalists working in
the European accelerator related laboratories to use especially adapted nu-
clear theory computer programs and theory data bases, in particular related
to the nuclear mean field theory. The latter part of the project, referred to as
MeanField4Exp will be realised in collaboration between the nuclear physics
laboratories in Cracow, Strasbourg and Warsaw. Computer programs which
will be installed within this European project will contain, among others,
the ones employed for the present PhD project. The person in charge of
the realisation of the MeanField4Exp project will be the supervisor of the
present thesis.
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1 Introduction

At the modelling side, the nuclear mean-field theory on the one hand, and the nu-
clear spherical shell model on the other, can be seen as traditional, realistic approaches,
employed in quantum mechanical description of nuclei, and this from the beginning of
the second half of the previous century onwards. In parallel, the algebraic models
have been constructed, usually focussed on a pre-defined class of phenomena such as
collective vibrations, collective rotations, etc. The more recent development involves
the so-called ab initio methods aiming at the fully microscopic description of nuclei,
limited rather to the light nuclei at present.

In the present project we will follow a realistic mean-field theory approach. It allows
to describe consistently a number of mechanisms and phenomena, which can directly
be confronted with experiment. Among these, we may count nuclear and nucleonic
binding energies, together with the single particle level energies and the implied exci-
tation spectra. Related to those remain the structures of the so-called K-isomers and
yrast-trap isomers. Equally important roles can be attributed to shape isomers and
shape evolution with varying proton and neutron numbers, Z and N , respectively, as
well as with angular momentum I and nuclear temperature T , allowing to enter the
description of nuclear giant resonances but also the associated so-called Jacobi and
Poincaré shape transitions. Last but not least, the mean field theory approach with its
Hartree-Fock and/or Hartree-Fock-Bogolyubov extensions including adiabaticity and
multi-dimensional cranking approximations allows for a successful microscopic descrip-
tion of the nuclear collective rotational bands together with the inherent mechanisms
such as multi-quasiparticle excitations, angular momentum alignments, band crossings
with the so-called ‘back-bending phenomenon’ and many others.

Our group has contributed to all these elements of nuclear structure theory evolution
in numerous previous projects including Ph-D theses. The present project is focussed
on the new symmetry considerations including exotic point group symmetries and
the implied transition hindrance mechanisms, which will be used to construct the
identification criteria. The traditional methods of the nuclear mean-field theory will
be combined with the powerful formal methods originating from mathematics as well
as applied mathematics:

•When examining point group symmetries we will apply the applications of the Group
and Group Representation Theories.
• In order to perform the Hamiltonian parameter adjustments guaranteeing stable
modelling capacities, we will use the Inverse Problem Theory, a subfield of applied
mathematics.
• To analyse the properties of the quasi-classical WKB trajectories in the multi-
dimensional deformation spaces we will apply Graph Theory, another subfield of applied
mathematics.
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The concept of elementary space symmetries such as inversion, rotation, reflec-
tion, are considered necessary to connect directly the nuclear geometrical properties
with their quantum-mechanical description. It turns out that the nuclear shapes are
directly related to the properties of the underlying mean-field Hamiltonians, which de-
termine the nucleonic energy spectra. This link implies possibilities of analysing the
global properties of nucleonic spectra, such as energy-level degeneracies or fluctuations
of the level densities, through the symmetries of the mean-field Hamiltonian. Conse-
quently, our main interest is to focus on the exotic nuclear shapes, which by definition
differ from the traditional ellipsoidal prolate, oblate and triaxial shapes. The spectro-
scopic criteria for experimental identification of exotic configurations corresponding to
the exotic shapes are formulated in this project by using group representation theory
methods combined with the nuclear mean-field theory ones.

About the Structure of this Document. The presentation of this thesis will
be composed of two parts. The first, entitled “General Nuclear Structure Theory
Aspects” addresses the description of the theoretical concepts and modelling methods
together with specific mathematical tools. The second one, “Results and Discussion”,
is focussed on the presentation of the new results obtained within this Ph-D thesis.
The presentation of this document is subdivided as follows:

Chapter 1
A short introduction presenting this document, the research motivations and the results
obtained within the present work.

Chapter 2
Presents the description of our realistic phenomenological nuclear mean-field theory
focussing on selected structural elements. We start from the general presentation of
nucleon-nucleon interaction to arrive at the concept of the nuclear mean-field, as the
leading term of nuclear Hamiltonian. The notion of the mean-field facilitates presen-
tation of the related issues such as nuclear surface and, in particular, the multipole
description of nuclear shapes with the help of spherical harmonics. We present the
phenomenological central and spin-orbit potentials, and the related specific issues:
parametrisation of the Hamiltonian, constant volume condition, elimination of the
center of mass motion problem, etc. Finally, we introduce an important and relatively
modern issue of parametric uncertainties and parametric correlations in view of the
indications originating in the mathematical Inverse Problem Theory.
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Chapter 3
We present a description of the numerical solution methods of the Schrödinger equation
with our phenomenological mean-field Hamiltonian. We introduce our realisation of
the harmonic oscillator basis and the techniques of determining the matrix elements
with the help of the Gauss integration theorem. As it turns out, the fact of using real
deformation parameters and spherical harmonics to describe the nuclear shapes implies
that the mean-field is always invariant under plane reflexion (+y → −y) referred to
as simplex symmetry. This, and the time-reversal symmetry are the fixed symmetries
of our Hamiltonian, and thus can be used for important symmetrisations of the basis,
what leads to significant decrease in terms of the c.p.u.-time and computer storage. The
corresponding techniques and the structuring of the Hamiltonian matrix are presented.

Chapter 4
The knowledge of the mean-field theory solutions allows taking into account important
residual two-body interactions, here taken in the form of pairing. We present briefly the
solution to the paring problem within the Bardeen-Cooper-Schrieffer (BCS) approach.
We present next the extension of the static pairing approach allowing to describe the
collective rotation within the Hartree-Fock Bogolyubov Cranking (HFBC) techniques.

Chapter 5
Since we need in this project several mathematical tools originating from the group-,
and group representation theories, the corresponding elements are presented in a very
compact manner which allows introducing a minimum knowledge of the leading proper-
ties and the underlying notation. We start with the elementary definitions to approach
the geometrical symmetry features related to nuclear shapes and thus point group
symmetries. Examples of tetrahedral and octahedral symmetries recently discovered
by our group are discussed in some detail to illustrate certain general mathematical
properties. Group representation theory is employed in predictions of the properties
of nuclear collective rotation spectra and the methods of experimental identification of
selected exotic point group symmetries: C2v, Td, D4h and D2d are discussed.

Chapter 6
The final results of the project are presented in the last Chapter. Systematic analysis
of exotic shapes in heavy and super-heavy nuclei and their impact on measurable
nuclear properties are addressed. We shortly summarise the results of the total energy
calculations in the selected multi-dimensional deformation spaces, which lead us to the
importance of the octupole magic numberN = 136, very special in the sense that strong
shell gaps are generated at this neutron number for all the four octupole deformations:
α30 6= 0, α31 6= 0, α32 6= 0 and α33 6= 0. We show which point-group symmetries
correspond to these shapes and analyse the corresponding single-nucleon and collective-
rotational spectra. We also address the issue of the coexistence between the quadrupole
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and octupole shapes and implied symmetries, compare the predictions with the results
based on the notion of the dynamical equilibrium deformations as well as the effects of
the selected high-multipolarity deformations αλ>4,µ. The study of exotic symmetries is
extended to the super-heavy nuclei. Our calculations show that octupole components
α32 and α33 play an important role in stabilising the ground-state configurations. The
tetrahedral magic number N = 196 is predicted, and the importance of the new exotic
quadrupole oblate-shapes combined with octupole deformation α33 is illustrated in the
super-heavy nuclei around 118 ≤ Z ≤ 130 and 170 ≤ N ≤ 186.
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General Nuclear Structure Theory
Aspects
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Chapter 2

Nuclear Mean-Field Theory:
Our Formulation and Applications

In this chapter we introduce selected general notions related to the description of
nuclear interactions often referred to as nucleon-nucleon interactions or, less precisely,
as ‘nuclear forces’ (since the notion of the ‘force’ makes no sense in quantum mechanics).
We will present short summaries related to the fundamental symmetry principles, and
the approximate simplifications of the underlying Hamiltonians. They will be helpful
for introducing the concepts of the nuclear mean-field approximation addressed next.
We are aware of the fact that presented examples are far from bringing the full image
of complexity, but more complete reviewing of the subject would bypass the context
and the framework of this project.

2.1 Nuclear Interactions: Examples of Complexity

Let us begin by introducing an abbreviated notation, x̂, representing nucleonic
degrees of freedom: vector operators of position r̂, linear momentum p̂, spin ŝ and
isospin t̂,

x̂ = {r̂, p̂, ŝ, t̂ }. (2.1.1)

The nucleon-nucleon interaction can be described by two sets of operators, x̂1 and x̂2:

V̂ = V̂ (x̂1, x̂2)→ V̂ [(r̂1, r̂2); (p̂1, p̂2); (ŝ1, ŝ2); (t̂1, t̂2)]. (2.1.2)

We proceed to discussing certain specific features behind the above general expression.
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2 Nuclear Mean-Field Theory: Our Formulation and Applications

2.1.1 V̂ : Central, Tensor, Spin-Orbit, Quadratic Spin-Orbit

The general form of the nucleon-nucleon interactions is often expressed as

V̂ (x̂1, x̂2) ≡ V̂C(x̂1, x̂2) + V̂T (x̂1, x̂2) + V̂LS(x̂1, x̂2) + V̂LL2(x̂1, x̂2), (2.1.3)

where the symbols V̂C , V̂T , V̂LS and V̂LL2 refer to central, tensor, spin-orbit and
quadratic spin-orbit interactions, respectively, cf. ref. [5].

Central Interaction. It consists of four terms:

V̂C(x̂1, x̂2) = V0(r12) + Vs(r12) [~s 1 · ~s 2 ] + Vt(r12) [~t 1 · ~t 2 ] + Vs−t(r12) [~s 1 · ~s 2 ] [~t 1 · ~t 2 ], (2.1.4)

where, as discussed in the following section, the terms V0(r12), Vs(r12), Vt(r12) and
Vs−t(r12) depend only on the relative distance, r12. For the reasons for this choice see
the discussion of the problem of invariance under translations presented below. The
second term is proportional to the scalar product of spins ~s 1 and ~s 2 and it is called
spin-spin interaction. Similarly, the third term is proportional to the scalar product of
isospins ~t 1 and ~t 2 and it is therefore called isospin-isospin interaction. The last term
is called spin-isospin interaction; it is proportional to the scalar products of spins and
isospins.

Tensor Interaction. It has, by definition, the following form:

V̂T (x̂1, x̂2) = [Vt0(r12) + Vt1(r12)~t1 · ~t2 ] ~S(12). (2.1.5)

It depends on the so-called tensor term, ~S(12), which is defined by

~S(12)
df.= 3 (~s1 · ~r12 )(~s2 · ~r12 )− (~s1 · ~s2 ) r 2

12
r 2

12
where r12

df.= |~r1 − ~r2|. (2.1.6)

Two-body Spin-Orbit Interaction. It is defined as:

V̂LS(x̂1, x̂2 ) = [V t0
LS(r12 ) + V t1

LS(r12 )~t1 · ~t2 ](~L · ~S ), (2.1.7)

where the relative orbital angular momentum, ~L, and total spin ~S, are defined as follows

~L
df.= 1

2(~r1 − ~r2) ∧ (~p1 − ~p2) and ~S
df.= ~s1 + ~s2. (2.1.8)

Please observe that above we have introduced the relative linear momentum operator,
~p1 − ~p2, to assure Galilean invariance discussed below in this chapter. The quadratic
spin-orbit interaction is defined as

V̂LL(x̂1, x̂2) = VLL(r12 ){(~s1 · ~s2) ~L 2 − 1
2[(~s1 · ~L )(~s2 · ~L ) + (~s2 · ~L )(~s1 · ~L )]}. (2.1.9)

As before, the relative orbital angular momentum of the two particles, ~L, is given in
eq. (2.1.8).
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2.1.2 Nucleon-Nucleon Interactions: Fundamental Symmetries

There exist various specific extensions and variants of the above general scheme,
which can be found in the nuclear structure literature. The present research project
employs a phenomenological, so-called nuclear mean-field theory approximation. The
nuclear mean-field theory uses an effective one-body Hamiltonian. According to this
latter scheme, the theoretical description of a rich class of nuclear structure effects is
based on the idea of the free motion of a nucleon in the specifically constructed one-body
potential, cf. e.g. ref. [6] and references therein. The guide-lines of the construction of
the effective one-body potentials profit from the symmetry considerations, which will
be discussed next.

2.1.2 Nucleon-Nucleon Interactions: Fundamental Symmetries

In what follows we will consider a number of fundamental symmetry operations,
which guarantee that the description of nuclear forces is independent of acceptable
arbitrary choices related to the definitions of the Cartesian reference frame Σ rather
than its translated image Σ′ , its rotated image Σ′′ , or yet another one, moving with
respect to the originally chosen one with a constant velocity, ~v, the latter independence
property referred to as Galilean invariance. Similarly, we will verify that this descrip-
tion does not depend on the sign of the time variable t, referred to as time reversal
invariance.

To simplify the notation, we refer to the vector operators by using a single mathe-
matical accent symbol “ ˆ ” rather than “ ~̂ ”, e.g. r̂ rather than ~̂r.

Translational Invariance. Consider a Cartesian system of coordinates {x, y, z} ≡ ~r,
denoted Σ, and another one Σ′, which differs from the previous one by an arbitrary
translation represented by a constant vector ~a:

Σ ↔ ~r and Σ′ ↔ ~r ′ = ~r + ~a. (2.1.10)

Of course, the theoretical description of the nuclear interactions must not depend on
the choice of the shift of the Cartesian reference frame, which remains at the physicist’s
disposal. Applying the above relation to the relative distance between two nucleons,
we find

Σ ~a−→ Σ′ :⇒ ~r2 − ~r1 → ~r ′2 − ~r ′1 = ~r2 + ~a− (~r1 + ~a ) = ~r2 − ~r1. (2.1.11)

For this reason, the choice introduced above in eq. (2.1.4), must involve the relative
distance associated with the vector ~r12 ≡ ~r2 − ~r1, wherefrom the condition:

V̂ = V̂ (x̂1, x̂2 )→ V̂ [(r̂1 − r̂2 ); (p̂1, p̂2 ); (ŝ1, ŝ2 ); (t̂1, t̂2 )], (2.1.12)

which assures that the nucleon-nucleon interaction is invariant under translation.

11



2 Nuclear Mean-Field Theory: Our Formulation and Applications

Galilean Invariance. Consider a system of coordinates Σ, which we refer to as
“initial”, together with another one, Σ′, moving respect to the initial system with an
arbitrary constant velocity ~v. The description of velocity of a non-relativistic particle
satisfies:

Σ ↔ ~v1 and Σ′ ↔ ~v ′1 = ~v1 + ~v. (2.1.13)

As presented earlier in eq. (2.1.8), the spin-orbit term of the nucleon-nucleon interaction
depends on ~p1 − ~p2. Since linear momenta, ~p1 = m~v1 and ~p2 = m~v2, it follows that
(~p1−~p2) ∼ (~v1−~v2). According to Galilean invariance, interactions expressed in either
Σ or Σ′ must be exactly the same. It follows from eqs. (2.1.8) and (2.1.13) that the two-
body nucleon-nucleon interactions indeed satisfy the condition of Galilean invariance.

Invariance Under Space Reflections. Let us consider transformation of inversion,
I, of the reference frame Σ:

Σ 3 ~r I→ −~r = ~r ′ ∈ Σ′. (2.1.14)

Under this transformation the vector quantities such as position and linear momentum
change their signs, ~r → −~r and ~p→ −~p, whereas the orbital angular momentum, which
is defined as ~̀= ~r∧~p, remains invariant. Similar property holds for the intrinsic spins.
It follows that the nucleon-nucleon interactions are invariant under space reflections,
since they were constructed using the product of position-, and linear momentum de-
pending operators, cf. eq. (2.1.8). In this way we assure, that the description of nuclear
interactions does not depend on the physicist’s arbitrary decision about choosing the
reference frame: Σ or Σ′.

Time-Reversal Invariance. As can be seen from the above introduction, the Hamil-
tonian of the nucleon-nucleon interactions has been constructed as not depending on
time explicitly, in agreement with the experimental evidence known to us today. In-
deed, the nuclear forces seemingly remain the same millions of years ago and now,
wherefrom hypothesis of time independence. However, the Hamiltonian of the interac-
tions may depend on time implicitly, since the time-reversal operation influences the
linear momentum, angular-momentum, and spins.

Let us denote the time-reversal operator by T̂ . We have:

T̂ r̂T̂ = +r̂, T̂ p̂T̂ = −p̂, T̂ ˆ̀T̂ = −ˆ̀ and T̂ ŝT̂ = −ŝ. (2.1.15)

As shown above, the nucleon-nucleon interactions are proportional to the terms such
as p̂12 ·(ŝ1 + ŝ2 ) or (l̂1 + l̂2 ) ·(ŝ1 + ŝ2), and it follows that these interactions are invariant
under time reversal.

12



2.2 Structure of Nuclear Many Body Hamiltonian

2.2 Structure of Nuclear Many Body Hamiltonian

In the previous section we have presented an example of the general form of in-
teractions acting between any two nucleons and the associated fundamental symmetry
properties. Atomic nuclei are in fact highly complex in many body-systems and the
numbers of strongly-interacting Fermions in nuclei may easily exceed two hundreds. It
will be instructive to discuss briefly some general strategies to follow, when examining
the possible structure of the Hamiltonians of the subatomic systems in terms of their
many-body interactions.

2.2.1 Short-Range Nucleon-Nucleon Interactions

With the help of the compact notation in eq. (2.1.1), one can express the N -body
Hamiltonian as depending on all the nucleonic operators x̂i. We may write in full
generality:

Ĥ = Ĥ(x̂1, x̂2, ..., x̂N). (2.2.1)

The symbol x̂ denotes the position vector r̂, linear momentum p̂, spin vector ŝ and
isospin vector t̂. Each of these vectors has three components, say {x, y, z}, and we
have 12 operators behind each x̂. When considering a system with, e.g., 100 nucleons,
12 × 100 = 1200 operators are required. Therefore the above Hamiltonian leads to a
very complicated Schrödinger equation with a large number of interaction terms and
related operators.

One possibility of simplifying this complicated Hamiltonian is to take into account
the short range of nuclear interactions. The implied, possible representation of the
nuclear short-range interaction Hamiltonian can be introduced as follows:

Ĥ(x̂i1 , x̂i2 , ..., x̂iN ) =
N∑
i=1

[T̂i + V̂1(x̂i)] ← 1 body

+ 1
2

N∑
i1=1

N∑
i2=1

V̂2(x̂i1 , x̂i2) ← 2 body

+ 1
3!

N∑
i1=1

N∑
i2=1

N∑
i3=1

V̂3(x̂i1 , x̂i2 , x̂i3) ← 3 body

+ ...

+ 1
(N − 1)!

N∑
i1=1

A∑
i2=1

...
N∑

iN−1=1︸ ︷︷ ︸
(N−1)

V̂N−1(x̂i1 , x̂i2 , ..., x̂iN−1)



, (2.2.2)

where T̂i represents the kinetic energy operator of ith particle,

T̂i = ~2

2m∇
2
i . (2.2.3)
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2 Nuclear Mean-Field Theory: Our Formulation and Applications

The term V̂1(x̂i) represents a one-body interaction, the term V̂2(x̂i, x̂j) two-body interaction,
etc. Since the nucleonic mean free-path is relatively long, the probability of interacting
between a given nucleon and one of its companions via short range interactions is relatively
small. It follows that the probability of activating a simultaneous three-body interaction
is even smaller. Under these conditions we may expect that the nuclear Hamiltonian can
be represented, within an acceptable approximation, in the form of a sum of one-body and
two-body contributions:

Ĥ =
N∑
i=1

[t̂i + V̂1(x̂i)] + 1
2

N∑
i,j=1

V̂2(x̂i, x̂j), (2.2.4)

with the higher order terms neglected. We can consider the first term as an average nuclear
interaction between a given nucleon and the remaining (N−1) nucleons, wherefrom the names
such as ‘mean-field’ or ‘average field’ interaction potentials. The second term can be treated as
representing an effective two-body correction term. It represents, what is traditionally called
residual interaction term and involves most often pairing, or long range multipole-multipole
interactions.

2.2.2 Nuclear Mean-Field: Leading Term of the Hamiltonian

Let us assume that the nuclear interactions can be expressed as a sum of the one-body
and two-body terms. We can write the related nuclear Hamiltonian as:

Ĥnuclear ≈ Ĥmean-field + Ĥresidual. (2.2.5)

For the nuclear system with n nucleons, the mean-field (also called independent-particle)
wave function can be constructed in the so-called product wave function form:

ψn(x1, x2, ..., xn) = Nα1,α2,...,αnϕα1(x1)ϕα2(x2)...ϕαn(xn), (2.2.6)

in which Nα1,α2,...,αn is the normalisation constant, the symbols α1, α2, ..., αn represent the
set of quantum numbers which are used to identify, if possible uniquely, the nucleonic states.
The corresponding Schrödinger equation takes the usual form

Ĥ(x̂1, x̂2, ..., x̂n)ψn(x1, x2, ..., xn) = Enψn(x1, x2, ..., xn). (2.2.7)

In the case of the mean-field approximation the many-body interaction potential has the form
of a sum of individual single-nucleonic potentials

V̂ (x̂1, x̂2, ..., x̂n) =
n∑
i=1

V̂1(x̂i), (2.2.8)

(this is why the solutions take the form of the products of one-particle terms) so that after
separating the variables the independent-particle mean-field Schrödinger equation takes the
form

[t̂i + V̂1(x̂i)]ψn(xi) = enψn(xi), (2.2.9)

where [en, ψn(xi)] are the single-nucleonic solutions to the mean-field Hamiltonian.
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2.3 Nuclear Surface: Existence and Description

Let us come back to the observation that the nucleon-nucleon interactions are of a very
short range, comparable with the nucleonic sizes. As the result, the nuclei can be seen as
‘tightly packed objects’, composed of nucleons which are nearly touching each other. It follows
that the density of the nuclear matter, ρ(x, y, z), which – following the picture of the tight
packing, is nearly constant at the nuclear interior, falls quickly to zero with the increasing
distance from the centre of the system. One usually introduces the notion of the nuclear
surface by collecting all the points which satisfy the relation ρ(x, y, z) = const., in which the
constant can be thought of as half of the central density, const. = 1

2ρ0 with ρ0 = ρ(0, 0, 0).
The shape of the so defined surface can be naturally identified with the shape of the nucleus.

Many examples show that the nuclear surface, its shape, and thus the nuclear deformation
can be related to experimental information and be used to test the theoretical predictions.
Therefore the nuclear surface is definitely an important concept to help us to study the nuclear
structure. In nuclear structure theory it is convenient to introduce the nuclear surface as a
function, R(θ, ϕ), with the help of the spherical harmonic basis, {Yλµ}, which can be used to
represent an arbitrary function:

Σ : R(θ, ϕ) = c({α})R0

1 +
∑
λ

λ∑
µ=−λ

αλµYλµ(θ, ϕ)

 , (2.3.1)

where Σ is the short-hand notation for the nuclear surface, and c({α}) expresses the constant
volume condition; we will give its explicit expression in the following sections. The radius
of the equivalent spherical nucleus is denoted as usual by R0 = r0A

1/3. The expansion
coefficients {αλµ} are often called deformation parameters, whereas Yλµ(θ, ϕ) are the spherical
harmonics, which can be written down as follows, ref. [7]

Yλµ(θ, ϕ) =
√

(2λ+ 1)
2π

(λ− µ)!
(λ+ µ)!Pλµ(cos θ)eiµϕ. (2.3.2)

Above, Pλµ(cos θ) are the standard, well known so-called generalised Legendre functions and
λ is referred to as ‘rang’ or ‘multipolarity’ index.

2.3.1 The Lowest Multipolarity Sequences

Since the basis of spherical harmonics can be used to describe an arbitrary surface in a
three dimensional space, nuclear surfaces can be presented with the help of the expansion
into spherical harmonics, a particularly convenient approach, when thinking about nuclear
shapes in terms of the deviations from the spherical one. In what follows we just list the
explicit expressions of spherical harmonics for the lowest multipolarities, λ, which are used
in our project.
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Quadrupole deformations:

Y20(θ, ϕ) = +1
8

√
5
π

[
1 + 3 cos(2θ)

]
, (2.3.3)

Y22(θ, ϕ) = +1
8

√
15
2π
[
1− 2 cos(2θ)

]
ei 2ϕ. (2.3.4)

Octupole deformations:

Y30(θ, ϕ) = + 1
16

√
7
π

[
3 cos(θ) + 5 cos(3θ)

]
, (2.3.5)

Y31(θ, ϕ) = − 1
32

√
21
π

[
sin(θ) + 5 sin(3θ)

]
ei ϕ, (2.3.6)

Y32(θ, ϕ) = + 1
16

√
105
2π
[
sin(θ)− cos(3θ)

]
ei 2ϕ, (2.3.7)

Y33(θ, ϕ) = − 1
32

√
35
π

[
sin(θ)− sin(3θ)

]
ei 3ϕ. (2.3.8)

Hexadecapole deformations:

Y40(θ, ϕ) = + 3
128

√
1
π

[
9 + 20 cos(2θ) + 35 cos(4θ)

]
, (2.3.9)

Y42(θ, ϕ) = + 3
64

√
5

2π
[
3 + 4 cos(2θ)− 7 cos(4θ)

]
ei 2ϕ, (2.3.10)

Y44(θ, ϕ) = + 3
128

√
35
2π
[
3− 4 cos(2θ) + cos(4θ)

]
ei 4ϕ. (2.3.11)

Implied specific geometrical features related to such a description will be discussed next.

2.3.2 Reduced Spherical Harmonics

The reduced spherical harmonics are defined as the following real functions:

Ỹλ,µ = 2Re(Yλ,µ) for µ 6= 0 and Ỹλ,0 = Yλ,0. (2.3.12)

• For quadrupole deformations the corresponding reduced spherical harmonics are:

Ỹ20(θ, ϕ) = +1
8

√
5
π

[
1 + 3 cos(2θ)

]
, (2.3.13)

Ỹ22(θ, ϕ) = +1
4

√
15
2π
[
1− 2 cos(2θ)

]
cos(2ϕ). (2.3.14)

• For octupole deformations the corresponding reduced spherical harmonics take the form:

Ỹ30(θ, ϕ) = + 1
16

√
7
π

[
3 cos(θ) + 5 cos(3θ)

]
, (2.3.15)

Ỹ31(θ, ϕ) = − 1
32

√
21
π

[
sin(θ) + 5 sin(3θ)

]
cos(ϕ), (2.3.16)

Ỹ32(θ, ϕ) = + 1
16

√
105
2π
[
sin(θ)− cos(3θ)

]
cos(2ϕ), (2.3.17)

Ỹ33(θ, ϕ) = − 1
32

√
35
π

[
sin(θ)− sin(3θ)

]
cos(3ϕ). (2.3.18)

• For hexadecapole deformations the corresponding reduced spherical harmonics satisfy:

Ỹ40(θ, ϕ) = + 3
128

√
1
π

[
9 + 20 cos(2θ) + 35 cos(4θ)

]
, (2.3.19)

Ỹ42(θ, ϕ) = + 3
64

√
5

2π
[
3 + 4 cos(2θ)− 7 cos(4θ)

]
cos(2ϕ), (2.3.20)

Ỹ44(θ, ϕ) = + 3
128

√
35
2π
[
3− 4 cos(2θ) + cos(4θ)

]
cos(4ϕ). (2.3.21)

The above relations are particularly useful in numerical applications.
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2.3.3 Nuclear Surface as a Real Function of Angular Variables

As shown above, in general the spherical harmonics are complex functions, while the
nuclear surface must be presented as a real function. Therefore it follows that we have to
impose:

R∗(θ, ϕ) = R(θ, ϕ)→
[∑
λµ

αλµYλµ(θ, ϕ)
]∗ =

∑
λµ

αλµYλµ(θ, ϕ). (2.3.22)

It is known that the spherical harmonics satisfy the symmetry relations

Y ∗λµ(θ, ϕ) = (−1)µYλ−µ(θ, ϕ). (2.3.23)

In order to keep the nuclear surface function real, the following relation is required

α∗λµ = (−1)µαλ−µ. (2.3.24)

Indeed, with the above condition imposed we obtain the following property

[αλµYλµ + αλ−µYλ−µ]∗ = α∗λµ(−1)µ︸ ︷︷ ︸
αλ−µ

Yλ−µ + α∗λ−µ(−1)µ︸ ︷︷ ︸
αλµ

Yλµ

= αλ−µYλ−µ + αλµYλµ ↔ real. (2.3.25)

Consequently, the symmetry condition for the deformation parameters in eq. (2.3.24) is re-
quired, so that the nuclear surfaces satisfy eq. (2.3.22) and remain real functions for an
arbitrary expansion in terms of spherical harmonics. It follows that such surfaces must be –
what we call – y-simplex symmetric, as discussed in the following sections.

2.3.4 Nuclear Surface as a Scalar

Consider a reference frame Σ and new reference frame Σ ′, which is obtained from the
original one through a rotation, conveniently expressed with the Euler angles. We assume
that the nuclear surface is in addition a scalar and invariant under the rotation operations.
This implies that the contributions of the individual spherical harmonics remain the same or
in the same proportions in the reference frame Σ ′ as well:

Σ 3 R(θ, ϕ) = R ′(θ ′, ϕ ′) ∈ Σ ′. (2.3.26)

This is equivalent to the following expression

Σ 3
∑
λµ

α∗λ,µYλ,µ =
∑
λµ

α ′ ∗λ,µY
′
λ,µ ∈ Σ ′. (2.3.27)

The above condition can be presented with the help of the Clebsch-Gordan coupling coeffi-
cients.
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According to eq. (2.3.24), we have∑
µ

α∗λµYλµ =
∑
µ

(−1)µαλ−µYλµ

= (−1)λ
√

2λ+ 1
∑
µ

(−1)λ−µ√
2λ+ 1︸ ︷︷ ︸

C(λ,−µ;λ,µ|00)

αλ−µYλµ

= (−1)λ
√

2λ+ 1
∑
µµ ′

C(λ, µ;λ, µ ′|00)αλµ ′Yλµ. (2.3.28)

It is known that the Clebsch-Gordan coefficients, C(j1,m1; j2,m2|J = 0,M = 0), in the
particular case of coupling of two spherical tensors with rank λ give a scalar. Therefore the
expression in eq. (2.3.28) is indeed a scalar.

2.4 Phenomenological Mean-Field Potentials

The spatial distribution of the nuclear matter can be studied experimentally via e.g.,
nucleon-nucleon scattering experiments. Experiments show that, in the central zone, the
nuclear density is approximately a flat function of the distance from the nuclear centre and
falls quickly (exponentially) to zero when the distance increases further. It is this rapid
decrease and fast vanishing of the nuclear density, which allows introducing the notion of the
nuclear surface, which otherwise would not be justified.

2.4.1 Woods-Saxon Central Potential

One of the most successful phenomenological parameterisations of the nuclear mean-field
is obtained with the help of the Woods-Saxon potential. It is negative (attractive) and has a
flat bottom but increases fast when approaching the nuclear surface. In the case of spherical
symmetry, the Woods-Saxon potential has the form

V̂WS(r;Vc, rc, ac ) = V0
1 + exp[(r −Rc)/ac ] , (2.4.1)

where Rc = rcA
1/3, Vc and ac are called radius, depth and diffuseness parameters, respec-

tively, and their values can be adjusted to the experimental results. The typical values are:
rc ≈ 1.2 fm, Vc ≈ −50 MeV and ac ≈ 0.7 fm, respectively. The difference (r − Rc) is in fact
the distance of the point-particle from the nuclear spherical surface. It is often convenient to
express the potential depth parameter Vc as isospin dependent

Vc = V0[1± κ(N − Z)/(N + Z )], (2.4.2)

where the plus-sign holds for the protons and the minus sign for the neutrons.
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2.4.2 Spin-Orbit Potential

Experimental results show that among more than three thousands nuclei only eight are
strictly-speaking spherical; these are

16
8O8, 40

20Ca20, 48
20Ca28, 56

28Ni28, 90
40Zr50, 132

50Sn82, 146
64Gd82, 208

82Pb126 .

This implies that in general the nuclear surface is deformed (not spherical). For deformed
nuclei, the generalised distance function, distΣ(~r ), is used to represent the distance of a
point-particle from an arbitrary deformed surface, where ~r is a position vector of the point
particle in space. Consequently the deformed central potential can be written down as

V̂WS(~r;Vc, rc, ac) = Vc
1 + exp[distΣ(~r; rc)/ac ] . (2.4.3)

2.4.2 Spin-Orbit Potential

To describe the presence/properties of the intruder orbitals, the central potential must
be supplemented with the spin-orbit potential, whose Woods-Saxon form reads:

V̂ SO
WS (~r;λso, rso, aso) = −[~∇Vso ∧ p̂ ] · ŝ, (2.4.4)

with the spin operator ŝ = 1
2 σ̂, whereas Vso by definition satisfies

Vso = λso
1 + exp[distΣ(~r, rso)/aso] , (2.4.5)

where rso, aso and λso are called spin-orbit radius, spin-orbit diffuseness and spin-orbit
strength parameters, respectively. These parameters are adjusted separately for protons
and neutrons.

2.4.3 Parameters of theW-S Potentials: Traditional Approach

There are 12 adjustable Woods-Saxon parameters in the potentials introduced above, six
for the neutrons and six for the protons:

1. Central potential depth-parameter, Vc;

2. Central potential radius-parameter, rc;

3. Central potential diffuseness-parameter, ac;

4. Spin-orbit potential strength-parameter, λso;

5. Spin-orbit potential radius-parameter, rso;

6. Spin-orbit potential diffuseness-parameter, aso.
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By analysing the properties of the single particle Woods-Saxon potential many authors
assume that the diffuseness parameters for both neutrons and protons are equal. In the
early literature, realistic sets of parameters were proposed by Blomqvist and Wahlborn[8],
Chepurnov[9] and Rost[10]. All of them were obtained by fitting parameters to the contem-
porarily existing experimental data on spherical nuclei.

In order to find the optimal parametrisation of the Woods-Saxon potential, the system-
atics of the experimental data was taken into account simultaneously on both spherical and
deformed odd-mass nuclei in ref. [11]. The considered optimal parametrisation, which is called
“universal”, can describe not only the single-particle level sequences but also the equilibrium
deformations, cf. ref. [12]. The “universal” parametrisation is often used to describe exotic
nuclei.

2.4.4 Deformed Potential and Distance Function distΣ(~r; rc)

In order to define the potential, we need to calculate the distance of an arbitrary point
particle between its position P (x, y, z) and the surface. In this section we discuss definition
of the distance function, distΣ(~r; rc).

Figure 2.4.1 – Schematic illustration of the distance function distΣ(x, y, z) between the
nuclear surface ~R and a given nucleon position P (x, y, z).

We begin by introducing an auxiliary vector ~d:

~d = ~r − ~R ↔ ~R(θ, ϕ) = R(θ, ϕ)~n, (2.4.6)

where ~n = {cosϕ sin θ, sinϕ sin θ, cos θ}, and where θ ∈ [0, π] and ϕ ∈ [0, 2π]. Next, let us
introduce an auxiliary function f related to vector ~d as follows

f(θ, ϕ) = [~r −R(θ, ϕ)~n]2. (2.4.7)
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2.4.4 Deformed Potential and Distance Function distΣ(~r; rc)

One method of calculating the distance function is to minimise the auxiliary function f(θ, ϕ)
over θ and ϕ, respectively:

distΣ(~r) = min{θ,ϕ}f(θ, ϕ). (2.4.8)

The problem can be solved by finding the solutions for the system with two nonlinear equa-
tions

∂ f(θ, ϕ)
∂θ

= 0 and ∂ f(θ, ϕ)
∂ϕ

= 0. (2.4.9)

In order to solve the above system of equations we use the Newton method for which we need
to calculate the partial derivatives of f(θ, ϕ):

f(θ, ϕ) = r2 +R2(θ, ϕ)− 2R(θ, ϕ) [~r · ~n]︸ ︷︷ ︸
N(θ,ϕ)

, (2.4.10)

in which
N(θ, ϕ) = x sin θ cosϕ+ y sin θ sinϕ+ z cos θ. (2.4.11)

The partial derivatives with respects to θ and ϕ, Nθ and Nϕ, can be obtained as follows

Nθ = x cos θ cosϕ+ y cos θ sinϕ− z sin θ

Nϕ = −x sin θ cosϕ+ y sin θ sinϕ

 , (2.4.12)

wherefrom the second order partial derivatives are:

Nθθ = −x sin θ cosϕ− y sin θ sinϕ− z sin θ

Nθϕ = −x cos θ sinϕ+ y cos θ cosϕ

Nϕϕ = −x sin θ sinϕ− y sin θ sinϕ

 . (2.4.13)

In order to proceed, we will rewrite eq. (2.4.10) as

f(θ, ϕ) = r2 +R(θ, ϕ)[R(θ, ϕ)− 2N(θ, ϕ)]. (2.4.14)

Based on the above expression, the partial derivatives of f(θ, ϕ) with respect to θ and ϕ are:

fθ = Rθ[R− 2N ] +R[Rθ − 2Nθ]

fϕ = Rϕ[R− 2N ] +R[Rϕ − 2Nϕ]

 , (2.4.15)

and the second derivatives are

fθθ = Rθθ [R− 2N ] + 2Rθ[Rθ − 2Nθ] +R[Rθθ − 2Nθθ]

fϕϕ = Rϕϕ[R− 2N ] + 2Rϕ[Rϕ − 2Nϕ] +R[Rϕϕ − 2Nϕϕ]

fθϕ = Rθϕ[R− 2N ] +Rθ[Rϕ − 2Nϕ] +Rϕ[Rθ − 2Nθ] +R[Rθϕ − 2Nθϕ]

 . (2.4.16)

Thus for each point ~r in space needed, e.g., when calculating the matrix elements of the
potential, we must calculate the corresponding {θ, ϕ} angles, wherefrom we determine the
sought distance.
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2.4.5 Constant-Volume Condition

The nuclear volume is considered constant and independent of the actual geometrical
form of the nucleus. We assume that the volume of a deformed nucleus is the same as the
one of the corresponding spherical one,

4π
3 R3

0 =
∫ ∫ ∫
︸ ︷︷ ︸

Deformed nucleus

dx dy dz = Vdef.. (2.4.17)

It can conveniently be expressed with the help of spherical coordinates:

Vdef. =
∫ π

0
sin θdθ

∫ 2π

0
dϕ

∫ R(θ,ϕ)

0
r2dr ≡ 1

3

∫ π

0
sin θdθ

∫ 2π

0
dϕR3(θ, ϕ). (2.4.18)

Let us define an auxiliary function:

g(θ, ϕ) = 1 +
∑
λ

λ∑
µ=−λ

αλ,µYλ,µ(θ, ϕ), (2.4.19)

with the help of which we can rewrite the nuclear surface equation in eq. (2.3.1) as

R(θ, ϕ) = c({α})R0 g(θ, ϕ). (2.4.20)

According to the volume conservation condition we have:

4π
3 R3

0 = 1
3

∫ π

0
sin θdθ

∫ 2π

0
dϕR3(θ, ϕ)

= 1
3

∫ π

0
sin θdθ

∫ 2π

0
dϕ c({α})3R3

0 g(θ, ϕ)3. (2.4.21)

Consequently the expression for the constant volume condition takes the form

c({α}) =
[

4π∫ 2π
0 dϕ

∫ π
0 g

3(θ, ϕ) sin θdθ

]1/3

, (2.4.22)

which is recalculated numerically each time a new nuclear deformation is examined.

2.4.6 Center of Mass Problem

In the case of a spherical shape it is clear that the position of the center of mass coincides
with the geometrical center of the body. However, for deformed nuclei, it can be demonstrated
that in general the centre of mass position varies with deformation for λ-odd. Therefore it is
necessary to discuss the problem of the possible unphysical shifts of the central mass.

Let us begin with the usual definition of the centre mass of a system of n material points,

~Rcm ≡
∑
imi~ri∑
imi

;
n∑
i=1

mi ≡M, (2.4.23)
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where the summations extends over the total number of protons and neutrons n. Denoting
the total mass of the system by M we can generalise the above expression for the continuous
mass distributions,

~Rcm ≡
1
M

∫
d3~rρ(~r )~r, where

∫
d3~rρ(~r ) = M. (2.4.24)

• Case of Axial Symmetry. We begin with the simplified case of a shape axially symmetric
with respect to Oz-axis. The corresponding third component of the centre mass vector can
be calculated as follows,

zcm = 1
M

∫ 2π

0
dϕ

∫ π

0
sin θdθ

∫ R(θ,ϕ)

0
r2 zρ(~r )dr

= ρ0
M

∫ 2π

0
dϕ

∫ π

0
sin θdθ

∫ R(θ,ϕ)

0
r3 cos θ dr, (2.4.25)

and it follows that

zcm = ρ0
4M

∫ 2π

0
dϕ

∫ π

0
sin θ cos θR4(θ, ϕ)dθ. (2.4.26)

If for simplicity we consider a system with uniform mass distribution, the density satisfies

ρ0 = M
4
3π R

3
0
. (2.4.27)

With the help of the above expression and eq. (2.4.20) we may transform eq. (2.4.26) as
follows

zcm = 3R0
16π · [c({α})]

4
∫ 2π

0
dϕ

∫ π

0
sin θ cos θf4(θ, ϕ)dθ. (2.4.28)

• Two-Component Systems. Consider a two-component system composed of protons and
neutrons. The centre of mass of the two-component system satisfies

z̄cm ≡ zπcm + zνcm; M̄ ≡Mπ +Mν , (2.4.29)

where

zπcm = ρπ0
4M̄

∫ 2π

0
dϕ

∫ π

0
sin θ cos θR4(θ, ϕ)dθ, (2.4.30)

and

zνcm = ρν0
4M̄

∫ 2π

0
dϕ

∫ π

0
sin θ cos θR4(θ, ϕ)dθ. (2.4.31)

Consider the same deformations for protons and neutrons, απλ,µ = ανλ,µ. It follows that the
integral expressions in eqs. (2.4.30) and (2.4.31) are identical. Consequently, we find

z̄cm = ρπ0 [Rπ0 ]4 + ρν0 [Rν0 ]4

4M̄
· [c({α})]4

∫ 2π

0
dϕ

∫ π

0
sin θ cos θf4(θ, ϕ)dθ. (2.4.32)
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• Case of Non-Axial Symmetries. In the case of a non axial symmetry system, with the
help of expressions for x = r sin θ cosϕ and y = r sin θ sinϕ, we can calculate the center of
mass positions for the remaining two coordinates,

xcm = 1
M

∫ 2π

0
dϕ

∫ π

0
sin θdθ

∫ R(θ,ϕ)

0
r2 xdrρ(~r )

= ρ0
4M

∫ 2π

0

∫ π

0
sin θ cosϕR4(θ, ϕ)dθdϕ

= ρ0R
4
0

4M · [c({α})]4
∫

4π
dΩ sin θ cosϕf4(θ, ϕ), (2.4.33)

and similarly

ycm = 1
M

∫ 2π

0
dϕ

∫ π

0
sin θdθ

∫ R(θ,ϕ)

0
r2 ydrρ(~r )

= ρ0
4M

∫ 2π

0

∫ π

0
sin θ sinϕR4(θ, ϕ)dθ dϕ

= ρ0R
4
0

4M · [c({α})]4
∫

4π
dΩ sin θ sinϕf4(θ, ϕ). (2.4.34)

Consequently, for the two-component systems, the coordinates of the centre of mass vector
can be calculated as follows

x̄cm = ρπ0 [Rπ0 ]4 + ρν0 [Rν0 ]4

4M̄
· [c({α})]4

∫ 4π

0
dΩ sin θ cosϕf4(θ, ϕ)dθ, (2.4.35)

ȳcm = ρπ0 [Rπ0 ]4 + ρν0 [Rν0 ]4

4M̄
· [c({α})]4

∫ 4π

0
dΩ sin θ sinϕf4(θ, ϕ)dθ, (2.4.36)

and

z̄cm = ρπ0 [Rπ0 ]4 + ρν0 [Rν0 ]4

4M̄
· [c({α})]4

∫ 4π

0
dΩ cos θf4(θ, ϕ)dθ. (2.4.37)

In general, the calculated coordinates of the centre of mass vanish if the deformation consid-
ered is inversion symmetric. For that reason, if odd-λ deformation parameters αλν do not
vanish, the centre of mass in general will move out of the original position and, moreover,
there will be induced dipole moments when the centres of mass of protons and neutrons do
not coincide as it is the case when Z 6= N .

On the other hand, the centre of mass of an isolated system remains at rest with respect
to a fixed reference frame. This implies that the shifts of the center of mass due to the
deformation of the nucleus should be considered unphysical. A traditional way to remove the
undesired consequences of the discussed problem is to shift the reference frame in such a way
that the origin of the new reference frame coincides with the actual position of the centre of
mass.
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2.4.7 Odd-λ Case: Extracting Nuclear Dipole Moments

As one of the most important consequences of the centre of mass considerations we find
the possibility of determining the mean-field approximation of the nuclear dipole moments,
which allows calculating the reduced electric dipole, E1, transition probabilities. To extract
this quantity we proceed as follows.

To begin with the classical definition, the electric dipole moment can be expressed as

~d ≡
∫
V
~rρπ(~r )d3~r, (2.4.38)

in which ρπ(~r ) denotes the nuclear charge distribution. Comparing the above expression with
the one in eq. (2.4.24) we find that at first glance the definition of centre of mass coincides with
the one of the dipole moment. However, the physical meanings of the density distributions
are different, ρ(~r ) in the former case denotes the mass distribution, whereas the other one
represents the charge distribution. This implies that if the centre of mass position vector is
non-null, the dipole moment does not vanish either.

Let us consider nuclear electric multipole moments, which by definition can be calculated
as (cf. eq. (1A-116) in ref. [13]):

Qλ,µ =
∫
V
ρ(~r )rλYλµ(~r )d3~r. (2.4.39)

Consequently, the dipole moment, λ = 1, is given by

Q1,µ =
∫
V
ρ(~r )r Y1,µ(~r )d3~r, (2.4.40)

According to the expressions of spherical harmonics in ref. [7], p. 155, eq. (2), we have

Y1,+1(θ, ϕ) = −1
2

√
3

2π ·
(x+iy)
r , (2.4.41)

Y1,0(θ, ϕ) = +1
2

√
3
π ·

z
r . (2.4.42)

Y1,−1(θ, ϕ) = +1
2

√
3

2π ·
(x−iy)
r . (2.4.43)

Using explicit expressions for spherical harmonics with λ = 1, we obtain the components of
the dipole moment Q1,0 in the form

Q1,0 =
∫
V
ρ(~r )r Y1,0(~r )d3~r =

√
3

4π

∫
V
z ρπ(~r )d3~r︸ ︷︷ ︸

dz

=
√

3
4π dz, (2.4.44)

so that

dz =
√

4π
3 Q1,0. (2.4.45)

Similarly we find that

Q1,+1 = −
√

3
8π dx − i

√
3

8π dy, (2.4.46)
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Q1,−1 = +
√

3
8π dx − i

√
3

8π dy, (2.4.47)

or, equivalently

dx =
√

2π
3 (Q1,−1 −Q1,+1) , (2.4.48)

and

dy =
√

2π
3 (Q1,−1 +Q1,+1) . (2.4.49)

The results presented above indicate that the relations between the dipole moments Q1

and the electric dipole moments ~d differ by multiplicative constants. The explicit expressions
of the dipole moments also imply that whenever the position of the centre of mass is non-zero,
so is the induced dipole moment.

2.5 Model Uncertainties, Parametric Correlations

Due to the fact that contemporary realistic theoretical modelling methods depend on
parameters adjusted to the experimental data and the fact that experimental data are uncer-
tain (with uncertainties characterised by error bars) – it follows that the parameters of the
modelling are uncertain and should be regarded as probability distributions rather than sets
of numbers. It turns out that various uncertainty sources are contributing to the final uncer-
tainties: These are experimental errors, possible parametric correlations, and incompleteness
of the theory employed. We discuss these elements in the following sections.

2.5.1 Inverse Problem Theory of Applied Mathematics

In this section we are going to discuss briefly selected conclusions of the Inverse Problem
Theory, which is one of the most dynamically developing sub-fields of Applied Mathematics.1

Inverse Problem Theory addresses, among others, the mathematical conditions for the possi-
bly stable, i.e., non-divergent methods of parameter adjustments of mathematical modelling.
The importance of the role of the Inverse Problem Theory stems from the fact that a great
majority of methods of mathematical modelling, in particular in theoretical physics, depend
on parameters. The parameter adjustment issues within mean-field theory nuclear-structure
problems and the relation to the inverse-problem theory methods applied in our projects can
be found in articles [14, 15], cf. also references therein.

Let M̂ represent an ensemble of concepts and operations defining a physical model of
interest, the latter depending on adjustable parameters {p1, p2, ..., pn} = p. In applied math-
ematics, the results obtained by acting with M̂ on the set of known, optimised parameters

1The domain of the inverse problem theory which is a sub-field of Applied Mathematics is served by
specialised journals, such as for instance Inverse Problems (IOPP), Journal of Inverse and Ill-Posed
Problems (De Gruyter), or Inverse Problems in Science and Engineering (Taylor & Francis).
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popt, are comparable with the experimental data, say e. This process is called solving a direct
problem and we write:

M̂ popt = e. (2.5.1)

If the parameters of the model are unknown and the inverse M̂−1 exist, finding the optimal
parameters by acting with M̂−1 on the data set e is called formally solving the inverse
problem:

M̂−1 e = popt. (2.5.2)

The properties of M̂−1 determine the possible instabilities of a model. If the inverse M̂−1

does not exist, we say that the inverse problem is ill posed. The solution to the problem by
constructing the inverse of the nuclear physics Hamiltonian, Ĥ−1, in order to find the optimal
parameters via eq. (2.5.2) is not known in realistic cases. Moreover, we do not know about
the existence of formal proofs that such an inverse can even in principle be constructed.

The fact that the inverse operator M̂−1 is unknown or does not exist, implies that al-
ternative methods of improving the parameters of the model must be proposed, such as
minimisation of the χ2-test function. An undesired property in the present context consists
in the fact that very often after χ2-minimisation some parameters of the model turn out to
be functions of the others. This mechanism is referred to as “parametric correlations”. One
can show, cf. e.g. ref. [16], that when this happens, the model predictions become generally
unstable, better to say: divergent, often exponentially. These and related issues will be dis-
cussed in some detail.

Inverse Problem Theory Applied within Nuclear Mean-Field Theory. In what
follows we give an example of applying the inverse problem approach to the nuclear mean-
field theory. Consider the mean-field potential V̂ (p), which depends on the set of adjustable
parameters p = {p1, p2, ..., pn}. The Hamiltonian, written somewhat schematically, has the
form

Ĥ(p;x) = T̂ + V̂ (p;x). (2.5.3)

Solving the Schrödinger equation:

Ĥ(p;x)ψn(x) = ethn (p)ψn(x), (2.5.4)

for each given set of parameters allows one to obtain the solutions as functions of the param-
eters. We can express this dependence by:

ethn (p) = fn(p), (2.5.5)

in which fn(p) are considered to be some continuous functions. The parameters of mean-field
Hamiltonian in eq. (2.5.3) are adjusted with the help of χ2 tests based on the experimental
single-nucleon level energies, in our case the 8 doubly magic spherical nuclei:
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16
8O8, 40

20Ca20, 48
20Ca28, 56

28Ni28, 90
40Zr50, 132

50Sn82, 146
64Gd82, 208

82Pb126 .

In order to find the optimal parameters of the Hamiltonian we need to know the experi-
mental data d exp = {d exp

1 , d exp
2 , ..., d exp

nd
}. Typically, χ2-function is defined by

χ2(p) =
nd∑
i=1

wi[d exp
i − fi(p)]2, (2.5.6)

where wi are physicist-defined objects called weight factors. Since in this project we are using
the experimental data on single-nucleon energies in doubly magic spherical nuclei and thus
each of the single-particle levels can be characterised by the angular momentum quantum
number ji, the weight factors can be defined to express spherical degeneracy as follows:

wi = (2 ji + 1). (2.5.7)

The above form of the weight factor is used in the case of one single nucleus, whereas the
summation in eq. (2.5.6) extends over all the nuclei of interest at the same time. It then
follows that the weight factors in eq. (2.5.7) for certain nuclei will be over-represented by
the ones in other nuclei. For instance, the highest j in 16O is j = 5/2, whereas the highest
j in 208Pb is j = 13/2, thus using the weight factor of eq. (2.5.7) we give more importance
to 208Pb as compared to 16O. This is not necessarily what we wish, when optimising the
Hamiltonian parameters.

The concept of the universal parametrisation implies that the mean-field parameters are
fixed once for all nuclei in the mass table. The reproduction quality of the single-nucleon
properties for all the nuclei should be comparable without incidentally favouring certain nuclei
over the others. To be able to control this mechanism to an extent, we introduce some extra
weight factors, w̃k, as

w̃k = 208
Ak

and k = 1, 2, ..., 8, (2.5.8)

where Ak denotes the mass of any given nucleus, say No. k, and the above weight factor
implies that w̃k introduces a relative mass dependence of considered nuclei with respect to
the mass of 208Pb. Thus we obtain the final expression for χ2 as follows:

χ2(p) =
∑N
k=1 w̃k

∑nk
i=1{(2ji,k + 1)[d exp

i − fi(p)]2}∑N
k=1 w̃k

, (2.5.9)

where N = 8 is the number of all considered spherical nuclei, nk are the numbers of the
experimental energy levels for each nucleus k, d exp

i and fi(p) represent the experimental and
theoretical single nucleon energy levels, respectively, the latter ones obtained as the solutions
of the Schrödinger equation with a mean-field Hamiltonian.

2.5.2 Our Realisation of Monte Carlo Simulations: Remarks

As discussed in ref. [15], there exist correlations between parameters of most of the realistic
models implying in particular that among optimal parameters resulting from the fit, some
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are functions of the others. This applies in particular for the phenomenological mean-field
Hamiltonian with the Woods-Saxon potential of interest for our project, that the parameters
are in general not independent as they must be in order to provide stable extrapolations of
the use of the modelling. We should expect that, following general features derived within
the Inverse Problem Theory, the predictions in terms of these parameters are unstable. This
implies that, in particular, a small modification of the input parameters of the χ2-fitting
algorithm, for instance, adding one more experimental point, may lead to large variations
in both certain ‘optimal’ parameter values and the predicted observables. To improve the
predictive power of the modelling and to increase the stability of the parametrisation, one
of the most important steps is to detect the parametric correlations and eliminate them
following the well established rules of applied mathematics.

In our parameter fitting, the error bars of the experimental single-nucleon energy levels are
taken into account. This implies that strictly speaking our input information has the form
of the Gaussian probability distributions centred at the experimental energy values with
the distribution widths determined by the error bars. The Monte-Carlo approach consists
in employing the numerical random-number generating program which, according to the
Gaussian distributions just mentioned, provides the experimental input in the form of single-
particle energy-level sets – and this a large number of times [typically NMC ≈ (105 − 106)
sets in our case]. The fitting algorithm is repeated NMC number of times producing NMC

sets of ‘optimal parameters’ and these results can be used to produce, e.g., the histograms
representing the probability distributions of any given value of the parameters of the studied
Hamiltonian. Alternatively, we can produce the 2D projections of the occurrence frequency,
say FMC, in the form of contour plots which can be used to detect parametric correlations –
an approach which will be illustrated below.

In what follows we summarise briefly the application of the Monte Carlo simulations
to study the leading features/quality of the parameter adjustments in the nuclear structure
context, cf. ref. [17].

Selected Details Concerning the Notation. Let us introduce the Gaussian probability
distribution representing the experimental data and the related uncertainties as follows,

G(e; eexpi , σi) = 1√
2πσ2

i

exp
[
−(e− eexpi )2/2σ2

i

]
, (2.5.10)

in which e denotes a random variable representing single-nucleon energy and σi are the Gaus-
sian widths characterising the experimental uncertainties. The symbol eexpi represents exper-
imental values of the single-particle energies. For convenience we will introduce a simplified
notation and rewrite the single-particle energies as ‘data’ points

{e exp
i } → {d1, d2, ..., dnd}, (2.5.11)

and the set of the corresponding Gaussian widths as:

{σ1, σ2, ..., σnd}, (2.5.12)
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where nd represents the number of the experimental data points. Next, according to the prin-
ciples of the Monte-Carlo method, we employ a random number generator to define a large
number of ‘pseudo-experimental’ input data points in terms of the Gaussian distributions in
eq. (2.5.10). After generating these data sets we apply the χ2-minimisation using the defini-
tion in eq. (2.5.9) to obtain the sought information in the form of the probability distributions
for each studied parameter. More precisely, we generate a big number, say NMC ∼ 105, of
the experimental data sets according to the mentioned Gaussian distributions, perform NMC

times the χ2 minimisation, and finally we generate NMC sets np-tuplets, of parameters, i.e.:

{p1, p2, ..., pnp}j , for j = 1, 2, ...,NMC . (2.5.13)

The resulting set of np = 12 Woods-Saxon mean-field potential parameters appears in 2
sub-sets of six parameters each as presented in section (2.4.3), the one for the protons

{V c, rc, ac; V so rso, aso}π, (2.5.14)

and another one for the neutrons

{V c, rc, ac; V so, rso, aso}ν . (2.5.15)

A straightforward illustration of the results obtained from Monte-Carlo simulation is pro-
vided by two-dimensional ‘dot-plots’, as in fig. (2.5.1), with two parameters {pi, pj}k chosen
from the NMC np-tuplets, representing the appearance frequency of these two parameters.
As mentioned previously, diagrams of this type can be used to detect possible parametric
correlations between the parameters, as shown in figures (2.5.1) and (2.5.2), more detailed
explanations in ref. [17].

2.5.3 New Parametrisation with No Parametric Correlations

As mentioned earlier, one of the sources of uncertainties in model-parameter adjustments
is the possible existence of parametric correlations. This is why we are interested in detecting,
as the first step, the possible correlations between any two parameters, say pi and pj . One of
the simplest ways of detecting the possible (linear) parametric correlations is by determining
the so-called Pearson coefficient:

rij =

n∑
k=1

(pi,k − p̄i)(pj,k − p̄j)√
n∑
k=1

(pi,k − p̄i)2
√

n∑
k=1

(pj,k − p̄j)2
, (2.5.16)

in which pi and pj are two random variables, and p̄i and p̄j are the corresponding mean
values. This kind of test can be applied to any combination of the Woods-Saxon mean-field
parameters, e.g., pi ↔ V c

π and pj ↔ rso
π . The numerical values for the Pearson coefficients

lie in the interval [−1, 1], and in particular, rij = ±1 implies the existence of a strong linear
correlation between these two parameters, while ri,j = 0 indicates that these two parameters
are uncorrelated.
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Figure (2.5.1) presents the results obtained within our Monte-Carlo simulations based on
the χ2 minimisation, and the Pearson coefficient calculated for the two parameters indicated.
It shows an approximately linear correlation between the central potential depth V c

0 and

Central Potential Parameter Correlations
r
c π
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m

)
1.28

1.26

V c
0 (MeV)
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1
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4
5
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24
25

> 25

rij = +0.9184

Figure 2.5.1 – Parametric correlations between the central potential depth V c
0 and radius

rc
π for protons. Pearson coefficient rij = 0.9184 is very close to 1, confirming strong
linear correlations between these two parameters visible from the Monte-Carlo ‘dot-
plot’. Let us emphasise that while the Pearson coefficient can be used to search for the
linear correlations, the Monte Carlo 2D plots like the one shown indicate any kind of
non-linear and/or multi-valued correlations.

radius rc
π parameters. The corresponding Pearson coefficient is close to 1, which confirms

independently the linear correlation between these two parameters seen from the diagram.
Similar correlation exists between V c

0 and the neutron radius rc
ν . Analogous analysis reveals

that there are no correlations between {V c
0 , a

c
π,ν} and {rc

π,ν , a
c
π,ν}. In the past decades, the

parameters of the central potential were treated as independent. With the help of the Monte-
Carlo simulations we conclude that among the originally introduced three parameters of the
central potential – two can be seen as functions of the others.

Figure (2.5.2) shows a similar result for the spin-orbit potential strength λso
0 and radius

rso
π parameters. Note that the distributions in this figure reveal characteristic form of the
multi-valued functional relations: the double-valued dependence of the radius parameter
rso
π as a function of the spin-orbit potential strength λso

0 . It follows that the Woods-Saxon
Hamiltonian leads to two distinct parameterisations. The one with rso

π < 1 fm is referred to
as compact and another one with rso

π > 1 fm, which can be found in the literature, is called
non-compact. From our calculations, we find that the quality of the ‘compact’ solution is
comparable with the quality of the ’non-compact’ solution, the former giving slightly better
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S-O Potential Parameter Correlations
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Figure 2.5.2 – Parametric correlations between the spin-orbit potential strength λso
0 and

radius rso
π for protons. Two approximately linear dependencies are discovered for these

parameters demonstrating a multi-valued pattern.

description of the rotational properties for many nuclei, refs. [17, 18].

We may conclude that only four parameters among six can be considered independent.
We choose the set of parameters {V c

0 , k
c, ac

π, a
c
ν} as independent and then the optimal radius

rc
π,ν value is deduced from the parabolic fit

rc = α(V c)2 + βV c + γ, (2.5.17)

in which the numerical values of the fit coefficients are

for protons: α = 0.003505, β = 0.366677 and γ = 10.852558, (2.5.18)

and

for neutrons: α = 0.000386, β = 0.052687 and γ = 2.935299. (2.5.19)

In other words, the parametric correlations shown in Figures (2.5.1) and (2.5.2) indicate that
we can reduce the set of originally independent 12 parameters for the protons and neutrons
to 8:

{V c
0 , k

c, ac
π, a

c
ν} → for central potential, (2.5.20)

and

{λso
0 , k

so, aso
π , a

so
ν } → for spin− orbit potential. (2.5.21)
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2.6 Symmetries of the Mean-Field Hamiltonian

The optimal Woods-Saxon parameters used in our calculations are shown in the following
table:

Table 2.5.1 – Woods-Saxon parameter values fitted to eight doubly magic spherical nuclei.
The so-called dependent parameters resulting from the parametric correlations discussed are
as follows: rcπ = 1.278 fm, rcν = 1.265 fm, rsoπ = 0.830 fm, rsoν = 0.890 fm.

V c (MeV) κc ac
ν,π (fm) λso (MeV fm2/~2) κso aso

ν,π (fm)

Protons
-50.225 0.624

0.594
28.998 -0.683

0.700

Neutrons 0.572 0.700

Having briefly summarised the Monte-Carlo approach to the analysis of the parametric
correlations resulting from the χ2-fitting, we change the subject focussing on the standard
mean-field potential discrete symmetries.

2.6 Symmetries of the Mean-Field Hamiltonian

Discrete symmetries such as space inversion, time-reversal, signature and simplex, are
considered in this project, among others in order to construct the so-called symmetrised
(harmonic oscillator) bases used for solving the Schrödinger equation with a mean-field Hamil-
tonian. In addition to reducing the dimensions of the Hamiltonian matrices, the symmetries
help in interpreting the experimental results in particular by allowing one to introduce specific
classifications of the nuclear rotational bands, to justify certain hindrance properties and/or
allowing one to understand them, etc.

2.6.1 Time-Reversal Symmetry of the Mean-Field

Time-reversal symmetry is one of the most important discrete symmetries in nuclear
physics. By definition, time-reversal acts by changing the ‘direction’ of time, T̂ : t→ t′ = −t.
The explicit definition of the time-reversal operator in nuclear physics is given as in, for
instance, eq. (1-31) in ref. [13],

T̂ = i ησyK̂, (2.6.1)

where K̂ stands for the complex-conjugation operator, whereas the phase factor η = ±1 is
introduced for convenience and σy is the “second” Pauli matrix,

σy =
(

0 −i
i 0

)
. (2.6.2)

33



2 Nuclear Mean-Field Theory: Our Formulation and Applications

• Time-Dependent vs. Time-Independent Schrödinger Equation. Let us consider
the Schrödinger equation with a hermitian Hamiltonian, Ĥ:

i~
∂ψn
∂t

= Ĥψn. (2.6.3)

For each solution ψn, a related time reversed solution is obtained as ψ̄n = T̂ψn. For the
Hamiltonians which do not explicitly depend on time, the case considered here, we find

T̂ ĤT̂−1 = Ĥ ↔ [Ĥ, T̂ ] = 0. (2.6.4)

Using the above commutation relation we have

T̂ (i~∂ψn
∂t

)T̂−1︸ ︷︷ ︸
i~ ∂
∂(−t)

(T̂ψn)︸ ︷︷ ︸
ψ̄n

= T̂ ĤT̂−1︸ ︷︷ ︸
Ĥ

(T̂ψn)︸ ︷︷ ︸
ψ̄n

↔ i~
∂ψ̄n
∂t ′

= Ĥψ̄n, (2.6.5)

with t ′ = −t. We observe that for a given ψ = ψ(t), the solution ψ(t) and its time-reversed
image ψ̄(t) = ψ(−t) can be interpreted as a pair of states with opposite time evolutions.

• Time-Independent Schrödinger Equation and Double (Kramers) Degeneracy.
Let us consider a stationary form of the Schrödinger equation with time independent Hamil-
tonian. Its solutions satisfy:

ĤΨn(~r, t) = EnΨn(~r, t), Ψn(~r, t) = ψn(~r )e−iEnt/~. (2.6.6)

The corresponding time-reversal images are

ĤΨ̄n(~r, t) = EnΨ̄n(~r, t), Ψ̄n(~r, t) = ψ̄n(~r )e+iEnt/~. (2.6.7)

In general, the nucleonic wave functions are composed of space-, and spin-parts,

ψn(~r,~s ) = ψn(~r )χms , (2.6.8)

with the standard representations for the spin wave functions,

χms= 1
2

=
(

1
0

)
, χms=− 1

2
=
(

0
1

)
. (2.6.9)

Acting with the time-reversal operator, eq. (2.6.1), on the above representations (consider
the convention η = 1) we find

T̂ χms= 1
2

= iσyK

(
1
0

)
= i

(
0 −i
i 0

)(
1
0

)
= −

(
0
1

)
= −χms=− 1

2
, (2.6.10)

and

T̂ χms=− 1
2

= iσyK

(
0
1

)
= i

(
0 −i
i 0

)(
0
1

)
= +

(
1
0

)
= +χms= 1

2
. (2.6.11)

We rewrite eq. (2.6.10) and eq. (2.6.11) in the general form,

T̂ χms = (−1)s+msχ−ms . (2.6.12)

Consequently, the time reversed image of a single-nucleon solution satisfies:

T̂ [ψn(~r )e−iEnt/~] = T̂ [ψn(~r )χmse−iEnt/~] = (−1)s+msψ∗n(~r )χ−mse+iEnt/~. (2.6.13)
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2.6.2 Signature Symmetry of the Mean-Field

We arrive at the Kramers degeneracy relations:

It follows that ψn(~r )χms and ψ∗n(~r )χ−ms satisfy the Schrödinger equation with
the common energy En; this degeneracy originating from time-reversal invariance
of the Hamiltonian is called Kramers degeneracy.

Discussion. Suppose for a moment that the time-reversal image of a given wave-function
satisfies a direct proportionality to the original wave-function with the proportionality con-
stant c:

ψ̄n = T̂ψn = cψn, (2.6.14)

Since the twice time-reversed state ¯̄ψn and ψn must represent the same physical state, we
find

T̂ 2ψn = T̂ (T̂ψn) = (c∗c)ψn = |c|2ψn. (2.6.15)

Recall the form of the time-reversal operator, eq. (2.6.1), for a fermion. We have

T̂ 2 = (i ησyK̂)2 = (i ησyK̂)(i ησyK̂) (2.6.16)

and since i2 = −1, η2 = 1, σ2
y = 1 and K̂2 = 1, it follows that T̂ 2 = −1. Thus relation

(2.6.15) is not satisfied for a Fermion system. This implies that for the fermion wave function
ψ̄n must not be proportional to ψn – wherefrom the conclusion that a given fermion wave
function and its time-reversed image are linearly independent.

Indeed, according to eqs. (2.6.10) and (2.6.11) we find

〈Ψ̄n|Ψn〉 = 〈ψn|ψ̄n〉∗(−1)s+ms〈χms |χ−ms〉 = 0, (2.6.17)

and consequently, |ψn〉 and T̂ |ψn〉 must be orthogonal

〈Ψ̄n|Ψn〉 = 0. (2.6.18)

This confirms that ψ̄n and ψn are linearly independent, and thus the basis used must contain
both types of wave functions.

2.6.2 Signature Symmetry of the Mean-Field

Another important discrete symmetry in nuclear mean-field theory is the so-called sig-
nature, cf. eq. (4-23) in ref. [13] defined in terms of rotation through π about one of the
three axes Ox, Oy or Oz. It is very important, among others, in classification of the nuclear
rotational spectra and expressing the related hindrance properties. The signature or the so
called y-signature operator, ref. [13], is defined by:

R̂y(π) = ei π ̂y , (2.6.19)
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where the nucleon angular momentum operator ̂y = ˆ̀
y + ŝy. It implies rotation through the

angle of π around Oy axis simultaneously in the spatial and spin representations. It follows
that

R̂y(π) = ei π ̂y = ei π (ˆ̀
y+ŝy) = ei π

ˆ̀
y · ei π ŝy , (2.6.20)

since the orbital angular momentum term, ˆ̀
y, and the intrinsic-spin term, ŝy, commute. With

the help of the auxiliary identity satisfied by spin operator, we find

ei π ŝy = ei π
1
2 σy = ei

π
2 σy = cos(π/2) + i sin(π/2)σy = i σy, (2.6.21)

wherefrom we can rewrite eq. (2.6.20) as

R̂y(π) = ei π
ˆ̀
y · ei π ŝy = R̂y(π)(iσy) = iσyR̂y. (2.6.22)

Observe the difference in notation between R̂y(π) and R̂y(π), according to which R̂y(π) is
the operator of rotation through π about Oy axis in Cartesian space implying {x, y, z} →
{−x, y,−z}.

Consider a nuclear system with N nucleons. The y-component of the total angular mo-
mentum operator, Ĵ (N)

y =
∑N
n=1 ̂

(n)
y . Thus the total signature of the system can be obtained

as follows:

R̂(N)
y (π) = ei π Ĵy = ei π

∑N

n=1 ̂
(n)
y =

N∏
n=1

ei π ̂
(n)
y . (2.6.23)

According to the definition of the signature operator in eq. (2.6.19), applying this operator
twice is equivalent to a rotation of the system by 2π. One can demonstrate that applying
any rotation of 2π to the system composed of even number of fermions (bosons) leaves the
wave function invariant, whereas for the system composed of an odd number of fermions the
sign of wave-function changes, cf. ref. [19]. Thus we arrive at the following expression:

[R̂(N)
y (π)]2 = (−1)N . (2.6.24)

Denote eigenvalues of the nucleon signature operator for an even number of Fermions by r,

R̂y|Ψn〉 = r |Ψn〉, (2.6.25)

so that

r = ±1. (2.6.26)

One shows, cf. eq. (4-14), in ref. [13], that the total angular momentum of a rotational state,
I, for the signature conserving systems satisfies

r = (−1)I . (2.6.27)

It follows that the rotation spectra can be classified in terms of signature quantum numbers
as shown below:
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2.6.3 Space Inversion Symmetry of the Mean-Field

1. For an even number of nucleons

r = +1 and I = 0, 2, 4, ... (2.6.28)

r = −1 and I = 1, 3, 5, ... (2.6.29)

2. For an odd number of nucleons

r = −i and I = 1
2 ,

5
2 ,

9
2 , ... (2.6.30)

r = +i and I = 3
2 ,

7
2 ,

11
2 , ... (2.6.31)

2.6.3 Space Inversion Symmetry of the Mean-Field

Space inversion is defined as a simultaneous inversion of the three axes of the reference
frame in a Cartesian 3D space:

Î : {x, y, z} → {−x,−y,−z}, (2.6.32)

where Î is the inversion, also called parity operator. Applying parity operator twice we find

{x, y, z} Î→ {−x,−y,−z} Î→ {x, y, z}, (2.6.33)

wherefrom

Î2 = 1, (2.6.34)

and it follows that the eigenvalues of parity operator Î are π = ±1, π referred to as parity.
States with π = +1 are referred to as of positive parity, while the ones with π = −1 as
of negative parity. One can demonstrate that nuclear interactions conserve parity and thus
parity operator commutes with the nuclear many-body Hamiltonian, Ĥ:

[Ĥ, π̂] = 0, (2.6.35)

and it follows that Ĥ and Î have common eigenvalues. In the case of the nuclear mean-field
approximation Hamiltonian, Ĥmf , certain nuclear shapes may imply a non-commutation,
[Ĥmf , Î] 6= 0; this is the case for the deformation parameters αλµ with λ = odd.

2.6.4 Simplex Symmetry of the Mean-Field

Simplex (also y-simplex) operator, Ŝy, is defined as the combination of inversion and
signature:

Ŝy ≡ Î R̂y = Î R̂y(iσy) = Ŝy × iσy, (2.6.36)

where Ŝy denotes the simplex operator acting on the spatial part, and Ŝy – the simplex
operator acting on the spatial and the spin spaces. Applying the simplex operator within
Cartesian space, we find

Ŝy ◦ {x, y, z} = π̂ ◦ R̂y ◦ {x, y, z} = π̂ ◦ {−x, y,−z} = {+x,−y,+z}. (2.6.37)
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Interpretation. Ŝy symmetry is equivalent to a mirror reflection with respect to πxz plane.
Since inversion Î and signature R̂y satisfy

Ŝy = Î R̂y = R̂yÎ , (2.6.38)

the definition of the simplex operator does not depend on the order of these two operators.
We find

Ŝ2
y = [Î ei π ˆ̀

y (iσy)]2 = [ei 2π ˆ̀
y ]︸ ︷︷ ︸

1

[Î2]︸︷︷︸
1

[(iσy)2]︸ ︷︷ ︸
−1

= −1, (2.6.39)

and thus Ŝ2
y changes the sign of a spinor wave function. It follows that for the mean-field

Hamiltonians obeying to the inversion and signature symmetries we find:

[Ĥ, Ŝy] = 0. (2.6.40)

Let us emphasise that the simplex symmetry of the mean-field Hamiltonian may apply even
though both the inversion and signature symmetries are broken.

It follows that in the case of the simplex-symmetry of the mean-field Hamiltonian, the
common basis for mean-field Hamiltonian and simplex operator can be constructed and we
will discuss this issue in the following sections.

Nuclear Surface as an Invariant of the Simplex Operator. Let us recall the expres-
sion of the nuclear surface equation with the help the of spherical harmonic expansions in
eq. (2.3.22):

R∗(θ, ϕ) = R(θ, ϕ)→
[∑
λµ

αλµYλµ(θ, ϕ)
]∗ =

∑
λµ

αλµYλµ(θ, ϕ). (2.6.41)

Consider the application of the simplex operation to spherical coordinates {r, θ, ϕ},

Ŝy ◦ {x, y, z} = {+x,−y,+z} ↔ {r, θ, 2π − ϕ}. (2.6.42)

It follows that for the spherical harmonics we have

Yλµ(θ, 2π − ϕ) = Yλµ(θ,−ϕ) = Y ∗λµ(θ, ϕ) = (−1)µYλ−µ(θ, ϕ). (2.6.43)

Recall the condition for deformation parameters in eq. (2.3.24),

α∗λµ = (−1)µαλ−µ. (2.6.44)

According to eq. (2.6.39), we consider the surface function as the sum of the terms with ±µ
separately, wherefrom the contributions with given |µ| satisfy

αλµYλµ(θ,+ϕ) + αλ−µYλ−µ(θ,+ϕ) Ŝy−→ αλµ Yλµ(θ,−ϕ)︸ ︷︷ ︸
(−1)µYλ−µ(θ,+ϕ)

+ αλ−µ Yλ−µ(θ,−ϕ)︸ ︷︷ ︸
(−1)µYλ+µ(θ,+ϕ)

= (−1)µαλµ︸ ︷︷ ︸
αλ−µ

Yλ−µ(θ,+ϕ) + (−1)µαλ−µ︸ ︷︷ ︸
αλµ

Yλ+µ(θ,+ϕ)

= αλ−µYλ−µ(θ,+ϕ) + αλµYλ+µ(θ,+ϕ). (2.6.45)
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2.6.4 Simplex Symmetry of the Mean-Field

The above relation demonstrates that all nuclear surfaces represented in terms of
the multipole expansion with real deformation parameters {αλµ} remain invariant
under y-simplex operator; this is the case of the multipole deformations used in
the literature and in our project.
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Chapter 3

Solving the Schrödinger Equation
with the Mean-Field Hamiltonian

In the preceding chapter we have introduced the mean-field Hamiltonian, which, in
its phenomenological realisation is defined in terms of the so-called deformed Woods-
Saxon potential. In this chapter, we are going to present the algorithms allowing for the
construction of numerical solutions of the Schrödinger equation together with the cor-
responding computer programs. The single particle energies and wave functions of the
individual nucleons will be obtained by solving the Schrödinger equation numerically
employing symmetries and the well known diagonalisation method.

After a short reminder related to the definition of the Hamiltonian we are intro-
ducing the standard deformed 3D harmonic oscillator potential with the corresponding
solutions in terms of the Hermit polynomials. We formulate next some instructions al-
lowing to construct numerically the matrix elements of the deformed mean-field Hamil-
tonian.

Our mean field Hamiltonian is time-reversal invariant and obeys the simplex sym-
metry, the latter invariance guaranteed by the choice of the multipole deformation
parameters αλµ as real numbers. Thanks to the presence of those symmetries we can
adopt the harmonic oscillator basis in such a way that the corresponding Hamiltonian
matrix splits into two blocks thus decreasing the storage demand and accelerating the
computer program execution. Several variants of symmetrisation are discussed and the
information necessary to read, understand, and possibly modify the computer programs
is provided.
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3 Solving the Schrödinger Equation with the Mean-Field Hamiltonian

3.1 Method of Solution – Introductory Remarks

The stationary Schrödinger equation has the usual form

Ĥψn = enψn, (3.1.1)

where the mean-field Hamiltonian, expressed using the generally deformed Woods-
Saxon potential, can be written as

Ĥ = T̂ + V̂ c
WS(~r, α) + V̂ so

WS(~r, α) + V̂Coul.(~r), (3.1.2)

with T̂ representing the kinetic energy operator, V̂ c
WS the central Woods-Saxon potential

and V̂ so
WS the spin-orbit potential introduced in section (2.4.1). Recall that the central

potential has the form:

V̂WS(~r;V c, rc, ac) = V c

1 + exp[distΣ(~r; rc)/ac ] , (3.1.3)

where V c represents the central depth parameter, rc is the central radius and ac the
central potential diffuseness parameters. Similarly, the spin-orbital potential has the
explicit form:

V̂ so
WS(~r;λso, rso, aso) = −[~∇V so ∧ p̂ ] · ŝ, (3.1.4)

in which
V so ↔ V so(~r ;λso, rso, aso) = λso

1 + exp[distΣ(~r ; rso)/aso] . (3.1.5)

Above, λso represents the dimensionless spin-orbit strength parameter, rso spin-orbit
radius parameter, which satisfies Rso = rsoA1/3, and aso is the spin-orbit diffusivity pa-
rameter. The mean-field Hamiltonian contains the Coulomb potential for the protons,
defined as an electrostatic potential generated by the uniform charge distribution ρ(~r ′)
inside the nuclear surface Σ:

V̂Coul. =
∫∫∫

Σ
d3~r ′

ρ(~r ′)
|~r − ~r ′|

. (3.1.6)

The structure of the resulting mean-field Hamiltonian implies that the correspond-
ing Schrödinger equation, eq. (3.1.1), must be solved numerically. For this purpose
we introduce a complete orthonormal basis of wave functions {ϕm} generated by the
Cartesian 3D harmonic oscillator Hamiltonian and express for the moment unknown
solutions {ψn} as expansions of the form:

|ψn〉 =
∑
m

cmn|ϕm〉, (3.1.7)

in which the coefficients cmn will need to be determined. The Schrödinger equation
can be rewritten as follows:

Ĥ|ψn〉 = εn|ψn〉 → Ĥ
∑
m

cmn|ϕm〉 =
∑
m

cmnεn|ϕm〉. (3.1.8)
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3.2 Cartesian 3D Harmonic-Oscillator Basis

Since by construction the basis satisfies orthogonality property

〈ϕm′|ϕm〉 = δm′m, (3.1.9)

multiplying both sides of eq. (3.1.8) by 〈ϕm′ | and integrating we find∑
m

cmn〈ϕm′|Ĥ|ϕm〉 =
∑
m

cmnεnδm′m. (3.1.10)

We can rewrite eq. (3.1.10) as follows∑
m

cmn
(
〈ϕm′ |Ĥ|ϕm〉 − εnδm′m

)
= 0, (3.1.11)

and conclude that the non-zero solutions of the above equation are obtained if and
only if the determinant constructed out of the above matrix vanishes

det
(
〈ϕm ′|Ĥ|ϕm〉 − εnδm ′m

)
= 0. (3.1.12)

It follows that in order to solve eq. (3.1.11) i.e., to find the eigenvalues εn and the
expansion coefficients cmn for the sought eigenfunctions, we need to diagonalise the
matrix of the Hamiltonian 〈ϕm ′ |Ĥ|ϕm〉. As an approximation called basis cut-off, the
size of the corresponding basis is assumed finite, say N . In principle the higher the
size of the basis, the more accurate the solutions. However, increasing the size of the
basis also implies bigger storage space and longer computing time. Optimising the size
of the basis cut-off is an important part of the preparations for the numerical solution.

3.2 Cartesian 3D Harmonic-Oscillator Basis

The choice of the basis and its symmetries play an important role in constructing
of efficient and numerically stable solutions to the mean-field problem. When selecting
the basis we need to address from the beginning the issue of the basis cut off so that
the numerical representations of the studied operators are reproduced with maximum
precision at minimum computer memory. Secondly, to increase the efficiency of numer-
ical algorithms – if possible – the symmetries of the system are taken care of within
the selected basis.

3.2.1 Cartesian Harmonic-Oscillator Wave Functions

In what follows we present the harmonic oscillator Hamiltonian in its Cartesian
representation:

ĤHO = − ~ 2

2m0

(
∂ 2

∂ x2 + ∂ 2

∂ y2 + ∂ 2

∂ z2

)
+ 1

2m0
(
ω 2
x x

2 + ω 2
y y

2 + ω 2
z z

2
)
, (3.2.1)
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wherem0 denotes the rest-mass of the nucleon, {ωx, ωy, ωz} define the so-called stiffness
parameters of the oscillator in the Cartesian space {x, y, z}, alternatively, harmonic
oscillator frequencies. The implied Schrödinger equation has the form:

ĤHOΨnx,ny ,nz(x, y, z) = Enx,ny ,nzΨnx,ny ,nz(x, y, z), (3.2.2)

in which the wave-functions and the eigenvalues can be decomposed as follows:

Ψnx,ny ,nz(x, y, z) = ψnx(x)ψny(y)ψnz(z) and Enx,ny ,nz = enx + eny + enz . (3.2.3)

In order to solve eq. (3.2.2), we introduce dimensionless variables

ξµ = bµxµ, {xµ, µ = 1, 2, 3} → {x, y, z}, (3.2.4)

where the so-called stretching factors are defined by

bµ =
√
m0ωµ
~

, µ = 1, 2, 3. (3.2.5)

One can demonstrate (here and in the following we are using the mathematical prop-
erties of the Hermit polynomials from ref. [20]) that the solutions of eq. (3.2.2) can be
expressed with the help of the Hermit polynomials, Hnµ(ξµ), as

ψnµ(xµ) =
√
bµ exp(− ξ 2

µ

2 )H (0)
nµ (ξµ), enµ = (nµ + 1

2), (3.2.6)

where nµ = 1, 2, ...,∞, and where H (0)
nµ (ξµ) denote the normalised Hermit polynomials,

which are defined as follows

H (0)
nµ (ξµ) = 1√√

π2nµnµ!
Hnµ(ξµ), (3.2.7)

and

Hnµ(ξµ) = (−1)nµ exp(ξ 2)de
−ξ 2

dξnµ
. (3.2.8)

The above Hermit polynomials satisfy the following orthogonality relations∫ ∞
−∞

exp(−ξ 2
µ )H (0)

nµ (ξµ)H (0)
n ′µ

(ξµ)dξµ = δnµ,n ′µ . (3.2.9)

One demonstrates that the eigenvalues can be expressed as follows

Enx,ny ,nz = ~ωx(nx + 1
2) + ~ωy(ny + 1

2) + ~ωz(nz + 1
2). (3.2.10)

In the particular case of spherical symmetry, we have

ωx = ωy = ωz ≡ ω0, (3.2.11)
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3.2.2 Matrix Elements within Harmonic Oscillator Basis

and consequently the eigen-energies take the simplified form

Enx,ny ,nz = ~ω0
(
nx + ny + nz + 3

2

)
. (3.2.12)

It follows that the above energy levels are degenerate with the energies E(N), and
N ≡ nx + ny + nz. These degenerate levels form the so-called shells. The shells are
separated by the shell-gaps defined as

∆Eshell = Eshell(N + 1)− Eshell(N) = ~ω0, (3.2.13)

whereas the energy difference ∆Eshell is sometimes referred to as a gap.

Harmonic Oscillator with Spin. Since nucleons are fermions with spins s = 1
2 , the

wave-functions need to be modified as follows

Ψnx,ny ,nz(~r, ~s ) = ψnx(x)ψny(y)ψnz(z)χs,sz , (3.2.14)

where χs,sz are spin wave-functions. It follows from the above expression that the
Woods-Saxon solutions Ψnx,ny ,nz(~r, ~s ), can be represented as linear combination of the
harmonic oscillator and the spin components and we can write

Ψn(~r, ~s ) =
Nx∑
nx=0

Ny∑
ny=0

Nz∑
nz=0

∑
sz=− 1

2 ,
1
2

Anxnynz ,szn ψnxnynz ,sz(~r, ~s ), (3.2.15)

whereNx, Ny andNz are the maximum numbers (the so-called basis cut-off parameters)
of the harmonic oscillator basis corresponding to the three Cartesian directions. Using
an alternative bra-ket notation, we have

|nxnynz, sz〉 ≡ ψnxnynz ,sz(~r, ~s ). (3.2.16)

These basis states can be represented as products in the following way

|nxnynz, sz〉 ≡ |nxnynz〉 ⊗ |sz〉, (3.2.17)

so that we can calculate the matrix elements in the coordinate space and in the spin
space separately.

3.2.2 Matrix Elements within Harmonic Oscillator Basis

As seen from eqs. (3.2.1)-(3.2.2), the matrix elements of the harmonic oscilla-
tor Hamiltonian contain terms with the second-order partial derivatives of the wave-
function in eq. (3.2.6), and the related terms are:

d

dxµ
ψnµ(xµ) = b

3
2
µ e−

1
2 ξ

2
H (1)
nµ (ξµ), (3.2.18)
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3 Solving the Schrödinger Equation with the Mean-Field Hamiltonian

d 2

dx 2
µ

ψnµ(xµ) = b
5
2
µ e−

1
2 ξ

2
H (2)
nµ (ξµ), (3.2.19)

where Hermit polynomials Ĥ (1)
n (ξ) and Ĥ (2)

n (ξ) satisfy the recurrence relations

H (1)
n (ξ) = 2nH (0)

n−1(ξ)− ξ H (0)(ξ), (3.2.20)

H (2)
n (ξ) = (ξ2 − 2n− 1)H (0)(ξ). (3.2.21)

It follows that the matrix elements of the differential operators, in particular up to
the second order, can be obtained in terms of the recurrence relations involving only
Ĥ (0)(ξ),

H (d)
n (ξ)H (d ′)

n ′ (ξ) =
m∑
k=0

cknn ′(d d ′)H
(0)
k (ξ), (3.2.22)

where the orders of the polynomials satisfy 0 ≤ d + d ′ ≤ 2 and m = n + n ′ + d + d ′.
Coefficients cknn ′(d d ′) are calculated with the help of the orthogonality relations for
Hermit polynomials and the Gauss-Hermit quadratures1, cf. e.g. ref. [21]. Thus we can
write down the matrix elements of an arbitrary operator Ô(x, y, z) with the help of the
expansion:

〈nxnynz|Ô(x, y, z)|n ′xn ′yn ′z〉 =
∑
kx

c kxnx n ′x(00)
∑
ky

c
ky
ny n ′x

(00)
∑
kz

c kznz n ′x(00)Okxkykz ,(3.2.25)

in which

Okxkykz =
∫
dξx dξy dξzO( ξx

bx
, ξy
by
, ξz
bz

)H(0)
kx

(ξx)H(0)
ky

(ξy)H(0)
kz

(ξz)e−ξ
2
x−ξ2

y−ξ2
z . (3.2.26)

3.2.3 Matrix Elements of One-Body Hamiltonian

Consider a one-body operator F̂ which depends on the coordinates, linear momenta
(p̂ = −i~∇ = −i~[∂/∂x, ∂/∂y, ∂/∂z) ≡ i~(∂x, ∂y, ∂z)] and spins in the following general
manner

F̂ ↔ F̂ (x, y, z; ∂x, ∂y, ∂z;σx, σy, σz). (3.2.27)
1According to Gauss quadrature theorem, to integrate a function f(x) numerically one uses the

relation: ∫ b

a

e−x
2
f(x)dx ≈

n∑
i=1

wif(xi), (3.2.23)

where the so-called integration nodes are denoted xi and the weight-factors satisfy

wi = 2n−1n!
√
π

n2[Hn−1(xi)]2
. (3.2.24)
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3.2.3 Matrix Elements of One-Body Hamiltonian

It is known that the integer powers of the Pauli matrices satisfy:

σ
(2n)
k = 1, and σ

(2n+1)
k = σk, (3.2.28)

so that the general form of the one-body operator is either spin independent or – at
most – linear in terms of Pauli matrices,

F̂ =
3∑

k=0
f̂k(x, y, z; ∂x, ∂y, ∂z)σk, where σ0 = 1. (3.2.29)

The general form of the spin-dependent wave function can be expressed as

|~r, α; sz〉 = |~r, α〉|sz〉. (3.2.30)

Consequently, the matrix elements of F̂ are composed of two components, one in the
coordinate space and one in the spin space:

〈~r ′, α ′|f̂k(x, y, z; ∂x, ∂y, ∂z)|~r, α〉, and 〈s ′z|σk|sz〉. (3.2.31)

One can show that expressions involving Pauli matrices have the following structure:

Matrix Elements Involving σx:

〈sz|σx|sz〉 = 〈sz| − sz〉 = 0, (3.2.32)

〈s̄z|σx|sz〉 = (−1)s+sz〈−sz| − sz〉

= (−1)s+sz = −1, (3.2.33)

〈sz|σx|s̄z〉 = (−1)s+sz〈sz|sz〉

= (−1)s+sz = −1, (3.2.34)

〈s̄z|σx|s̄z〉 = 〈−sz|sz〉 = 0. (3.2.35)

Matrix Elements Involving σy:

〈sz|σy|sz〉 = 2isz〈sz| − sz〉 = 0, (3.2.36)

〈s̄z|σy|sz〉 = 2isz(−1)s+sz〈−sz| − sz〉

= 2isz(−1)s+sz = −i, (3.2.37)

〈sz|σy|s̄z〉 = (+i)〈sz|sz〉 = +i, (3.2.38)

〈s̄z|σy|s̄z〉 = (+i)〈−sz|sz〉 = 0. (3.2.39)
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3 Solving the Schrödinger Equation with the Mean-Field Hamiltonian

Matrix Elements Involving σz:

〈sz|σz|sz〉 = (2sz) = +1, (3.2.40)

〈s̄z|σz|sz〉 = 0, (3.2.41)

〈sz|σz|s̄z〉 = 0, (3.2.42)

〈s̄z|σz|s̄z〉 = (−1)s+sz = −1. (3.2.43)

We observe that the matrix elements involving spin are either purely real (x- and z-
component) or purely imaginary (y-component). The spin component of the matrix
elements usually provides the phase factor, which may depend on the phase conventions
introduced in relation to the time-reversal operator.

3.3 Alternative Symmetrised Bases

In order to optimise the matrix representation of the Hamiltonian, we will introduce
the so-called symmetrised bases involving harmonic oscillator states and symmetries of
the mean-field Hamiltonian. The symmetries of the Hamiltonian such as time-reversal,
signature, and simplex are discussed in section (2.6). The symmetrised bases allow
expressing relations between certain matrix elements of the mean-field Hamiltonian
such that certain convenient block-diagonal structures of the Hamiltonian can be built,
often profiting from the recurrence relations between the Hermit polynomials.

3.3.1 B-Basis and Associated Symmetry Relations

The so-called B-basis is defined by multiplying the standard harmonic oscillator
wave functions by the phase factor iny . Introducing a phase factor does not change
the probability density and we always have an equivalent physical solution, however,
the appropriate phases may provide useful simplifications. The B-basis is by definition
composed of vectors {|bn〉, |b̄n〉}, the first of which is defined as

|bn〉 = +iny |nx, ny, nz; sz = +1
2〉 = +iny |n; sz = +1

2〉. (3.3.1)

Recall the definition of the time-reversal operator, eq. (2.6.1),

T̂ = i σyK̂, (3.3.2)
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3.3.2 T-Basis: Time-Reversal Symmetrised Basis

with the help of which we can demonstrate that

|b̄n〉 ≡ T̂ |bn〉 = iσyK̂(+iny)|n; sz = +1
2〉

= iσy K̂(+iny)︸ ︷︷ ︸
i−ny

|n; sz = +1
2〉 = −iny |n; sz = −1

2〉, (3.3.3)

so that

|b̄n〉 = −iny |nx, ny, nz; sz = −1
2〉 = −iny |n; sz = −1

2〉, (3.3.4)

where |b̄n〉 is time-reversed |bn〉. It follows that

T̂ |b̄n〉 = −|bn〉. (3.3.5)

Symmetry Relations. Consider an operator Ô. If one of the two following relations
is satisfied:

T̂−1ÔT̂ = ±Ô, (3.3.6)

we say that Ô is time-even when the plus sign applies, otherwise it is called time-odd.
Acting with the operator Ô on the B-basis states we have in particular

〈b̄n|Ô|b̄n′〉 = (〈bn|T̂ )ÔT̂ |bn′〉 = 〈bn| T̂−1ÔT̂︸ ︷︷ ︸
±Ô

|bn′〉∗ = ±〈bn|Ô|bn′〉∗, (3.3.7)

and it follows that for

Ô time− even : 〈b̄n|Ô|b̄n′〉 = +〈bn|Ô|bn′〉∗, (3.3.8)

Ô time− odd : 〈b̄n|Ô|b̄n′〉 = −〈bn|Ô|bn′〉∗. (3.3.9)

Similarly we can demonstrate the following relations

Ô time− even : 〈b̄n|Ô|bn′〉 = −〈bn|Ô|b̄n′〉∗, (3.3.10)

Ô time− odd : 〈b̄n|Ô|bn′〉 = +〈bn|Ô|b̄n′〉∗. (3.3.11)

The above symmetry relations can be used to adapt expressions of the matrix elements
of certain observables to more convenient forms, see below.

3.3.2 T-Basis: Time-Reversal Symmetrised Basis

Time-reversal symmetrised basis (T-basis) is obtained by acting with a simple uni-
tary transformation on the basis {|b1〉, ..., |bn〉, |b̄1〉, ..., |b̄n〉} leading to the following
alternative form, ref. [22], with

|tn+〉 = 1√
2

(i|bn〉 − |b̄n〉), (3.3.12)
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3 Solving the Schrödinger Equation with the Mean-Field Hamiltonian

and

|tn−〉 = 1√
2

(|bn〉 − i|b̄n〉), (3.3.13)

in which |bn〉 and |b̄n〉 are defined in eqs. (3.3.1) to (3.3.4). Applying time-reversal
operator on the T-basis states we find

T̂ |tn+〉 = 1√
2

(−i T̂ |bn〉︸ ︷︷ ︸
+|b̄n〉

− T̂ |b̄n〉︸ ︷︷ ︸
−|bn〉

)

= 1√
2

(|bn〉 − i|b̄n〉) = |tn−〉, (3.3.14)

and similarly

T̂ |tn−〉 = 1√
2

(T̂ |bn〉︸ ︷︷ ︸
+|b̄n〉

+i T̂ |b̄n〉︸ ︷︷ ︸
−|bn〉

)

= − 1√
2

(i|bn〉 − |b̄n〉) = −|tn+〉. (3.3.15)

We rewrite the above symmetry relations in a concise form as

T̂ |tn+〉 = +|tn−〉, (3.3.16)

T̂ |tn−〉 = −|tn+〉. (3.3.17)

After these preliminaries let us proceed with extending the list of properties of the
B-Basis.

3.3.3 Basis Symmetry Properties Related to Signature

As discussed in section (2.6.2), the y-signature symmetry operator, denoted R̂y, is
associated with an operation of rotation through the angle of π about Oy-axis. In this
section, we are going to verify the symmetry properties when applying R̂y on B-basis
and T-basis states.

Let us recall the definition

R̂y(π) ≡ ei π
ˆ̀
y · ei π ŝy = R̂y(π)× (iσy). (3.3.18)

It follows that applying y-signature operator in Cartesian space we induce transforma-
tion: {x, y, z} → {−x, y,−z}. Knowing that Hn(−x) = (−1)nH(x), we find

|nx, ny, nz〉
R̂y−→ | − nx, ny,−nz〉 = (−1)nx+nz |nx, ny, nz〉. (3.3.19)
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B-Basis Under R̂y Operations. Applying R̂y-operation to the basis state |bn〉
defined in eq. (3.3.1) we find

R̂y(π)|bn〉 = R̂(π)(iσy)(+iny)|nx, ny, nz; 1
2〉

= (−1)nx+nz(−iny)|nx, ny, nz〉(i σy)|12〉︸ ︷︷ ︸
− 1/2

= (−1)nx+nz (−iny)|nx, ny, nz;−1
2〉︸ ︷︷ ︸

|b̄n〉

= (−1)nx+nz |b̄n〉. (3.3.20)

Similarly,

R̂y(π)|b̄n〉 = R̂(π)(iσy)(−iny)|nx, ny, nz;−1
2〉

= (−1)nx+nz(−iny)|nx, ny, nz〉(iσy)| − 1
2〉︸ ︷︷ ︸

1
2

= − (−1)nx+nz (+iny)|nx, ny, nz; 1
2〉︸ ︷︷ ︸

|bn〉

= − (−1)nx+nz |bn〉. (3.3.21)

We can rewrite the above relations as

R̂y(π)|bn〉 = +(−1)nx+nz |b̄n〉, (3.3.22)

R̂y(π)|b̄n〉 = −(−1)nx+nz |bn〉. (3.3.23)

These expressions show that the y-signature operator alternates signs of B-basis states.

T-basis Under R̂y Operations. Applying the R̂y-operation to the basis |tn+〉
defined via eq. (2.3.12) we obtain

R̂y(π)|tn+〉 = 1√
2
[
R̂y(π)i|bn〉 − R̂y(π)|b̄n〉

]

= 1√
2
(
(−1)nx+nz i |b̄n〉+ (−1)nx+nz |bn〉

)

= (−i)(−1)nx+nz 1√
2
(
i|bn〉 − |b̄n〉

)
︸ ︷︷ ︸

|tn+〉

= (−i)(−1)nx+nz |tn+〉, (3.3.24)

and continuing

R̂y(π)|tn−〉 = 1√
2
(
R̂y(π)|bn〉 − R̂y(π)i|b̄n〉

)
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= 1√
2
[
+(−1)nx+nz |b̄n〉+ (−1)nx+nz i|bn〉

]

= (+i)(−1)nx+nz 1√
2
(
|bn〉 − i |b̄n〉

)
︸ ︷︷ ︸

|tn−〉

= (+i)(−1)nx+nz |tn−〉, (3.3.25)

therefore

R̂y(π)|tn+〉 = (−i)(−1)nx+nz |tn+〉, (3.3.26)

R̂y(π)|tn−〉 = (+i)(−1)nx+nz |tn−〉. (3.3.27)

We may conclude that the time-symmetrised states {|tn−〉, |tn+〉} are the eigenstates
of the y-signature operator, with eigenvalues ±i.

3.3.4 Basis Symmetry Properties Related to Simplex

The y-simplex operation is defined as the reflexion in the y-plane as presented in
section (2.6.4). Let us recall the definition of y-simplex symmetry operator:

Ŝy ≡ Î R̂y = Î R̂y × (iσy). (3.3.28)

As seen from the above expression, the y-simplex operator is a product of the y-
signature operator R̂y × (iσy) and inversion operator Î. With the help of symmetry
relations shown in eqs. (3.3.22) to (3.3.23) and eqs. (3.3.26) to (3.3.27), it is easy to
calculate the symmetry properties for y-simplex operator.

B-Basis Under Ŝy Operations. Applying the Ŝy-operation to the basis state |bn〉
defined in eq. (3.3.1) we find

Ŝy|bn〉 = Î R̂y|bn〉 = Î(−1)nx+nz |b̄n〉 = +(−1)ny |b̄n〉, (3.3.29)

and

Ŝy|b̄n〉 = Î R̂y|b̄n〉 = −Î(−1)nx+nz |bn〉 = −(−1)ny |bn〉. (3.3.30)

T-Basis Under Ŝy Operations. Applying the Ŝy-operation to the basis state |tn+〉
defined in eq. (3.3.12) we obtain

Ŝy|tn+〉 = Î R̂y|tn+〉 = Î(−i)(−1)nx+nz |tn+〉 = (−i)(−1)ny |tn+〉. (3.3.31)

and similarly

Ŝy|tn−〉 = Î R̂y|tn−〉 = Î(+i)(−1)nx+nz |tn−〉 = (+i)(−1)ny |tn−〉. (3.3.32)
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3.4 Matrix Representations of the Hamiltonian

From the above expressions we conclude that the time-symmetrised states {|tn−〉, |tn+〉}
are the eigenstates of the y-simplex operator with the eigenvalues ±i. This symme-
try property allows us to construct the block-diagonal structure of matrices of the
mean-field Hamiltonian; some details will be given in the following section.

3.4 Matrix Representations of the Hamiltonian

According to the observation that Ψ(~r, sz) and its time-reversal image Ψ̄(~r,−sz) are
linearly independent (cf. section (2.6.1)), both types of such states must be taken into
account when constructing a basis for the mean-field numerical solutions. For instance:

B− basis : {|b1〉, ..., |bn〉; |b̄1〉, ..., |b̄n〉},

and
T− basis : {|t1+〉, ..., |tn+〉; |t1−〉, ..., |tn〉−}.

With the help of so ordered basis vectors, the Hamiltonian matrices take the form of
4 smaller sub-matrices (N × N) rather than the one (2N × 2N). We will verify the
consequences of these block-structures in the case of the symmetrised bases.

3.4.1 General Form of Hamiltonian-Matrix Representation

Consider symmetrised B-basis with N states of a given type {|bn〉;n = 1, N}. The
implied representation of the Hamiltonian matrix can be written down using the above
ordering of states as: 

〈bn′ | Ĥ | bn〉
... 〈bn′ | Ĥ | b̄n〉

· · · · · · · · · ... · · · · · · · · ·
〈b̄n′ | Ĥ | bn〉

... 〈b̄n′ | Ĥ | b̄n〉

 (3.4.1)

The above matrix is composed 2N × 2N = 4N2 matrix elements, which are in general
complex numbers, equivalent to 2 ∗ 4N2 = 8N2 real numbers. Since Hamiltonian is
hermitian, it follows that

Ĥ† = Ĥ ⇔ hij = h∗ji, (i, j = 1, 2, ..., 2N) (3.4.2)

with

Re(hij) = Re(hji) and Im(hij) = −Im(hji). (3.4.3)

This symmetric structure implies that the freedom in terms of the real numbers can
be expressed by

2N ∗ 2N − 2N
2 + 2N = 2N2 +N. (3.4.4)
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3 Solving the Schrödinger Equation with the Mean-Field Hamiltonian

Because of Imhii = 0, the freedom of imaginary numbers is represented by

2N ∗ 2N − 2N
2 = 2N2 −N. (3.4.5)

With hermitian Hamiltonians, the freedom in terms of independent real numbers is

(2N2 +N) + (2N2 −N) = 4N2. (3.4.6)

This is equivalent of the freedom of 2N2 complex numbers. It follows that for hermitian
matrices, the number of the matrix elements to store by the computer program can be
reduced by a factor 2, which for big matrices represents a considerable gain.

Suppose the Hamiltonian is invariant under time-reversal operation, what implies

T̂ ĤT̂−1 = Ĥ. (3.4.7)

According to eqs. (3.3.3) to (3.3.5), we can demonstrate that

〈bn′|Ĥ|b̄n〉 = (〈bn′|T̂−1)ĤT̂ |b̄n〉 = −〈b̄n′|Ĥ|bn〉 = 〈bn′ |Ĥ|b̄n〉∗, (3.4.8)

and similarly

〈bn′|Ĥ|bn〉 = (〈bn′|T̂−1)ĤT̂ |bn〉 = +〈b̄n′|Ĥ|b̄n〉 = 〈bn′ |Ĥ|bn〉∗. (3.4.9)

Thus there exist symmetry relations between these 4 sub-block matrices. Consequently
we find 

〈bn′ | Ĥ | bn〉 ⇒ Ĥn′,n
... 〈bn′ | Ĥ | b̄n〉

⇒ Ĥn′,n
...

· · · · · · · · · ... · · · · · · · · ·
〈b̄n′ | Ĥ | bn〉

... 〈b̄n′ | Ĥ | b̄n〉
= −〈bn′ | Ĥ | b̄n〉∗

... = 〈bn′ | Ĥ | bn〉∗

... ⇒ Ĥ∗n′,n


(3.4.10)

One finds that the storage needed for the block Ĥn′,n is totally determined by N2

real numbers. The ‘upper-right’ block in general contains 2N2 real numbers. Using the
symmetry relation in eq. (3.4.8) we can profit from the symmetry properties in that

〈bn′|Ĥ|b̄n〉 = −〈b̄n′|Ĥ|bn〉 = [〈bn′ |Ĥ|b̄n〉∗]T = [〈bn′ |Ĥ|b̄n〉]†. (3.4.11)

This shows in particular that the ’upper-right’ block is itself hermitian and contains
N2 real numbers.

We can conclude that the original freedom of 4N2 complex entries is greatly reduced
to N2 complex entries if the Hamiltonian is time-reversal invariant and hermitian.
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3.4.2 Hamiltonian Matrix Representation within T-Basis

The block-structure matrices can be obtained in terms of T-basis as well. The
general structure of the matrix of interest is

Ĥ =
〈tn′ + |Ĥ| tn+〉 〈tn′ + |Ĥ| tn−〉
〈tn′ − |Ĥ| tn+〉 〈tn′ − |Ĥ| tn−〉

 . (3.4.12)

Let us first calculate the matrix elements within the {|tn+〉} fragment of the basis

〈tn′ + |Ĥ|tn+〉 = 1
2
(
−i 〈bn′ | − 〈b̄n′ |

)
Ĥ
(
i | bn 〉 − | b̄n 〉

)
= 1

2
[
〈bn′ |Ĥ| bn 〉+ 〈b̄n′ |Ĥ| b̄n 〉

]
+ i

2
[
〈bn′ |Ĥ| b̄n 〉 − 〈b̄n′ |Ĥ| bn 〉

]
= 1

2
[
〈bn′ |Ĥ| bn 〉+ 〈bn′ |Ĥ| bn 〉∗

]
︸ ︷︷ ︸

2Re(〈bn′ |Ĥ| bn 〉)

+ i

2
[
〈bn′ |Ĥ| b̄n 〉+ 〈bn′ |Ĥ| b̄n 〉∗

]
︸ ︷︷ ︸

2Re(〈bn′ |Ĥ| b̄n 〉)

, (3.4.13)

and it follows that

〈tn′ + |Ĥ|tn+〉 = +Re〈bn′ |Ĥ| bn 〉+ iRe〈bn′ |Ĥ| b̄n 〉. (3.4.14)

Similarly we can calculate the matrix elements with for the remaining blocks as follows:

〈tn′ − |Ĥ| tn−〉 = +Re 〈bn′ |Ĥ| bn 〉 − iRe 〈bn′ |Ĥ| b̄n 〉, (3.4.15)

〈tn′ + |Ĥ| tn−〉 = + Im〈bn′ |Ĥ| bn 〉 − i Im〈bn′ |Ĥ| b̄n 〉, (3.4.16)

and

〈tn′ − |Ĥ| tn+〉 = −Im〈bn′ |Ĥ| bn 〉+ i Im〈bn′ |Ĥ| b̄n 〉. (3.4.17)

Comparing the matrix elements in eqs. (3.4.13) to (3.4.16), we arrive at the following
relations

〈tn′ − |Ĥ| tn−〉 = +〈tn′ + |Ĥ| tn+〉∗, (3.4.18)

〈tn′ − |Ĥ| tn+〉 = −〈tn′ + |Ĥ| tn−〉∗. (3.4.19)

By using the four identities in eqs. (3.4.14) to (3.4.17) and the related symmetry rela-
tions as in eqs. (3.4.18) to (3.4.19), we can reduce the size of the matrix to improve the
computer storage and reduce the c.p.u. time. Remark added in passing: The discussed
relations in addition demonstrate Kramers double degeneracy of the spectrum of the
mean-field Hamiltonian.
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3 Solving the Schrödinger Equation with the Mean-Field Hamiltonian

Block-Diagonal Structure of the Hamiltonian. We obtained the symmetry rela-
tions, eqs. (3.4.9) to (3.4.10), in terms of the B-basis {|bn〉; |b̄n〉} for the time-reversal
invariant Hamiltonian, which is the case of concern in this project. One can demon-
strate that the analogous symmetry relations can be obtained for the simplex-invariant
Hamiltonians, i.e., Hamiltonian commuting with Ŝy operator, and we find:

〈bn′|Ĥ|b̄n〉 = 〈bn′ |Ĥ|b̄n〉∗ and 〈bn′|Ĥ|bn〉 = 〈bn′ |Ĥ|bn〉∗. (3.4.20)

The above symmetry relations imply that the matrix elements of the Hamiltonian are
all real. Under this condition only the real parts of the matrix elements in eqs. (3.4.14)
and (3.4.15) need to be stored and the corresponding matrix in eq. (3.4.12) becomes
block-diagonal. Consequently, with the help of the symmetry relation in eq. (3.4.18)
we obtain the Hamiltonian matrices as below:

Ĥ =
〈tn′ + |Ĥ| tn+〉 0

0 〈tn′ + |Ĥ| tn+〉∗

 . (3.4.21)

Since the Hamiltonian must be hermitian, Ĥ† = Ĥ, the corresponding eigenvalues are
all real. It follows that eigenvalues of 〈tn′ + |Ĥ| tn+〉 and 〈tn′ + |Ĥ| tn+〉∗ are identical.
Therefore we arrive the conclusion that the spectrum of a hermitian, time-reversal
invariant or plane reflection operator within a fermion basis must be at least double
degenerate.
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Chapter 4

Nuclear Pairing: BCS Theory

Following the results of our introductory discussion of the properties of nuclear in-
teractions in Chapter 2, we can expect that the leading component in the standard,
approximate description of nuclear Hamiltonian is represented by mean-field poten-
tial. The latter is accompanied by weaker but important, non-negligible, the so called
residual-interaction components, among which pairing-interactions play the most im-
portant role. The presence of pairing interactions was deduced from the experimental
observation that all known nuclei with even proton and even neutron numbers have
the ground-state spins equal to 0, with no exception. Moreover, it has been established
that there exist energy gaps between the ground-state and the first excited state in the
spectra of even-even nuclei, the corresponding energy difference interpreted as an extra
binding, coupling nucleons into pairs with equal but anti-parallel angular momenta.
Therefore the pairing interaction must be considered in realistic nuclear structure cal-
culations. Below we proceed discussing briefly the main lines of the underlying theory
proposed first by Bardeen, Cooper, and Schrieffer, ref. [23], and referred to as BCS
theory since.

The role of this chapter is to provide the language of the nuclear BCS theory
to allow presenting the results obtained in this project together with the underlying
definitions and notation. After brief introduction of the two-body characteristics of
nuclear pairing, we present the variational treatment of the corresponding solution
arriving at the formulation of the BCS equations. We also discuss an extension to
cover the problem of collective rotation in the presence of the pairing interactions.
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4 Nuclear Pairing: BCS Theory

4.1 Nuclear Pairing: General Aspects

Let us consider a ground-state configuration of an even-even nucleus. The total
nuclear spin corresponds to the sum of all nucleonic spins so that we can write:

Î
df.=

A∑
n=1

̂n, where ̂ = l̂ + ŝ, (4.1.1)

and where operators l̂ and ŝ represent nucleonic orbital and intrinsic angular momenta,
respectively. Applying the square of the total nuclear angular momentum operator on
the ground-state wave function we find

Î2|Ψ〉gs = I(I + 1)|Ψ〉gs. (4.1.2)

As mentioned above the experimental results for even-even nuclei are compatible only
with I → Igs = 0, i.e., the sum of the nucleonic angular momenta equal to zero.

Figure 4.1.1 – A schematic illustration of a motion of a nucleonic pair in a nucleus.
The nucleonic angular momenta of these two nucleons are denoted by +~ and −~ and
the related wave-functions are ψn,j,+mj and ψn,j,−mj .

Consider two nucleons moving in a prolate nucleus as shown schematically in figure
(4.1.1). The corresponding nucleonic angular momenta, +̂ and −̂, must have opposite
directions to assure vanishing of their sum. In what follows we will interpret such two
nuclear states as time reversed partners. As discussed in section (2.6.1), the mean-field
Hamiltonian leads to doubly degenerate states (Kramers degeneracy) and the solutions
are:

{en, ψn} → {en̄ = en, ψn̄ = T̂ψn}, (4.1.3)

where T̂ is time-reversal operator. The nucleonic mean-field wave function in the
so-called spherical representation can be written down as ψ ↔ ψn;j,mj , where j and
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mj denote the angular momentum and its projection quantum numbers. One can
demonstrate that the time-reversal partner state ψn̄ is obtained by

ψn̄ → T̂ψn;j,mj ∼ ψn;j,−mj . (4.1.4)

Consequently, coupling the two angular momenta to zero can be seen as a coupling
between {ψn;j,mj} and its time reversal partner {ψn;j,−mj}.

Another important conclusion from the time-reversal partnership of states ψn,j,+mj
and ψn,j,−mj is that these two states have the same spatial probability distributions.
Indeed, since T̂ ∝ K̂ where the latter symbol represents complex conjugation, we find

Pn(~r ) = |ψn(~r )|2 = ψ∗ψ and Pn̄(~r ) = T̂ψ∗n(~r )ψn(~r ) = ψn(~r )ψ∗n(~r ) = |ψn(~r )|2. (4.1.5)

Thus the two nucleons in these two states have the biggest chances to be close to each
other when moving in a nucleus suggesting that the underlying pairing interaction
forcing them to reside in these states is of a short-range.

4.1.1 Nuclear Pairing and Its Interaction Hamiltonian

Employing the concept of the pairing interactions, the experimental results about
the total spins of the nuclear ground-states mentioned earlier can be understood. Pair-
ing interactions involve two-body nucleonic configurations, which implies the presence
of two-body interactions in the corresponding approximation of the nuclear Hamilto-
nian:

Ĥ =
N∑
i=1

[t̂i + V̂1(x̂i)] + 1
2

N∑
i,j=1

V̂2(x̂i, x̂j)︸ ︷︷ ︸
pairing interaction

. (4.1.6)

This two-body interaction is considered “weaker” as compared to the leading mean-field
effect.

We may expect that the two-body pairing interaction leads to a scattering of
fermions within pairs of time-reversed orbitals, the mechanism illustrated schemat-
ically in figure (4.1.2). Consequently, each nucleonic level can be considered being
partly occupied and partly unoccupied. In order to describe this situation it is in-
structive to introduce the amplitudes of probability of occupation and un-occupation,
denoted vµ and uµ respectively, and represent the wave-function of the system as a
linear combination of these states,

uµ|0〉︸ ︷︷ ︸
unoccupied state

+ vµc
+
µ c

+
µ̄ |0〉︸ ︷︷ ︸

occupied state

, (4.1.7)

where c+ and c represent the creation and annihilation operators, |0〉 denotes the
corresponding vacuum state and |µ̄〉 is the time-reversal partner state of |µ〉. According

59



4 Nuclear Pairing: BCS Theory

Figure 4.1.2 – Schematic illustration of the nucleonic excitations with pairing interac-
tion. This two-body interaction leads the scattering of pairs into the originally empty
levels above the Fermi level marked as dotted line. Kramers-degenerate states are de-
noted Ψ↑ and Ψ↓.

to this way of thinking an approximate wave function of a system takes the form of a
product

|Φ〉 =
∏
µ

(uµ + vµc
+
µ c

+
µ̄ )|0〉, (4.1.8)

with the normalisation condition

u2
µ + v2

µ = 1. (4.1.9)

Let us recall that the general expression of the two-body Hamiltonian has the form

Ĥ = 1
2
∑
αβ

∑
γδ

〈αβ|V̂ |γδ〉c+
α c

+
β cδcγ. (4.1.10)

Applying this general form to the pairing interaction leads to a reduced form specific for
the pairing coupling between the ‘spin-up’ and the corresponding ‘spin-down’ states:

Ĥp = 1
2
∑
µν

Gµνc
+
µ c

+
µ̄ cν̄cν , with 〈αβ|V̂ |γδ〉 ↔ 〈µµ̄|V̂ |ν̄ν〉 ≡ Gµν , (4.1.11)

where Gµν are referred to as pairing matrix elements.
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4.2 Bardeen, Cooper and Schrieffer Theory

4.2 Bardeen, Cooper and Schrieffer Theory

The original pairing theory was introduced for the first time in 1957 in condensed
matter physics by Bardeen, Cooper, and Schrieffer (BCS), ref. [23], to explain electron
superconductivity. It was extended by Bohr, Mottelson and Pines in ref. [24] in 1958,
addressing nuclear systems to explain the energy gap mechanism in excitation spectra
of nuclei, today understood with the help of the nuclear pairing interaction.

Basic Ideas. The first step in the BCS approximation is to construct the BCS trial
wave-function in its variational form of eq. (4.1.8) with uν and vν coefficients playing
the role of variational parameters. The underlying mathematical form implies that the
pairing interaction creates couples composed of the time-reversal partner states with
probability of occupation |vν |2 and the probability of un-occupation |uν |2, respectively.
In order to find vν and uν one uses the variational Ansatz and minimises the expectation
value of the Hamiltonian of the system using the Lagrange multiplier method to assure
an approximate conservation of the particle numbers. Finally one obtains the so-called
Bardeen-Cooper-Schrieffer (BCS) equations – for details see below.

4.2.1 Variational Solution of the Pairing Problem

Let us recall the form of the auxiliary function in eq. (4.1.8) as presented above
with the unknown amplitudes vν and uν . This wave function with originally unknown
amplitudes is usually called ‘trial wave function’. To obtain the solutions, one way to
proceed would be to express the expectation value of the Hamiltonian within the trial
wave functions and find the parameters by a variational calculus as presented below.
In our case we have

〈Φ|Ĥ|Φ〉 df.= h({uν ; vν}) = h(u, v), (4.2.1)

where h(u, v) is a known function. The parameters are determined by requiring that the
solution corresponds to a minimum of the expected value of the Hamiltonian, knowing
that u2

ν = 1− v2
ν :

∂h

∂v1
= 0, ∂h

∂v2
= 0, ..., ∂h

∂vn
= 0. (4.2.2)

Therefore the minimum condition for the variation of the expectation value of the
Hamiltonian takes the form

δ〈Φ|Ĥ|Φ〉 = δh(u, v) df.= ∂h

∂v1
δv1 + ∂h

∂v2
δv2 + ...+ ∂h

∂vn
δvn = 0. (4.2.3)

Next, let us introduce the condition that the particle number operator satisfies the
‘particle number conservation on the average’, namely

〈Φ|N̂ |Φ〉 = n = number of nucleons, (4.2.4)
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4 Nuclear Pairing: BCS Theory

where N̂ is the particle number operator either for protons or for neutrons

N̂
df.=
∑
ν

(c+
ν cν + c+

ν̄ cν̄). (4.2.5)

Thus in order to find the BCS wave function, the following two conditions must be
satisfied at the same time:

δ〈Φ|Ĥ|Φ〉 = 0
〈Φ|N̂ |Φ〉 = n

 . (4.2.6)

The above two equations can be solved using the Lagrange multiplier method. The the-
orem of Lagrange states that looking for a minimum of a function f under a subsidiary
condition, g = const., here expressed with the help of a certain function g(x, y, ..., z):

min{f(x, y, ..., z)} =? for g(x, y, ..., z) = const., (4.2.7)

is equivalent to a minimisation of a new function

F (x, y, ..., z) df.= f(x, y, ..., z)− λg(x, y, ..., z), (4.2.8)

where the unknown parameter λ is called the Lagrange multiplier. We can write
eq. (4.2.7) as

∂F

∂x
= 0, ∂F

∂y
= 0, ... , ∂F

∂z
= 0, and g(x, y, ..., z) = const. (4.2.9)

From the above equations we have

xmin = xmin(λ)
ymin = ymin(λ)

...

zmin = zmin(λ)


→ g[xmin(λ), ymin(λ), ..., xmin(λ)] = const., (4.2.10)

where the number of equations is the same as the number of the unknowns. Thus we can
calculate the unknown solutions xmin, ymin, . . . and the unknown Lagrange multiplier
by solving the above system of non-linear equations.

Conditional Minimum for the Hamiltonian. As discussed in section (4.1.1) the
realistic Hamiltonian of the system is composed of the mean-field part and the pairing
part. The latter one does not commute with the particle-number operator N̂ with the
consequence that the numbers of nucleons (protons and neutrons) remain unspecified
in contrast to the physical/experimental situation. To counteract this contradiction
we introduce an auxiliary condition requesting that the particle number conservation
is at least present in terms of expected values. Following the theorem of Lagrange, we
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4.2.2 Expectation Value of 〈Φ|(Ĥmf − λN̂)|Φ〉

introduce an auxiliary Hamiltonian, cf. eq. (4.2.8), containing the Lagrange multiplier
term λ

Ĥ
df.= Ĥmf + Ĥp − λN̂. (4.2.11)

The variational solution for the “physical” Hamiltonian is equivalent to looking for the
minimum of the expected value of the “auxiliary” Hamiltonian

δ〈Φ|Ĥ|Φ〉 = 0 ↔ min{uν ,vν}〈Φ|Ĥ|Φ〉 =?, (4.2.12)

more precisely,

min{uν ,vν}{〈Φ|(Ĥmf − λN̂)|Φ〉+ 〈Φ|Ĥp|Φ〉 =?}. (4.2.13)

We will proceed to present briefly the evaluation of the involved terms.

4.2.2 Expectation Value of 〈Φ|(Ĥmf − λN̂)|Φ〉

Since the pairing Hamiltonian can be considered as a corrective term with respect
to the mean-field Hamiltonian, we assume that the mean-field Hamiltonian has been
already diagonalised to determine the core energy contribution so that pairing Hamilto-
nian will be discussed next using the mean-field solutions treated as a known reference.

The one-body Hamiltonian in the particle-number representation has the form

Ĥmf =
∑
µ

∑
ν

〈µ|Ĥ|ν〉c+
µ cν . (4.2.14)

We consider diagonalisation of its matrix

〈µ|Ĥ|ν〉 → δµνeν , (4.2.15)

and obtain the corresponding diagonal form,

Ĥmf =
∑
ν

eνc
+
ν cν . (4.2.16)

Consider next the Kramers degenerate states eν = eν̄ , and rewrite the corresponding
mean-field Hamiltonian more explicitly as

Ĥmf =
∑
ν

eν(c+
ν cν + c+

ν̄ cν̄). (4.2.17)

Recall the definition for the particle-number operator with the notation adapted to the
present case:

N̂ =
∑
ν

(c+
ν cν + c+

ν̄ cν̄), (4.2.18)
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4 Nuclear Pairing: BCS Theory

and rewrite the sought expectation value, with the operator composed of the mean-field
and the particle-number terms

〈Φ|(Ĥmf − λN̂)|Φ〉 = 〈Φ|[
∑
ν

(eν − λ)(c+
ν cν + c+

ν̄ cν̄)]|Φ〉

=
∑
ν

(eν − λ)〈Φ|(c+
ν cν + c+

ν̄ cν̄)|Φ〉. (4.2.19)

Recall the form of an auxiliary function in eq. (4.1.8). We can calculate an auxiliary
expression cν |Φ〉 needed below,

cν |Φ〉 = cν
∏
µ

(uµ + vµc
+
µ c

+
µ̄ )|0〉

= cν(uν + vνc
+
ν c

+
ν̄ )
∏
µ 6=ν

(uµ + vµc
+
µ c

+
µ̄ )|0〉

= [(uν + vνc
+
ν c

+
ν̄ )cν + vνc

+
ν̄ ]
∏
µ6=ν

(uµ + vµc
+
µ c

+
µ̄ )|0〉

= vνc
+
ν̄

∏
µ6=ν

(uµ + vµc
+
µ c

+
µ̄ )|0〉. (4.2.20)

Consider the corresponding hermitian conjugate term:

〈Φ|c+
ν = (〈Φ|c+

ν )† = 〈Φ|cν . (4.2.21)

According to eq. (4.2.20) we find

〈Φ|c+
ν = vν〈0|

∏
µ6=ν

(uµ + vµcµcµ̄)cν̄ . (4.2.22)

Using eqs. (4.2.20) and (4.2.22) one can demonstrate that

〈Φ|c+
ν cν |Φ〉 = v2

ν and 〈Φ|c+
ν̄ cν̄ |Φ〉 = v2

ν̄ = v2
ν . (4.2.23)

It follows that the expectation value of the particle number operator is

〈Φ|N̂ |Φ〉 =
∑
ν

〈Φ|(c+
ν cν + c+

ν̄ cν̄)|Φ〉 = 2
∑
ν

v2
ν . (4.2.24)

Consequently, we find

〈Φ|(Ĥmf − λN̂)|Φ〉 =
∑
ν

2v2
ν(eν − λ), (4.2.25)

where eν represent the single-particle energies obtained by diagonalisation of the mean-
field Hamiltonian, the v2

ν are the probabilities of occupation of the state eν , whereas
the Lagrange multiplier λ is still to be determined.
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4.2.3 Expectation Value of the Pairing Term 〈Φ|Ĥp|Φ〉

Let us recall the expression of the pairing Hamiltonian,

Ĥp = 1
2
∑
µν

Gµνc
+
µ c

+
µ̄ cν̄cν . (4.2.26)

To simplify the final expressions employed in the computer programming we will work
with the so-called monopole paring approximation, which consists in replacing matrix
Gµν by a constant G, the latter playing the role of an average matrix element. We
have in this case

Ĥp = G
∑
µν

c+
µ c

+
µ̄ cν̄cν . (4.2.27)

For the time being we continue working with the more general pairing Hamiltonian to
express the expectation value of interest as

〈Φ|Ĥp|Ψ〉 =
∑
µν

Gµν〈Φ|c+
µ c

+
µ̄ cν̄cν |Φ〉. (4.2.28)

Recall the result in eq. (4.2.20). We have

cν |Φ〉 = vνc
+
ν̄

∏
ρ 6=ν

(uρ + vρc
+
ρ c

+
ρ̄ )|0〉. (4.2.29)

Let us calculate the following expression

cν̄cν |Φ〉 = vνcν̄c
+
ν̄

∏
ρ6=ν

(uρ + vρc
+
ρ c

+
ρ̄ )|0〉

= vν
∏
ρ 6=ν

(uρ + vρc
+
ρ c

+
ρ̄ ) cν̄c+

ν̄ |0〉︸ ︷︷ ︸
|0〉

= vν
∏
ρ 6=ν

(uρ + vρc
+
ρ c

+
ρ̄ )|0〉, (4.2.30)

and similarly

〈Φ|c+
µ c

+
µ̄ = 〈0|vµ

∏
κ6=µ

(uκ + vκc
+
κ c

+
κ̄ ). (4.2.31)

Substituting results from eqs. (4.2.30) and (4.2.31) into eq. (4.2.28), we find the expec-
tation value of the pairing Hamiltonian

〈Φ|Ĥp|Φ〉 =
∑
µν

Gµν〈Φ|c+
µ c

+
µ̄ cν̄cν |Φ〉

=
∑
µν

Gµνvνvµ 〈0|
∏
κ6=µ

(uκ + vκc
+
κ c

+
κ̄ )

︸ ︷︷ ︸
〈Φµ|

∏
ρ 6=ν

(uρ + vρc
+
ρ c

+
ρ̄ )|0〉

︸ ︷︷ ︸
|Φν〉
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4 Nuclear Pairing: BCS Theory

=
∑
µν

Gµνvνvµ〈Φµ|Φν〉, (4.2.32)

where we have taken note of the non-orthogonality1 of the wave-functions in question

〈Φν |Φµ〉 = uνuµ. (4.2.38)

The final result for the expected value of the pairing Hamiltonian takes the form

〈Φ|Ĥp|Φ〉 =
∑
µν

Gµνvνvµuνuµ. (4.2.39)

Let us introduce the quantity which will be called from now on the energy gap

∆ν
df.=
∑
µ

Gνµuµvµ. (4.2.40)

With the help of this notation, the expectation value of the pairing Hamiltonian can
be written down in a simplified form

〈Φ|Ĥp|Φ〉 =
∑
ν

∆νvνuν . (4.2.41)

We proceed now to combine the two contributions discussed so far.

1Consider an auxiliary wave function

|Φµ〉 =
∏
ρ6=µ

(uρ + vρc
+
ρ c

+
ρ̄ )|0〉, (4.2.33)

and observe that the (uµ + vµc
+
µ c

+
µ̄ ) factor is missing in the above wave function. Thus we introduce

a new notation

|Φµ〉 = (uν + vνc
+
ν c

+
ν̄ )|Φνµ〉. (4.2.34)

Therefore the overlap of the two auxiliary wave functions reads

〈Φν |Φµ〉 = 〈Φνµ|(uµ + vµcµcµ̄) · (uν + vνc
+
ν c

+
ν̄ )|Φνµ〉

= 〈Φµν |(uµuν + uµvνc
+
ν c

+
ν̄ + vµuνcµcµ̄ + vµvνcµcµ̄c

+
ν c

+
ν̄ )|Φνµ〉. (4.2.35)

Since Φνµ by definition does not contain neither µ nor ν operators, we have

cµcµ̄|Φµν〉 = 0 and 〈Φµν |c+ν c+ν̄ = 0. (4.2.36)

Consequently, we obtain

〈Φν |Φµ〉 = uµuν 〈Φµν |Φµν〉︸ ︷︷ ︸
1

= uµuν . (4.2.37)
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4.2.4 Variational Procedure

So far we have calculated the expectation values for the one-body Hamiltonian and
pairing Hamiltonian in eqs. (4.2.25) and (4.2.41) separately. The total expectation
value reads

〈Φ|Ĥmf − λN̂ + Ĥp|Φ〉 =
∑
ν

2v2
ν(eν − λ) +

∑
ν

∆νvνuν
df.= h(uν , vν). (4.2.42)

This implies that the sought expectation value is a function of the coefficients (uν , vν),
which satisfy the normalisation condition u2

ν + v2
ν = 1. Therefore the variational con-

dition for the minimum of the expected value of the Hamiltonian in eq. (4.2.13) takes
the form

δ〈Φ|Ĥ|Φ〉 = δh(uν , vν) = 0. (4.2.43)

The latter condition implies that
∂h

∂uν
= 0 and ∂h

∂vν
= 0, ∀ ν. (4.2.44)

From the normalisation condition

u2
ν + v2

ν = 1 → 2∂uν
∂vν

uν + 2vν = 0, (4.2.45)

and we find that
∂uν
∂vν

= −vν
uν
. (4.2.46)

We can calculate the partial derivatives in eq. (4.2.44) in terms of the above relation.
We find

∂h

∂vν
= 4vν(eν − λ) + 2∆ν

(
uν −

v2
ν

uν

)
= 0, (4.2.47)

and the new, simplified expression reads

2uνvν(eν − λ) + ∆ν(u2
ν − v2

ν) = 0. (4.2.48)

Equation (4.2.48) represents a set of non-linear algebraic equations for the amplitudes
(vν , uν). Taking into account the normalisation relation between these parameters, one
can demonstrate that the solutions, eq. (4.2.48), satisfy

v2
ν = 1

2

(
1− eν − λ

Eν

)
and u2

ν = 1
2

(
1 + eν − λ

Eν

)
, (4.2.49)

where

Eν
df.=
√

(eν − λ)2 + ∆2
ν , (4.2.50)

and where the last term is usually referred to as “quasi-particle energy”.
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4.2.5 Bardeen-Copper-Schrieffer (BCS) Equations

We just found the solutions, cf. eq. (4.2.49), of the variational problem, however,
the occupation probabilities contain unknown parameters, the Lagrange multiplier λ
and pairing gap parameters ∆ν . From the relations in eqs. (4.2.49), we find

v2
νu

2
ν = 1

4

[
1− (eν − λ)2

E2
ν

]
= 1

4
∆2
ν

(eν − λ)2 + ∆2
ν

, (4.2.51)

and thus the term vνuν takes the form

vνuν = 1
2

∆ν√
(eν − λ)2 + ∆2

ν

. (4.2.52)

Let us substitute the above into the pairing gap expression, eq. (4.2.40) and the particle
number condition repeated below

∆µ =
∑
ν

Gµνvνuν and N =
∑
ν

2v2
ν , (4.2.53)

and obtain in this way the non-linear system of nuclear Bardeen-Cooper-Schrieffer
(BCS) equations

∆µ = 1
2
∑
ν

Gµν
∆ν√

(eν − λ)2 + ∆2
ν

, (4.2.54)

N =
∑
ν

1− eν − λ√
(eν − λ)2 + ∆2

ν

 . (4.2.55)

Observe in passing that we obtained in this way a system of (N + 1) equations for
the unknown gap parameters, {∆ν}, one per each single nucleonic energy level and the
Fermi energy λ.

Simplified Version of the Pairing Hamiltonian: Monopole Pairing. Consider
the monopole pairing strength G, cf. eqs. (4.2.25) and (4.2.26). Introducing related
simplification into eq. (4.2.39) we find

∆µ → ∆ = G
∑
ν

vνuν , (4.2.56)

from where the simplified system of only two BCS equations follows

2
G

=
∑
ν

1√
(eν − λ)2 + ∆2

ν

, (4.2.57)

N =
∑
ν

1− eν − λ√
(eν − λ)2 + ∆2

ν

 . (4.2.58)
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4.3 Collective Rotation and Rotating Mean-Field

Now we have only 2 non-linear algebraic equations and two unknown parameters λ and
∆. The above equations are also called gap and particle number equations, respectively.

Critical G-value. We notice that ∆2 ≥ 0; this implies

2
G

=
n∑
ν

1√
(eν − λ)2 + ∆2

ν

≤
n∑
ν

1
|eν − λ|

. (4.2.59)

It follows that for a given spectrum {eν}, we have

1
G
≤ 1

2

n∑
ν

1
|eν − λ|

df.= 1
Gcrit.

. (4.2.60)

Thus the solution ∆ > 0 can be obtained if and only if

G ≥ Gcrit. (4.2.61)

This is equivalent to saying that there exists a critical paring strength Gcrit.: for G >

Gcrit. we obtain the solution with ∆ 6= 0 while for G ≤ Gcrit. there exists only a trivial
solution ∆ = 0. Experiments show that among 3000 known nuclei, the great majority
of them have ∆ 6= 0 in their ground-states and only very few of them have ∆ = 0.

4.3 Collective Rotation and Rotating Mean-Field

Because of the very short range of nuclear interactions, the nucleus can be consid-
ered as a highly compact object with the density nearly constant in the nuclear interior,
quickly dropping down to zero “at the nuclear borders”. This allows for introducing the
concept of nuclear surface, nuclear shape, and nuclear orientation, the latter concept
allowing to introduce the notion of collective nuclear rotation.

Historically, the nuclear rotational motion was introduced to interpret the existence
of excitation spectra with very characteristic regularities of the type EI ∝ I(I + 1).
Rotational mode was a necessary consequence of the existence of non-spherical or
even strongly deformed shapes, cf. ref. [13]. Analysing the electromagnetic transition
probabilities and in particular the electric quadrupole (E2) transitions gave additional
evidence for the notion of the collectivity of the underlying effect.

The rotational motion of an object, by definition, implies the change of its orien-
tation in space. One can demonstrate that a quantum object cannot rotate about its
symmetry axis, so that the only geometrical configurations allowed are those shown
schematically in figure (4.3.1).

Experiments show that the level sequences of the rotational excitations are to a
good approximation quadratic in terms of the total angular momenta,

E(I) = α(Z,N)R(R + 1), (4.3.1)
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4 Nuclear Pairing: BCS Theory

Figure 4.3.1 – Schematic illustration of the collective nuclear rotation. The symmetry
axis is denoted Oz, the rotation axis Ox, the rotational frequency is demoted by ~ω and
K is the projection of the rotational angular momentum ~R onto the symmetry axis.

where proportionality coefficient, α(Z,N), generally depends on the proton and neu-
tron numbers, R denotes the rotational angular momentum quantum number; it takes
integer values for even-even and odd-odd nuclei and half-integer values for odd-even
and even-odd nuclei.

In analogy to a rotational motion of a rigid body with the moment of inertia Jclass.,
and the angular momentum ~L in classical physics,

Eclass.(~L) =
~L2

2Jclass.
, (4.3.2)

we may introduce the Hamiltonian of the quantum analogue

Ĥ(R̂) = R̂2

2J → ~L↔ R̂. (4.3.3)

According to the quantum mechanics, the eigenvalues of the square of the angular
momentum R̂2 are given by R(R + 1), and thus the energies for the quantum rigid
rotor can be written as

EI = R(R + 1)~2

2J . (4.3.4)

Comparing eqs. (4.3.4) and (4.3.1) we find the correspondence between α and the
moment of inertia,

α(Z,N) = ~2

2Jnucl.
. (4.3.5)

Remark: The units of the nuclear moments of inertia are ~2/MeV .
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4.3.1 Moment of Inertia and Rotational Frequency

4.3.1 Moment of Inertia and Rotational Frequency

The moment of inertia of a rigid body in classical physics is the quantity which
determines the nuclear reaction to the acceleration/de-acceleration in terms of the ro-
tational frequency of the rotor. The kinetic energy of a classical rotor can be expressed
using the associated frequency of rotation ω, which in classical mechanics satisfies:

Erotor(ω) = 1
2Jclass.ω

2 in analogy with Eparticle(v) = 1
2mv

2; (4.3.6)

observe analogy in describing the inertia, Jclass. in the case of rotation, and the mass
of the particle m in the case particle’s translational motion.

Consider the relation between the classical angular momentum L and the velocity
of rotation (frequency) ω:

L = Jclass. ω → ω = L

Jclass.
, compare with p = mv → v = p

m
. (4.3.7)

Let us substitute the above relation into eq. (4.3.6) obtaining again the previously seen
expression

Eclass.(L) = L2

2Jclass.
. (4.3.8)

It follows that
dEclass.

dL
= L

Jclass.
= ω. (4.3.9)

In analogy we may conjecture a similar relation for the quantum rotor as follows,

ER = R2

2J →
dER
dR

= R

J
= ω. (4.3.10)

Comments. The above relation must be taken with a dose of scepticism: The quantum
energies are discrete, and not continuous functions of the angular momentum variable
R, the latter taking integer or half-integer values so that the derivative expression
strictly speaking makes no sense. However, one may defend the idea of using the above
analogy with the derivative formula for the particular case of the semi-classical relations
with a very regular E−vs.−R dependence, which is indeed the case in nuclear physics.
With this extra condition in mind we can write

ωR ≈
dER
dR

df.= ER+1 − ER−1

(R + 1)− (R− 1) , (4.3.11)

where the finite difference expression has been used to approximate the derivative.

Kinematical Moments of Inertia. For a nuclear system with a given rotational
frequency ωR and the related total angular momentum R, in analogy to eq. (4.3.7), the
so-called kinematical moment of inertia is defined as

J (1)(R) df.= R

ωR
. (4.3.12)
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4 Nuclear Pairing: BCS Theory

The superscript “(1)” has been introduced to emphasise the fact that this quantity
depends on the first derivative of the energy vs. angular momentum.

Dynamical Moments. The so-called dynamical moment (observe that we do not use
the term moment of “inertia” in this case, since the discussed quantity can become
negative) is quite sensitive to the change of the kinematical moments of inertia. This
quantity is formally defined in terms of the second derivative of the energy vs. angular
momentum R

J (2)(R) df.= 1(
d2E
dR2

) = 1
d
dR

(dE
dR

)
= 1(

dωR
dR

) = dR

dωR
. (4.3.13)

Thus the relation between J (1) and J (2) is

J (2) = dR

dωR
= d

dωR
(J (1)ωR) = J (1) + ωR

dJ (1)

dωR
. (4.3.14)

Let us note the use of the superscript “(2)” in this case to emphasise that the just
introduced quantity depends on the second order derivative of energy vs. angular mo-
mentum.

4.3.2 Individual Nucleons and Collective Rotational Motion

Let us note that the energies of transitions connecting the lowest rotational states
observed experimentally, vary typically from dozens of keV in mid-mass nuclei to few
keV in heavy nuclei, say ∆ER ∼ 10 keV. A schematic illustration of the observed
relations is shown in figure (4.3.2) (left fragment). It follows that, on average, one
nucleon contributes of the order of δEper nucleon = ∆ER/A ∼ 10−1-to-10−2 keV.

Consider nucleons moving in the mean-field potential with the central potential
depth of the order of 50 MeV, as shown schematically in figure (4.3.2) (right). On
average one nucleon carries the kinetic energy of the order of ~ων ∼ 25 MeV. Therefore
we observe that the collective rotational motion can be treated as a small perturbation
impacting the nucleonic energies at the level of one-to-two orders of magnitude less.

On the other hand the rotational transition energies are given by ∆ER = ~ωrot. in
terms of rotational frequencies, whereas an average energy of the individual nucleonic
motion is eν = ~ων , and it follows that ωrot. � ων . This allows us to describe the
uniform rotational motion of the nucleus as induced by a slow collective rotation in
each given rotational state.
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4.3.3 Cranking Approximation

Figure 4.3.2 – Schematic: (a) Rotational spectrum depending parabolically on the nu-
clear angular momentum, cf. eq. (4.3.4). Experimental data show that the lowest
transition energies are of the order of a dozen of keV for the nuclei with A > 200.
(b) Schematic illustration of the central potential of nuclear mean-field Hamiltonian.
The depth of the potential is about -50 MeV, and it follows that, on average, one nucleon
carries the kinetic energy of the order of ~ων ∼25 MeV.

To simplify the description of the nuclear collective rotational motion, often the
rotating reference frame, also called the body-fixed frame, is considered. This notion
allows introducing the concept of the cranking approximation also referred to as the
so-called hypothesis of adiabatic enforced rotation, which was suggested originally by
Inglis, ref. [25].

4.3.3 Cranking Approximation

The cranking approximation is one of the most powerful theoretical concepts in
describing both the collective rotational bands and the high-spin state configurations
in nuclei. A direct way to investigating rotating nuclei is to rotate or ‘crank’ the nucleus
with some rotational frequency. The basic idea of the cranking approximation is to
treat the rotation of the nucleus as a perturbation to the mean-field potential, whereas
the mean-field Hamiltonian rotates with the same rotational frequency as the nucleus.
To simplify the theoretical description of a rotating system, the body-fixed frame is
considered rotating with the frequency ω with respect to the laboratory frame as shown
in figure (4.3.3).
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4 Nuclear Pairing: BCS Theory

Figure 4.3.3 – Schematic illustration of a rotating nucleus; the laboratory reference
frame, {Ox, Oy, Oz}, and the body-fixed frame, {Ox′ , Oy′ , Oz′} are shown.

Laboratory and Body-Fixed Reference Frames. Let us consider the original
time-dependent Schrödinger equation written in the laboratory frame as

Σlab. : i~
∂ψlab.

∂t
= Ĥlab.ψlab.. (4.3.15)

Next, consider a nucleus rotating about Ox-axis. The corresponding rotation operator
connecting the two reference frames has the usual form

R̂x = e−i ωt ̂x , (4.3.16)

where ̂x is the x-component of the total angular momentum operator (observe the
notation difference: in eqs. (4.3.10) and onwards, ~R denotes the rotational angular
momentum of a nucleus, whereas above, R̂x is an operator of rotation connecting
body-fixed and laboratory reference frames). The corresponding relation between the
wave-function and Hamiltonian in the laboratory-, and the body-fixed frames, can be
expressed as follows

ψlab. = R̂xψrot. = e−iω t̂xψrot., (4.3.17)

and

Ĥlab. = R̂xĤrot.R̂
−1
x . (4.3.18)

By inserting eqs. (4.3.17) and (4.3.18) into eq. (4.3.15), we obtain the Schrödinger
equation in the body-fixed (rotating) reference frame,

Σrot. : i~
∂ψrot.

∂t
= Ĥωψrot., (4.3.19)
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in which

Ĥω df.= Ĥrot. − ~ω̂x, (4.3.20)

is called cranking Hamiltonian or Routhian and “-~ω̂x” is called “cranking term”. As
mentioned earlier, the basic idea behind the cranking approximation is to follow the
fact that the mean-field Hamiltonian in the rotating coordinate frame does not depend
on time and thus takes the simplest form when constructing the solutions. This means
that we can replace the Ĥrot. by the static, original mean-field Hamiltonian Ĥ, and
thus rewrite the above expression as

Ĥω = Ĥ − ~ω̂x. (4.3.21)

The Routhian Ĥω can be seen as the Hamiltonian in the body-fixed reference frame.
Since Ĥω dose not depend on time, the solution of the Schrödinger equation with the
above effective Hamiltonian can be obtained by solving the eigenvalue problem of Ĥω

using the standard diagonalisation methods,

Ĥω|ψωn〉 = Eω
n |ψωn〉. (4.3.22)

The total Routhian operator Ĥω is the sum of the single-particle operators

Ĥω =
∑
i

ĥωi =
∑
i

[ĥi − ~ω(̂x)i], (4.3.23)

where ̂x is the projection of the nucleonic angular momentum operator on the Ox-axis.
Thus we can write the eigenvalue equation of Routhian operator of each single-particle
as

ĥωi |ψωi 〉 = eωi |ψωi 〉, (4.3.24)

where the eωi denotes the corresponding single-particle Routhian, i.e., the energy in the
rotating coordinate frame. The energies ei in the laboratory frame are calculated as
the expectation values of the Hamiltonian ĥi with the eigenfunction |ψωi 〉,

ei = 〈ψωi |ĥi|ψωi 〉 = 〈ψωi |[ĥωi + ~ω(̂x)]|ψωi 〉

= eωi + ~ω〈ψωi |̂x|ψωi 〉. (4.3.25)

Within the mean-field approximation (of non-interacting particles) the total energies
En in the laboratory frame can be expressed as

En =
n∑
i=1

eωi + ~ω
n∑
i=1
〈ψωi |̂x|ψωi 〉. (4.3.26)

According to eq. (4.3.25), we can write the single-particle Routhian eigen-value as

eωi = ei − ~ω〈ψωi |̂x|ψωi 〉. (4.3.27)
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This implies

deωi
dω

= −~〈ψωi |̂x|ψωi 〉, (4.3.28)

the relation showing that the slope of the single-particle Routhian is equal to the
expectation value of the angular momentum of jx with reversed sign, and

jx = −1
~
deωi
dω

. (4.3.29)

The projection of the total angular momentum Ix along the axis of collective rotation,
here Ox, can be obtained by summing up

Ix =
n∑
i=1

jix =
n∑
i=1
〈ψωi |̂x|ψωi 〉. (4.3.30)

The just presented properties apply to the mean-field nuclear description without
pairing correlations. The generalisation for the case of pairing will be discussed next.

4.3.4 Cranking Hamiltonian with Pairing Interactions

The Routhian shown in eq. (4.3.22) corresponds to the rotation about Ox-axis. It
follows that in the presence of all the three angular momentum components,

Ĥ~ω = Ĥmf − ~~ω · ̂, (4.3.31)

where

~ω · ̂ = ωx̂x + ωy ̂y + ωz ̂z, (4.3.32)

represents the cranking term in the 3D-space. The scalar product of the rotational
frequency vector and the angular momentum represents the projection of the angular
momentum onto the axis of rotation. Following eq. (4.3.31), the general form of the
nuclear Routhian in the presence of the pairing interactions can be written as follows

Ĥ~ω = Ĥmf − ~~ω · ̂+ Ĥpair. (4.3.33)

Routhian Ĥ~ω can be seen as the mean-field Hamiltonian in the body-fixed reference
frame, Ĥmf represents the phenomenological Woods-Saxon Hamiltonian in the labora-
tory frame, the cranking term ~ω · ̂ originates from the transforming from the laboratory
to the body-fixed reference frame, whereas the pairing Hamiltonian, Ĥpair. above, is
given by eq. (4.2.26),

Ĥp =
∑
µν

Gµνc
+
µ c

+
µ̄ cν̄cν . (4.3.34)
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Using the particle number representation we can write the Routhian in eq. (4.3.33) as

Ĥ~ω =
∑
µν

〈µ|Ĥmf |ν〉c+
µ cν − ~

∑
µν

〈µ|~ω · ̂|ν〉c+
µ cν +

∑
µν

Gµνc
+
µ c

+
µ̄ cν̄cν . (4.3.35)

As discussed in section (4.2), within the BCS approximation, the approximate solution
for the nuclear Hamiltonian composed of the mean-field and pairing terms can be calcu-
lated by minimising the expected value of the sum of them, under the condition of the
particle number conservation in eq. (4.2.5), using Lagrange-multiplier method. Con-
sequently, by introducing the Lagrange multiplier λ and the particle number operator
N̂ , the mean-field Hamiltonian in the body-fixed frame is redefined as

Ĥ~ω = Ĥmf + Ĥpair. − ~~ω · ̂− λN̂, (4.3.36)

with the particle number operator

N̂ =
n∑
ν=1

c+
ν cν , n = Z or N. (4.3.37)

Therefore the Routhian in the second quantisation representation, eq. (4.3.35) can be
rewritten as follows

Ĥ~ω =
∑
µν

[hµν − ~(~ω · ̂)µν − λδµν ]c+
ν cν +

∑
µν

Gµνc
+
µ c

+
µ̄ cν̄cν , (4.3.38)

in which hµν are the matrix elements of the Woods-Saxon mean-field Hamiltonian.

4.4 Hartree-Fock-Bogolyubov Cranking Method

The Hartree-Fock-Bogolyubov theory coupled with the cranking model (HFBC)
was applied to describe the high-spin behaviour of atomic nuclei over many years by
now. The first step of the HFBC method is to transform the nuclear Routhian in
eq. (4.3.38) from the particle representation to the quasi-particle representation with
the help of the Bogolyubov transformation.

4.4.1 Bogolyubov Transformation

Quasi-particle operators can conveniently be introduced employing the Bogolyubov
transformation. The corresponding new creation and annihilation operators, (α+, α),
are defined as linear combinations of the particle creation and annihilation operators
{c+, c}:

α+
i =

p∑
ν=1

(Aνic+
ν +Bνicν), (4.4.1)
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αj =
p∑

ν=1
(B∗νjc+

ν + A∗νjcν), (4.4.2)

where the matrices A and B need to be defined later. The quasi-particles are considered
as fermions and satisfy the following anti-commutation relations:

{α+
i , αj} = δij, (4.4.3)

{α+
i , α

+
j } = 0, (4.4.4)

{αi, αj} = 0. (4.4.5)

Inserting the definitions of the quasi-particle operators, eqs. (4.4.1)-(4.4.2), into anti-
commutation relations in eqs. (4.4.3)-(4.4.5), we obtain the following relations for the
coefficients in the quasi-particle operators,

p∑
ν=1

(A∗νiAνj +B∗νiBνj) = δij, i, j = 1, 2, ..., p (4.4.6)

p∑
ν=1

(AνiBνj + AνjBνi) = 0, i, j = 1, 2, ..., p. (4.4.7)

It is convenient to write the quasi-particle operators of the Bogolyubov transformation
using a matrix representationα+

α

 =
AT BT

B† A†

c+

c

 . (4.4.8)

Let us define a new matrix

Z =
AT BT

B† A†

 . (4.4.9)

Using eqs. (4.4.6)-(4.4.7), one can demonstrate that matrix Z is unitary, i.e., ZZ† = 1.

The inverse to the Bogolyubov transformation isc+

c

 =
A∗ B
B∗ A

α+

α

 , (4.4.10)

or equivalently

c+
ν =

p∑
i=1

(A∗νiα+
i +Bνiαi), (4.4.11)

cν =
p∑
i=1

(B∗νjα+
j + Aνjαj), (4.4.12)

showing how to represent the particle operators by the quasi-particle operators.
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4.4.2 HFBC Equations in Quasiparticle Representation

With the help of Bogolyubov transformation we transform the particle representa-
tion into the quasi-particle representation. We insert the particle operators of eqs. (4.4.11)
and (4.4.12) into eq. (4.3.38). Since Ĥω contains products of c+

ν cν and c+
µ c

+
µ̄ cν̄cν , it will

be convenient to group together terms with the same order of α. According to the
corresponding new notation, we assume that Ĥ0 contains the terms without α opera-
tors, Ĥ11 contains the terms with two operators of the type α+α, Ĥ20 groups the two
operators of the type α+α+ and αα and Ĥ4 the terms with four operators in the form
αααα, αααα+ and ααα+α+. It follows that the transformed Hamiltonian takes the
form, ref. [6]:

Ĥω → Ĥω = Ĥ0 + Ĥ11 + Ĥ20 + Ĥ4, (4.4.13)

where the explicit expressions are

Ĥ0 =
∑
αβ

[hαβραβ + 1
2Γαβραβ + ∆αβχαβ], (4.4.14)

Ĥ11 =
∑
ij,αβ

[ναβ(A∗αiAβj −BαjB
∗
βi) + ∆αβA

∗
αiBβj + ∆∗αβB∗αiAβj]α+

i αj, (4.4.15)

Ĥ20 =
∑
ij,αβ

[ναβA∗αiB∗βj + 1
2∆αβA

∗
αiA

∗
βj + 1

2∆∗αβB∗βiBαj]α+
i α

+
j

+
∑
ij,αβ

[ναβAαiBβj + 1
2∆∗αβAαiAβj + 1

2∆αβBβiB
∗
αj]αiαj. (4.4.16)

The definitions of the new objects introduced above, called density-, and pairing den-
sity, are

ραβ =
p∑
i=1

BαiB
∗
βi, (4.4.17)

χαβ =
p∑
i=1

AβiB
∗
αi, (4.4.18)

whereas the remaining matrices are defined by

∆αβ = 2
p∑
γδ

vαβγδχγδ, (4.4.19)

Γαβ = 4
p∑
βδ

vαβγδρβδ, (4.4.20)

ναβ = εαβ + Γαβ, (4.4.21)

εαβ = eαβ − λnδαβ − ~(~ω · ~J)αβ. (4.4.22)
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One can observe that Ĥ11 and Ĥ20 are determined by the Bogolyubov transformation
coefficients A and B. The above Hamiltonian can be simplified by introducing some
conditions on A and B. Suppose that the Bogolyubov transformation is chosen in such
a way that Ĥ11 in eq. (4.4.15) can be reduced to the so-called “independent quasiparticle
representation”,

Ĥ11 =
∑
ij

δijE
ω
j α

+
i αj, (4.4.23)

analogous to the independent particle representation

Ĥmf =
∑
ν

eνc
+
ν cν , (4.4.24)

and let us require that

Ĥ20 = 0. (4.4.25)

It turns out that the contribution of Ĥ4, which depends on four quasi-particle operators,
is significantly smaller than those of other terms and can be neglected. With the above
simplifications, the Hamiltonian can be rewritten as

Ĥω = Ĥ0 +
p∑
i=1

Eω
i , (4.4.26)

where Eω
i are real numbers denoting the quasi-particle energies.

One can demonstrate, cf. ref. [6], that the assumptions in eqs. (4.4.23) and (4.4.24)
are equivalent to the following non-linear2 equations for the transformation coefficients
A and B:

p∑
β=1

(ναβAβi + ∆αβBβi) = +Eω
i Aαi, (4.4.27)

p∑
β=1

(ν∗αβBβi + ∆∗αβAβi) = −Eω
i Bαi, (4.4.28)

in which ναβ and ∆αβ represent the single-particle Routhian and the self-consistent
pairing field, respectively. The above non-linear equations depending on the coeffi-
cients A and B are called Hartree-Fock-Bogolyubov Cranking (HFBC) equations, their
solutions are obtained via numerical iterative procedures based on the conditions of
self-consistency.

Comments. The contribution of Ĥ0 contains summations with no α operator. We
expect that this term will describe the ground-state and the rotational band built on
top of it; it refers to the so-called zero-quasiparticle configurations. The excitations of

2Observe, that ν and ∆ depend on ρ and χ – and thus on A and B.
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the system are given by Ĥ11, which depends on α+
i αi, and thus defines two-quasiparticle

configurations.

Next we introduce the so called HFB matrix,

M =
 ν ∆
−∆∗ −ν∗

 . (4.4.29)

With this notation we rewrite the HFBC equations in the following compact form

M

Ai
Bi

 = Eω
i

Ai
Bi

 , (4.4.30)

where Ai and Bi denote the ith column of matrices A and B, respectively, and the
eigenvalues are denoted (+Eω

i ) as before. The specific form of the above equation isei − ωji − λ ∆
−∆∗ −ei − ωji + λ

Ai
Bi

 = Eω
i

Ai
Bi

 , (4.4.31)

where ei is single-particle energy of the mean-field Hamiltonian Ĥ0 and ji denotes the
component of the angular momentum on the rotational axis.
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Chapter 5

Nuclear Geometrical Symmetries
Seen Through Group Theory

In the 20th century, the principles of symmetry came to play a fundamental role in
physics and became dominating concepts in the exploration and formulation of physical
laws. The most important implication of quantum symmetries are the conservation
laws. For instance, the momentum of isolated systems is conserved due to the invariance
of their Hamiltonians under space-translations, whereas the energy is conserved due
to the invariance of the corresponding Hamiltonians under translation in time, etc. In
quantum mechanics, the application of group theory is a leading factor in discovering
the consequences of various symmetries and establishing conservation laws with the
full mathematical exactitude.

Nuclear many-body Hamiltonians are by construction invariant under translations
of the reference frame, rotations (thus “spherically symmetric”), space inversion and
remain independent (explicitly) of time. On the other hand, it is known that the ma-
jority of atomic nuclei are non-spherical. One says that the implied deformations result
from spontaneous (spherical) symmetry breaking. It turns out that the nuclear shapes
are directly related to the spatial properties of the nuclear mean-field Hamiltonians,
and impact the nucleonic energy spectra. With the help of the symmetries of the mean-
field Hamiltonian one can analyse the implied properties of the nucleonic spectra such
as particle-hole excitations, degeneracies of energy levels, variations of their densities,
etc.

In this project we follow the rules of the powerful combination of the nuclear mean-
field theory and the group theory in searching for stable nuclear configurations, related
exotic nuclear geometrical symmetries, and their impact on the spectroscopic properties
of nuclei.

83



5 Nuclear Geometrical Symmetries Seen Through Group Theory

Which shapes do we consider being exotic?

We refer to a nuclear shape-symmetry as exotic if it does not correspond to
the quadrupole prolate, oblate, or triaxial (often called “ellipsoidal”) shapes
nor axially symmetric pear-shape, the latter already studied for many years.

In analogy to the spherical magic numbers each symmetry group is expected to
generate its own magic gaps in its nucleonic spectra, such as the tetrahedral magic
gaps and magic numbers generated by tetrahedral symmetry introduced by our collab-
oration, c.f. for instance refs. [1, 26].

In this chapter we present briefly the basic concepts of group theory, applied within
the context of the nuclear mean-field theory; for more systematic overview cf. for
instance refs. [27, 28]. Some selected examples of the high-rank tetrahedral and octa-
hedral symmetries are shown in the following sections as an illustration of the related
considerations. This is stimulated by the fact that these two symmetries were recently
discovered in subatomic physics by our group, ref. [29].

Let us summarise briefly a number of main ideas and research strategies discussed
in this Chapter – which contains occasionally several rather detailed messages. It
addresses in particular a number of mathematical subjects which are often not well
familiar to the experimental readership.

In this project we address the geometrical symmetries and corresponding symmetry
groups. Yet, despite the fact that these particular issues form a relatively limited
chapter of group theory, several general mathematical notions need to be recalled.
Thus at the beginning of the chapter, section (5.1), we introduce the notion of groups,
beginning with the quantum-mechanical background and terminating with the formal
definitions. The main focus, however, is on the point groups serving big domains
of atomic and molecular physics precisely because of addressing the 3D geometrical
properties from the strict mathematical view points. With these goals in mind, we
present in some detail the elementary symmetry operations and examples of point
groups of special interest for our project.

Presentation of the nuclear geometrical symmetries as described here is based on
the notion of a nuclear surface, a real function expressed in terms of expansions involv-
ing spherical harmonics, in general complex functions of spherical angles (θ, φ). These
surfaces are described with the help of the expansion coefficients referred to as defor-
mation parameters which, for practical reasons chosen in the literature, are assumed
real. This is a complicating, constraining factor from the mathematical view point,
especially for the exotic shape symmetries such as tetrahedral or octahedral ones, but
also several others, whose description may require simultaneous combinations of several
deformation parameters. The corresponding issues are overviewed in section (5.2).
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5.1 From Quantum Mechanics to Group Theory

One of the new elements in this project, with the novelty bypassing just a PhD
thesis subject, is the issue of identification of the newly proposed, exotic symmetries.
To our knowledge this information is not present in the nuclear physics literature yet.
It turns out that in order to construct the corresponding identification criteria we need
yet another, rather abstract chapter of mathematics, viz. group representation theory.
Of course the related presentation is strongly limited in terms of volume and content.
The minimum precision in terms of definitions and a few theorems will be given in
section (5.3).

Finally we proceed to brief explanations related to the construction of the symmetry
identification criteria via symmetry-implied rotational band structures in section (5.4).
These criteria turn out to be unique – a very encouraging element of this part of
the discussion because allowing for planning experimental campaigns aiming at well
defined goals. On the other hand, the construction of such criteria requires practical
applications of the group-representation theorems prepared for this purpose in the
preceding section. We focus on the illustration of those applications.

5.1 From Quantum Mechanics to Group Theory

Consider time independent Schrödinger equation with one-body Hamiltonian, Ĥ,
written down in a given reference frame Σ:

Σ : Ĥψn = εnψn, Ĥ = t̂+ V̂ , (5.1.1)

in which

t̂ = − ~2

2m∇
2, and V̂ = V̂ (~r; {p}). (5.1.2)

Above, symbol {p} denotes all the parameters of the interaction potential. Consider
a rotation of the frame Σ rot.−→ Σ′ written down with the help of the rotation operator
R̂(Ω) depending on the Euler angles {α, β, γ} ≡ Ω. It follows from eq. (5.1.1) that

R̂Ĥψn = εnR̂ψn, ↔ [R̂ĤR̂−1]︸ ︷︷ ︸
Ĥ′

R̂ψn︸ ︷︷ ︸
ψ ′n

= εn R̂ψn︸ ︷︷ ︸
ψ ′n

. (5.1.3)

In this way we obtain the Schrödinger equation in a rotating reference frame, Σ′:

Σ ′ : Ĥ ′ψ ′n = εnψ
′
n. (5.1.4)

Invariance of Hamiltonians Resulting from Symmetries. Symmetry transfor-
mations imply by definition that the transformed object coincides with the same object
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before transformation. Let us first consider the case of the spherical symmetry. In this
case the Hamiltonian satisfies equality Ĥ ′ = Ĥ, ∀ {α, β, γ}, and therefore

Ĥ ′ = R̂(α, β, γ)ĤR̂−1(α, β, γ) = Ĥ, (5.1.5)

or equivalently

[Ĥ, R̂(α, β, γ)] = 0, ∀ {α, β, γ}. (5.1.6)

The above equations illustrate the fact that a symmetry of a physical system, here under
rotations in three dimensions, manifests itself through the invariance of the Hamilto-
nian. The corresponding mathematical expression is represented by the commutation
relation between the Hamiltonian and the underlying transformation operators.

Let us introduce some general transformations of a given Hamiltonian by {D̂}, the
latter depending on parameters {a, b, ...}. The invariance of the system against these
transformations leads to the following commutation relation

[Ĥ, D̂(a, b, ...)] = 0, ∀ {a, b, ...}. (5.1.7)

Consider an eigenstate |Ψ〉 of Ĥ and the corresponding eigenvalue ε. It follows from
eq. (5.1.7) that

ĤD̂|Ψ〉 = D̂Ĥ|Ψ〉 = εD̂|Ψ〉. (5.1.8)

This implies that D̂|Ψ〉 and |Ψ〉 are eigenstates of the Hamiltonian with the common
eigenvalue ε.

5.1.1 Group of Rotations: Formal Definition of a Group

We will briefly recall the formal definition of groups in the mathematical sense of the
term, first observing the properties of the transformations of rotations. Let us begin by
collecting certain elementary properties of the matrices of rotation in a 3-dimensional
space.

Rotation Matrices. Consider two rotation matrices, Rz(a) and Rz(b), representing
rotations about the same axis Oz through the angles a and b:

Oz : Rz(a) =


cos a sin a 0
− sin a cos a 0

0 0 1

 and Rz(b) =


cos b sin b 0
− sin b cos b 0

0 0 1

 . (5.1.9)

1. Multiplying the above rotation matrices gives yet another rotation matrix describing
rotations through the angle a+ b:

Rz(a) ◦ Rz(b) =


cos a sin a 0
− sin a cos a 0

0 0 1




cos b sin b 0
− sin b cos b 0

0 0 1


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=


cos a cos b− sin a sin b cos a sin b+ sin a cos b 0
− cos a sin b− sin a cos b cos a cos b− sin a sin b 0

0 0 1



=


cos(a+ b) sin(a+ b) 0
− sin(a+ b) cos(a+ b) 0

0 0 1


= Rz(a+ b). (5.1.10)

2. Consider rotation Rz(a) and a unit matrix e which can be interpreted formally as
a matrix of rotation with null-angles. Since combining Rz(a) with e reproduces the
original matrix,

Rz(a) ◦ e =


cos a sin a 0
− sin a cos a 0

0 0 1




1 0 0
0 1 0
0 0 1

 =


cos a sin a 0
− sin a cos a 0

0 0 1

 = Rz(a), (5.1.11)

the above relation shows an existence a “trivial rotation” also called “neutral element”
corresponding to the transformation which “changes nothing”.

3. To any given rotation through the angle a there exists another one representing
rotation in the opposite direction, namely the opposite operation with the angle −a,
so that:

Rz(a) ◦ Rz(−a) =


1 0 0
0 1 0
0 0 1

 = e. (5.1.12)

Similarly Rz(−a) ◦ Rz(a) = e, in which case we usually write Rz(−a) = R−1
z (a).

4. According to the properties of the matrix multiplication for any three rotation
matrices Rz(a), Rz(b) and Rz(c) we have

Rz(a)o [Rz(b) oRz(c)] = [Rz(a) oRz(b)] oRz(c). (5.1.13)

We can see that rotation matrices always satisfy the 4 characteristic properties listed
above. It turns out that this feature can be generalised to any sets of abstract objects
by introducing the notion of groups.

Formal Definition of a Group. Consider a set G of elements g1, g2, . . . and a
relation denoted with the symbol “◦”, such that the following properties hold:

1. Combination of any two elements with the help of relation ◦ gives yet another
element g ∈ G:

∀ g1, g2 ∈ G : g1 ◦ g2 = g ∈ G. (5.1.14)
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2. For any three elements of G, relation “◦” is associative,

∀ g1, g2, g2 ∈ G : (g1 ◦ g2) ◦ g3 = g1 ◦ (g2 ◦ g3). (5.1.15)

3. The set contains an element e ∈ G called neutral, such that

∀ g ∈ G : e ◦ g = g ◦ e. (5.1.16)

4. For each g ∈ G, there exists an element g′ called inverse, such that

g ◦ g′ = e ↔ g′ ◦ g = e. (5.1.17)

One usually writes g′ df.= g−1.

Generally, transformations of rotations can be treated as abstract operations and
the rotation operations as independent of the nature of the rotated object.

5.1.2 Point Groups: Elementary Symmetry Operations

Symmetry point-groups were used to describe the quantum features of, among
others, molecular as well as atomic systems for a long time. Such groups are composed
of discrete transformations, moreover, all the transformations of the symmetry group
of such objects must leave at least one point of the studied object fixed, wherefrom the
term ‘point-group’. The associated elementary transformations are as follows:

Neutral Element e. It is also called the identity element. Combining it with any
other element will just reproduce that element.

Discrete Rotations Cn. They are also called proper rotations defined as rotations
about a certain axis through the angle α = 2π/n (for n integer). The result of a
successive application of such an element ` times is denoted by C`

n. The corresponding
axis is referred to as an n-fold rotation axis. For instance n = 3 represents the rotation
through 2π/3 ↔ 120o which is denoted by C3. Result of an application of the same
rotation twice is denoted C2

n. It is clear that successive rotations n times through 2π/n
about the same rotational axis return to the initial position and produce the identity
transformation

(Cn)n = e. (5.1.18)

Generally there will be one axis of the highest order (the biggest n) rotational symme-
try; such an axis is traditionally called “vertical’ and one writes Cnv.

Plane Reflections σ. Plane reflections are also called mirror reflections, for instance
plane reflection in Oxz-plane: {x, y, z}

σy−→ {x,−y, z}. It is evident that applying such
a reflection in the same plane twice will return the object to the initial position,

σ2 = e. (5.1.19)
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5.1.2 Point Groups: Elementary Symmetry Operations

Reflection in a plane perpendicular to the principal axis, the latter vertical, is denoted
by σh (since the corresponding plane is called horizontal) while the reflection in the
plane passing through this axis (thus in vertical plane) is denoted σv.

Rotary-Reflection Sn. By definition, the rotation-reflection symmetry is defined as
the rotation about a certain axis followed by a reflection in a plane perpendicular to
that axis

Sn
df.= Cnσh. (5.1.20)

As illustrated in figure (5.1.1), the two operations, Cn and σh commute, and we can
write

Cnσh = σhCn. (5.1.21)

Figure 5.1.1 – Schematic illustration of the commutativity between Cn and σh: (a) the
operation of Cnσh and (b) the operation of σhCn.

This transformation is also called improper n-fold rotation and the corresponding axis
– ‘rotary-reflexion axis’. Similarly successive applying the rotation-reflection symmetry
n times we have

S n
n = (Cnσh)n = C n

n σ
n
h . (5.1.22)

It follows that for even n, (Sn)n = e and for odd n, (Sn)n = σh.

Inversion I. The inversion symmetry, as the name indicates, corresponds by definition
to inverting directions of all the 3 axes of the reference frame

I : {x, y, z} → {−x,−y,−z} (5.1.23)
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Figure 5.1.2 – Illustration of the particular case of rotation-reflection transformation
of the order n = 2, S2 is equivalent to inversion transformation I.

It follows that this operation is equivalent to the particular case of S2, cf. figure (5.1.2):

{x, y, z} C2−→ {−x, y,−z} σh−→ {−x,−y,−z}, (5.1.24)

and thus the following practical identities follow

I = S2 = C2σh. (5.1.25)

It follows from Eq. (5.1.25) that

C2 = Iσh, σh = IC2. (5.1.26)

As it becomes clear from the relations illustrated in figures (5.1.3)-(5.1.4), the opera-
tions I, C2 and σ commute among themselves.

Figure 5.1.3 – Illustration of the commutation relation [σ, I] = 0. The combination σI
in (a) and Iσ in (b).

Let us notice that all the axes of rotation and all planes of reflections must contain at
least one common point. We proceed now to presenting a few illustrations of potential
interest for the present project.
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Figure 5.1.4 – Illustration of the commutation relation [C2, I] = 0. The combination
C2I in (a) and IC2 in (b).

5.1.3 Point Groups: Selected Possible Nuclear Symmetries

It will be instructive to present explicitly a few definitions of the point groups:

Uni-Axial Groups Cn.

Groups containing rotation axis Cn with n = 2π/n, for instance for n = 2 we find

• C2: {E,C2};

• D2h: {E,C2, I, σh};

• D2v: {E,C2, 2σv}.

Dihedral Groups Dn.

Groups containing an n-fold rotation axis and n perpendicular 2-fold rotation axes; for
instance for n = 3 we find:

• D3: {E,C3, 3C2};

• D3h: {E, 2C3, 3C2, σh, 2S3, 3σv};

• D3v: {E, 2C3, 3C2, I, 2S6, 3σd} (“d” for diagonal planes).

As an example for n = 2 we find

• D2d: {E, 2C ′2, C2, 2σd, 2S4};
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Family of Tetrahedral-Type Groups, T .

• T (Chiral tetrahedral symmetry): {E, 3C2, 4C3, 4C2
3};

• Th (Pyritohedral symmetry): {E, 3C2, 8C3, I, 3σv, 8S6};

• Td (Achiral tetrahedral symmetry): {E, 3C2, 8C3, 6S4, 6σd}.

Family of Octahedral-Type Groups, O.

• O (Chiral octahedral symmetry): {E, 3C2, 6C ′2, 6C4, 8C3};

• Oh (Full octahedral symmetry): {E, 3C ′2, 6C2, 8C3, 6C4, I, 6S4, 8S6, 3σh, 6σd}.

From the above examples we notice that the groups Td and Oh have the largest
number of symmetry operations. We call these groups high rank symmetry groups
referring to the fact that some nucleonic levels in nuclei with those symmetries are
four-fold degenerate (compared to the well-known Kramers two-fold degeneracy ap-
plying to any non-spherical nucleus with the ‘usual’ or ‘regular’ symmetries). Since
the tetrahedral group Td is a subgroup of the octahedral group Oh, an object which is
octahedral symmetric is also tetrahedral symmetric.

Double Point Groups. In nuclear physics applications of the symmetry considera-
tions related to Schrödinger equation we have to take into account that nucleons are
Fermions. Let us denote the wave function of a boson by ΨB and the one of Fermion
by ΨF . One demonstrates in quantum mechanics textbooks that applying any rotation
of 2π to the Fermion as compared to Boson particles leads to the following difference,
cf. ref. [19]:

Bosons : R̂(2π)ΨB = +ΨB, (5.1.27)

Fermions : R̂(2π)ΨF = −ΨF . (5.1.28)

It follows from eq. (5.1.28) that for Fermions, thus in particular the nucleons, only
double application of the operation of the rotation through 2π brings the wave function
to itself, namely R̂2 = E. The symmetry point-groups applicable to Fermions are called
double point groups and are denoted by GD.

5.2 Nuclear Shapes and Point-Group Symmetries

In this section we consider the nuclear mean-field Hamiltonian invariant under the
symmetry operations of a point group. We address the issue of the symmetry conditions
by applying the group theory to the nuclear mean-field theory and to the corresponding
solutions of the nuclear Hamiltonian.
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5.2.1 Nuclear Surface Invariant under Group G

In the phenomenological nuclear mean-field theory applications we describe nuclear
surfaces with the help of the expansions in terms of spherical harmonics. Let us recall
the definition of the nuclear surface:

Σ : R(θ, ϕ) = c({α})R0

1 +
∑
λ

λ∑
µ=−λ

αλµYλµ(θ, ϕ)
 . (5.2.1)

The surface expressed using the expansion coefficients represent a series calledmultipole
expansion. Let us recall, cf. section (2.3), that any surface represented with the help
of the real multipole expansion coefficients is invariant under the y-simplex symmetry.

Typically, variations of R(θ, ϕ) as functions of θ and φ are stronger and stronger
the higher and higher the order λ. In other words, the nuclear surface is getting
more and more “wiggly”. Since the nuclear macroscopic energy increases quickly with
increasing surface of the nucleus, it follows that on average the macroscopic energy will
also increase quickly with increasing λ, the corresponding nuclear configurations will
lie higher in the energy scale and it will be more and more difficult to produce well
defined (i.e. surrounded by significant potential barriers) potential energy minima to
possibly observe the underlying configurations experimentally. It then follows that it is
often sufficient to apply a rather low cut-off parameter λmax, i.e., to consider λ ≤ λmax.

Studying symmetries of the Hamiltonian with the help of the point-group theory,
we first examine the symmetry properties of nuclear surfaces. Consider a point group
composed of the symmetry elements {Ôk},

G = {Ô1, Ô2, ..., Ôf}. (5.2.2)

The invariance condition reads

Σ Ôk−→ Σ′ ≡ Σ, ∀ Ôk. (5.2.3)

It follows from the above condition that ∀ k:
λmax∑
λ=2

λ∑
µ=−λ

αλµ[ÔkYλµ(θ, ϕ)] =
λmax∑
λ=2

λ∑
µ=−λ

αλµYλµ(θ, ϕ). (5.2.4)

The above relation can be considered as a system of linear equations that the unknown
{αλµ} satisfying the surface-invariance condition must obey. The elements of the sym-
metry operations Ok ∈ G need to be adapted to the operations acting on the spherical
harmonics Yλµ(θ, ϕ).

Let us consider rotation operator R̂(Ωk) as an example of the symmetry operations,
here in the form adapted to our quantum-mechanics considerations

Ôk → R̂(Ωk) ≡ exp(iαk ̂z + iβk ̂y + iγk ̂z′). (5.2.5)
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The invariance condition in eq. (5.2.4) can be rewritten as

λmax∑
λ=2

λ∑
µ=−λ

αλµ[ÔkYλµ(θ, ϕ)] =
λmax∑
λ=2

λ∑
µ=−λ

αλµ
λ∑

µ′=−λ
Dλ
µ′µ(Ωk)Yλµ′(θ, ϕ), (5.2.6)

where Dλ
µ′µ(Ωk) are Wigner functions1. The above relation is equivalent to what follows

λmax∑
λ=2

λ∑
µ′=−λ

 λ∑
µ=−λ

αλµD
λ
µ′µ(Ωk)− αλµ′δµµ′

Yλµ(θ, ϕ) = 0, ∀θ, ϕ, ∀k. (5.2.9)

Since the spherical harmonics are linearly independent, it follows from ref. [30] that,

λ∑
µ=−λ

[
Dλ
µ′µ(Ωk)− δµµ′

]
αλµ = 0, k = 1, 2, ..., f. (5.2.10)

In the above equations, Ωk refers to fixed sets of Euler angles corresponding to the
symmetry elements Ok. It follows from the form of eq. (5.2.10) that the discussed
invariance conditions can be treated as eigenvalue problems in which the solutions ᾱλµ
are eigenvectors of the matrix Dλ

µ′µ(Ωk) with eigenvalue equal +1. In other words, the
nuclear surface with the expansion coefficients ᾱλµ will be invariant under the symmetry
element R̂(Ωk). The above system of linear equations is uniform. Therefore multiplying
the solution by a constant will give another solution. This implies that we can set, e.g.,
ᾱλµ=0 as an independent parameter, which fixes other non-zero components in terms
of ᾱλµ.

5.2.2 Examples: Tetrahedral and Octahedral Symmetries

Evidently, only special combinations of spherical harmonics form the surfaces obey-
ing to tetrahedral and octahedral symmetries. Since the presence of those symmetries
in subatomic physics was recently demonstrated by our collaboration, ref. [29], we will
concentrate on this particular example for illustrative purposes.

• Tetrahedral Symmetry. As demonstrated in ref. [26], the multipole deformation
parameters describing tetrahedral symmetry correspond to odd λ ≥ 3, with the excep-
tion of λ = 5 (here we limit ourselves to quoting the 3 lowest solutions):

1The symbol D represents a (2j + 1)× (2j + 1) matrix, ref. [7]; using the spherical basis it can be
expressed as

Dj
m′m(α, β, γ) = 〈jm′|R(α, β, γ)|jm〉 = e−im

′αdjm′m(β)e−imγ , (5.2.7)

where
djm′m(β) = 〈jm′|e−iβ̂y |jm〉. (5.2.8)
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λ = 3 : α3,±2 ≡ t1; (5.2.11)

λ = 7 : α7,±2 ≡ t2 and α7,±6 ≡ −
√

11
13t2; (5.2.12)

λ = 9 : α9,±2 ≡ t3 and α9,±6 ≡ +
√

28
198t3. (5.2.13)

Examples of the tetrahedral shapes are shown in figure (5.2.1) for illustration.

t1 = 0.1 t1 = 0.2 t1 = 0.3

Figure 5.2.1 – Illustration of the tetrahedral surfaces at t1 = 0.1, 0.2 and 0.3, respec-
tively. The shapes of tetrahedral symmetry are sometimes called in jargon ‘nuclear
pyramids’.

• Octahedral Symmetry. Similarly, the octahedral symmetry conditions can be
specified by the special combinations of spherical harmonics with even λ ≥ 4 as shown
in ref. [31]:

λ = 4 : α4,0 ≡ o1 and α4,±4 ≡ −
√

5
14o1; (5.2.14)

λ = 6 : α6,0 ≡ o2 and α6,±4 ≡ +
√

7
2o2; (5.2.15)

λ = 8 : α8,0 ≡ o3, α8,±4 ≡ −
√

28
198o3 and α8,±8 ≡ −

√
65
198o3. (5.2.16)

Some illustrations of octahedral shapes are shown in figure (5.2.2).
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o1 = 0.1 o1 = 0.2 o1 = 0.3

Figure 5.2.2 – Illustration of octahedral surfaces at o1 = 0.1, 0.2 and 0.3, respectively.
The shapes of octahedral symmetry are referred to in jargon as ‘nuclear diamonds’.

5.3 Remarks about Group Representation Theory

In the previous sections we have presented selected elementary properties of groups
focussing on groups whose elements are symmetry transformations. In order to connect
the group theory with the quantum mechanical observables, an intermediate notion of
group representations is needed; with the help of the latter it will become possible to
express the symmetries and groups of symmetry in terms of matrix representations and
numbers.

5.3.1 Group Representations: Elementary Notions

Consider a vector space V over the field F , a group {G, ◦} and an ensemble of
linear operators D which are functions of g ∈ G acting in V . Suppose the operations
form a group {D, ·} and there exists a homomorphic mapping between two groups,
G→ D(g), satisfying by definition

D(g1 ◦ g2) = D(g1) ·D(g2), (5.3.1)

so that
D(g−1) = D−1(g)→ D(g) ·D(g−1) = 1. (5.3.2)

It follows that for the inverse elements, g−1, we have

D(g) ·D(g−1) = D(g ◦ g−1) = D(e) = 1. (5.3.3)

The group composed of operators {D(g), ·} is called representation of the original group
G if the above conditions are satisfied.
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Group Representations in Terms of Matrices. Consider a representation {D(g), ·}
of group G acting in vector space V . Assume the dimension of V is n and the basis
ui ∈ V . Acting with the operators {D(g), ·} on the basis states we have

D(g)ui = ujD(g)ji , 1 ≤ i, j ≤ n. (5.3.4)

For an arbitrary choice of g1, g2 ∈ G we find

D(g1 ◦ g2)ui = D(g1) ·D(g2)ui = D(g1)[ujD(g2)ji ] = ukD(g1)kjD(g2)ji . (5.3.5)

We conclude that a given representation {D(g), ·} acting in an n-dimensional vector
space Vn with a basis {ui}, leads to the matrix D(g)ji with dimensions n× n.

Character of a Representation. Given a basis {vi, i = 1, 2, . . . n} ∈ Vn, a group G
and its representation D(g). The trace of the matrix D(g)ji denoted

χ(g) df.= Tr[D(g)] df.= [D(g)]ii, (5.3.6)

is called the character of g ∈ G within representation D(g).

Invariant Subspaces. Suppose there exists a subspace Vm ⊂ Vn, with m < n, such
that

∃Vm ⊂ Vn : ∀g ∈ G and ∀ v ∈ Vm → D(g) v ∈ Vm. (5.3.7)

When this happens, Vm is called an invariant subspace of Vn with respect to D(G).
The subspace is considered trivial if Vn is its own invariant subspace. If the subspace
Vm in Vn does not contain any invariant non-trivial subspace Vk with k < m, in such a
case Vk=m is called minimal invariant subspace.

Irreducible Representations. Suppose there exists no invariant sub-space Vm<n ⊂
Vn with respect to D(G). We call such a representation an irreducible representation.

Reducible Representations. Suppose there exists a basis transformation such that
in the new basis

D(g) =
D1(g) A(g)

0 D2(g)

 , ∀g ∈ G. (5.3.8)

We call representationD(g) a reducible representation, the matrixD1(g) has dimension
of m ×m with m < n while matrix D1(g) has dimension (n −m) × (n −m). If the
representation D(g) has the form

D(g) =
D1(g) 0

0 D2(g)

 , ∀g ∈ G, (5.3.9)

we say that D(g) is fully reducible.
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5 Nuclear Geometrical Symmetries Seen Through Group Theory

5.3.2 Spectral Properties and Group Representations

Let us consider a group G = {g1, g2, ..., gf} and assume that G is a symmetry
group of the mean-field Hamiltonian, Ĥ. It follows from the commutation relation in
eq. (5.1.7) that the representation D(g) of group G satisfies

[Ĥ, D̂(g)] = 0, ∀g ∈ G. (5.3.10)

Suppose that the irreducible representations of G are {D1, D2, ..., Dr} and the cor-
responding dimensions are {d1, d2, ..., dr}. The eigenvalue problem of the mean-field
Hamiltonian is

Ĥψν = ενψν . (5.3.11)

According to group representation theory, the eigenvalues εν of the spec-
trum will split into multiplets (“families”) with degeneracies {d1, d2, ..., dr},
with the degeneracy of each energy level equal to the dimension of the cor-
responding irreducible representation of the symmetry group.

Figure 5.3.1 – Schematic illustration of inter-spacing (gaps) between the levels resulting
from the existence of different irreducible representations.

It has been suggested in ref. [3] that, generally, the presence of irreducible represen-
tations with dimensions larger than 2 (i.e., larger than Kramers degeneracy) implies
that the bigger the dimensions of the irreducible representations, the larger (on aver-
age) the inter-spacing among the levels. This is because the depth of the nuclear mean
field potential, V0, is approximately constant (of the order of V0 = −50 MeV) and does
not vary in any significant manner with varying proton and neutron numbers; thus
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5.3.2 Spectral Properties and Group Representations

the smaller the number of states within the potential depth of V0-depth, the larger
interspacing of the levels. The influence of dimensions of irreducible representations
presented in figure (5.3.1) is based on the tests using the realistic mean-field models,
cf. e.g. ref.[3]. Let us formulate the following comments in relation to the schematic
figure (5.3.1):

A. Plot ‘Irreps-1’ illustrates schematically a spectrum of the Hamiltonian, whose sym-
metry group has one 2-dimensional irreducible representation. It follows that there are
2 degenerate energies for each level. Because of the Landau-Zener effect, the energy
levels belonging to one irreducible representation can not cross; they effectively “repel
each other”, and the resulting spectrum tends to fill-in the available energy space in
an approximately uniform manner, even though some fluctuations in the inter-level
spacings will often be generated.

B. Plot ‘Irreps-2’ illustrates the case of a hypothetical irreducible 4-dimensional rep-
resentation so that there are 4-fold degenerate energies each time. If we consider
configurations with the same numbers of available nucleonic states as in cases A. and
B., the number of the energy levels is smaller in the latter case by a factor of 2 because
of the factor of 2 higher degeneracies. It follows that an average inter-spacing between
the energy levels is increased by a factor of 2. This increased inter-spacing may con-
tribute, in realistic cases, to an increase of the gaps, thus increasing the stability of the
corresponding nuclear configurations and occasionally creation of significant shell-gaps
with possibly measurable consequences.

C. Plot ‘Irreps-3’ illustrates the case of two 2-dimensional irreducible representations.
The repulsion mechanism applies for two sets of levels separately, so that the energy
levels fill the potential well leading effectively to the increased inter-spacing between
the levels for each of the two sets.

D. Plot ‘All Irreps.’ is an “artist’s view” of the full spectrum combining the contribu-
tions from some 2D and some 4D irreducible representations. The intention here is to
show that even if combining the spectrum out of several contributions, in case of the
bigger average spacing in the contributing sets, the chances for having finally a big gap
‘here and there in the spectrum’ grow. Realistic calculations illustrated in the present
project confirm this conjecture very clearly, e.g. fig. (5.3.2).

As it is well known, the presence of big gaps in the single-particle spectra im-
plies an increase in the stability of the concerned nuclear configurations by generating
strong negative shell correction energies. We are therefore interested in examining, at
least quantitatively, which point-group symmetries have high-dimension irreducible-
representations or have relatively many irreducible representations since, as we have
argued above, these factors might lead systematically to increasing inter-level spac-
ings. In particular, a nucleus at a given configuration becomes more stable if its lowest
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5 Nuclear Geometrical Symmetries Seen Through Group Theory

particle-hole excitation energy gets bigger – wherefrom the interests in the search of
big gaps in the single-particle spectra.

Table 5.3.1 – Double point-groups and the corresponding numbers of irreducible repre-
sentations together with their dimensions. The listed groups are of potential interest in
the discussion of stable nuclear shapes, see the text and ref. [3].

No Group Number of irreps Dimensions

1 OD
h 6 4 × 2D and 2 × 4D

2 TDd 3 2 × 2D and 1 × 4D
3 CD

6h 12 12× 1D(6 × 2D)
4 DD

6h 6 6 × 2D
5 TDh 6 6 × 2D
6 CD

4h 8 8 × 1D (4 × 2D)
7 DD

4h 4 4 × 2D
8 DD

3h 3 3 × 2D
9 CD

6ν 3 3 × 2D
10 DD

6 3 3 × 2D
11 CD

6 6 6 × 1D(3 × 2D)
12 SD6 6 6 × 1D(3 × 2D)
13 CD

3h 6 6 × 1D(3 × 2D)
14 CD

3I 6 6 × 1D(3 × 2D)
15 DD

2h 2 2 × 2D
.

In table (5.3.1) we present the list of the double point groups which may become
of interest in studying the stability of nuclear structures. Notice that only tetrahe-
dral and octahedral double point groups have dimensions of irreducible representation
greater than 2, and they are on top of the list of symmetries generating the strongest
nuclear shell effects, behind the spherical one. In other words, only these two high rank
symmetries, i.e., TDh and OD

h , generate the single-particle energy levels with 4-fold de-
generacy. In section (5.2.2) we presented the lowest order of multipole expansions
related to tetrahedral and octahedral shapes which are used in our realistic mean-field
calculations.
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Figure 5.3.2 – Single-particle proton energies (top) and neutron energies (bottom) as
functions of the tetrahedral deformation for nuclei around 226Th136. The full lines
represent 4-dimensional irreducible representation, while the dashed lines represent two
2-dimensional irreducible representations. Observe large gaps at non-zero tetrahedral
deformations. For more details – see the text.
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5.3.3 Tetrahedral Magic Numbers

Examples of realistic single nucleon spectra with the tetrahedral symmetric nuclear
mean-field Hamiltonian are shown in figure (5.3.2), protons - top, and neutrons - bot-
tom. As it can be seen from the figures, the large tetrahedral gaps at proton numbers
Z = 90 and 100, at neutron numbers N = 136 and 142 are dominating. Inspecting
many single-particle diagrams similar to the ones in fig. (5.3.2) we conclude that the
tetrahedral magic numbers form chains discussed in ref. [32]:

{Zt, Nt} = {32, 40, 56, 64, 70, 90, 136}. (5.3.12)

More precisely, we find that the strongest tetrahedral stability can be expected in
doubly-magic tetrahedral nuclei corresponding to the combination of the above magic
numbers:

64
32Ge32, 72

32Ge40, 88
32Ge56, 80

40Zr40, 96
56Zr40, 104

64Zr40, 110
40Zr70,

112
56Ba56, 126

56Ba70, 146
56Ba90, 134

64Gd70, 154
64Gd90, 160

70Yb90, 226
90Th136.

The placement of the above tetrahedral doubly-magic nuclei on the nuclear (Z,N)-
plane is shown in fig. (5.3.3). It is worth emphasising that the tetrahedral doubly-magic
nuclei are much more numerous than the analogous doubly-magic spherical ones.

Tetrahedral Magic Nuclei
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Figure 5.3.3 – Illustration of the positions of the tetrahedral doubly-magic nuclei on the
(Z,N)-plane.
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5.4 Rotational Bands Induced by Point-Symmetries

Indeed, we find that only for Z,N > 30 there are 17 doubly-magic tetrahedral nuclei,
compared, within the same mass range limitation, with 100,132Sn and 208Pb.

5.4 Rotational Bands Induced by Point-Symmetries

Applying group-, and group-representation theories to study symmetries of the
nuclear mean-field Hamiltonian allowed us to predict the large single-particle shell gaps
and the symmetry-stabilised configurations. In analogy, we would like to find a way of
estimating the impact of the point group symmetries on the collective rotational spectra
and deducing the privileged spin-parity sequences. The specific spectral properties
of the quantum rotors obtainable with the help of the point group theory have been
studied actively in recent years, cf. e.g., the spectra of the octupole symmetric quantum
rotors in ref. [33] and the spectroscopic criteria for tetrahedral symmetry in refs. [29, 34].

5.4.1 Rotational Band Properties Generated by Td Symmetry

To begin with we will present the rotational band properties generated by nuclei
with tetrahedral shape symmetry. Recall two complementary approaches to describe
rotating nuclei: The one treating rotating nuclei as structureless quantum rotors, and
another one describing the nuclear behaviour via a microscopic (in our case mean-field)
theory.

• Structureless Quantum Rotors. Up to an approximation, rotating nuclei can be
considered as structureless quantum rotors with the Hamiltonian constructed out of
nuclear total angular momentum operators, Î = {Îx, Îy, Îz}. This approach allows one
to calculate directly the energy spectra as well as the reduced electromagnetic transi-
tions. Accordingly, the rotor Hamiltonian adopted in refs. [33, 35] can be expressed as
follows:

Ĥrot = Î2
x

2Jx
+

Î2
y

2Jy
+ Î2

z

2Jz
+ ĥ({p}; Îx, Îy, Îz), (5.4.1)

where the moment of inertia parameters Jx, Jy and Jz represent diagonal form of the
inertia tensor, and the second term allows for modelling point-group symmetries with
the help of the adjustable parameters {p}. This latter term is expressed using the
spherical tensor basis {T̂λµ} as follows

ĥ({p}; Îx, Îy, Îz) =
nmax∑
n=3

ĥ(n, λ), (5.4.2)

in which
ĥ(n, λ) =

λ∑
µ=−λ

cλµ(n)T̂λµ(n), (5.4.3)
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where T̂λµ(n) are by construction uniform polynomials of order n and the coefficients
cλµ(n) are defined with the help of the Clebsch-Gordan coupling theorem.

Consider a more complete collective Hamiltonian including the rotational one, Ĥrot,
the vibrational one, Ĥvib and the coupling term, Ĥvibrot, combined as follows

Ĥ = Ĥrot + Ĥvib + Ĥvibrot. (5.4.4)

What we are interested in, in the present context, is a collective nuclear rotation
and therefore, the orientation of the system with respect to a Cartesian reference frame.
The corresponding solutions will thus represent the probability of nuclear orientation
in the 3D space. The corresponding transformation properties of the solutions of the
problem follow the rules of transformation originating from the orthogonal group in 3
dimensions

O(3) = Ci × SO(3), (5.4.5)

where Ci denotes the inversion group and SO(3) is the so-called special orthogonal
group in 3 dimensions. The formal details applicable to molecular physics have been
developed among others in refs. [36, 37].

These are the irreducible representations of the rotor Hamiltonian sym-
metry group which determine the structure of the corresponding matrices,
hindrance factors, transition probabilities etc., – the group O(3).

• Rotating Nuclei Described within a Microscopic Theory. A microscopic
description of rotational motion is often achieved introducing the concept of exter-
nal rotation (cranking approximation) on top of a static, non-rotating microscopic
Hamiltonian. The problem is then solved employing the well-known cranking and/or
Hartree-Fock-Bogolyubov Cranking (HFBC) approaches. One may introduce a self
consistent mean-field imposing the geometrical symmetries described with the help of
the expectation values of the multipole moment operators treated as constraints

〈Φ|Q̂λµ|Φ〉 = Qλµ ↔ αλµ. (5.4.6)

Thus we arrive at the description of deformations with the help of spherical harmonics.
Since the deformed solutions satisfying the conditions in (5.4.6) necessarily break the
original symmetries, the quantum numbers characterising the angular momentum and
parity will need to be recovered using projection techniques. As discussed in ref. [1]
the projection relations can be applied as follows

|Φ〉 → |ΨI±
Mk
〉 =

∑
k

g
I±
k,κP̂

I
MKP̂

±|Φ〉, (5.4.7)

in which gI±k,κ represents the expansion coefficients obtained from the Hill-Wheeler equa-
tions, and P̂ I

MK and P̂± represent the angular momentum and parity projectors, re-
spectively.
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Consequently symmetries of the constrained microscopic Hamiltonian are
the point-group symmetries of the mean-field and not O(3), the group of
symmetry of the quantum rotor. The properties of the physical solutions of
the microscopic description are governed by the irreducible representations
of the point groups. The relations between the mentioned irreducible repre-
sentations are governed by the appropriate theorems of group theory which
will be addressed next.

5.4.2 Irreducible Representations: Point-Groups vs. O(3)

Consider a solution of the rotor problem introduced in eq. (5.4.1), whose wave
functions transform as representations of the group O(3), cf. eq. (5.4.5), according to
well defined spin and parity (Iπ). For a given (Iπ) the representations DIπ of the rotor
Hamiltonian are (2I + 1) × (2I + 1) matrices in the space of rotor wave functions.
Let G be a symmetry point-group of our microscopic Hamiltonian and its irreducible
representations {Di, i = 1, 2, ...,M}. According to one of the fundamental theorems of
group representation theory, a representation associated with the rotor Hamiltonian,
DIπ , can be decomposed in terms of Di with the help of the multiplicity factors aIπi as
follows

DIπ =
M∑
i=1

aI
π

i Di. (5.4.8)

The multiplicity coefficients aIπi are well known in the literature and the corresponding
expressions can be found e.g. in ref. [27]. One finds:

aI
π

i = 1
NG

∑
R∈G

χIπ(R)χi(R) = 1
NG

M∑
α=1

gαχIπ(Rα)χi(Rα), (5.4.9)

where NG is the order of group G (the number of the elements in the group) whereas
χIπ(Rα) and χi(Rα) are the characters of DIπ and Di, respectively. The shorthand
notation “Rα” stands for the point-group elements representing transformations in
Cartesian 3D space. The number of group elements in each given class is denoted by
gα; for details, cf. ref. [27].

105



5 Nuclear Geometrical Symmetries Seen Through Group Theory

5.4.3 Point-Groups vs. O(3) – Follow Up: Td vs. O(3)

For quantum rotors of even-even nuclei we will need the ‘usual’ points groups (in
contrast to the double point-groups). The corresponding tetrahedral group has 5 ir-
reducible representations denoted in the literature {A1, A2, E, F1, F2} and the related
representative elements {E,C2, C3, σd, S4}. The characters χIπ(Rα) for the rotor rep-
resentations are as follows (see e.g. ref. [1] and references therein):

χIπ(E) = 2I + 1, (5.4.10)

χIπ(Cn) =
1∑
−1
e

2πK
n

i, (5.4.11)

χIπ(σd) = π × χIπ(C2), (5.4.12)

χIπ(S4) = π × χIπ(C4). (5.4.13)

The characters for tetrahedral group are listed in table (5.4.1).

Table 5.4.1 – Character table for tetrahedral group.

Td | E C2(3) C3(8) σd(2) S4(6)
A1 1 1 1 1 1
A2 1 1 1 -1 -1
E 2 -1 2 0 0

F1(T1) 3 0 -1 -1 1
F2(T2) 3 0 -1 1 -1

From the above relations we find that

aI
π

i = 1
NG

M∑
α=1

gαχIπ(Rα)χi(Rα)↔ a
(I±)
A1 = a

(I∓)
A2 , a

(I+)
E = a

(I−)
E , a

(I±)
F1 = a

(I∓)
F2 . (5.4.14)

Combining the above relations we can calculate the corresponding multiplicities in
table (5.4.2) for integer spins of nuclear rotational states; here up to I = 10. The
states are not allowed if aIπi = 0, whereas if aIπi = 2 the states in question have double
degeneracy, aIπi = 3 triple degeneracy etc.
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Table 5.4.2 – The multiplicities aIπi of states for tetrahedral symmetry for rotors with
integer spins. Positive parity - top, negative parity - bottom.

I+ | 0+ 1+ 2+ 3+ 4+ 5+ 6+ 7+ 8+ 9+ 10+

A1 1 0 0 0 1 0 1 0 1 1 1
A2 0 0 0 1 0 0 1 1 0 1 1
E 0 0 1 0 1 1 1 1 2 1 2

F1(T1) 0 1 0 1 1 2 1 2 2 3 2
F2(T2) 0 0 1 1 1 1 2 2 2 2 3
I− | 0− 1− 2− 3− 4− 5− 6− 7− 8− 9− 10−

A1 0 0 0 1 0 0 1 1 0 1 1
A2 1 0 0 0 1 0 1 0 1 1 1
E 0 0 1 0 1 1 1 1 2 1 2

F1(T1) 0 0 1 1 1 1 2 2 2 2 3
F2(T2) 0 1 0 1 1 2 1 2 2 3 2

Thus we conclude that the spin-parity sequence for the rotational band of the type
A1 is:

A1 : 0+, 3−, 4+, 6+, 6−︸ ︷︷ ︸
doublet

, 7−, 8+, 9+, 9−︸ ︷︷ ︸
doublet

, 10+, 10−︸ ︷︷ ︸
doublet

, 11−, 2× 12+, 12−︸ ︷︷ ︸
triplet

, · · · (5.4.15)

The identification of the bands of this structure in subatomic physics, based on the
experimental data, has been published by our collaboration in ref. [29].

It has been demonstrated within our collaboration, cf. ref. [1], that the en-
ergies of states belonging to the common irreducible representation form a
parabolic energy vs. spin dependence, EI ∝ I(I+1), including characteristic
parity doublets.

In what follows we address a particular situation: Spin-parity sequences in the cases
of subgroup vs. group dependencies.

5.4.4 Subgroups and Groups: Td ⊂ Oh Case

Let us return to the spin-parity relation of eq. (5.4.15) but this time taking explicitly
into account that, in view of preparing the same information for comparison with
experimental spectra (in which case the energy levels are represented as parabolic
EI ∝ I(I + 1) sequences called bands) we mark explicitly also the sub-structures of
the parabolic relation. The sub-structures are formed by the predicted degeneracies of
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certain levels, and in particular the spin-parity sequence based on the 0+ state from
the preceding equation can be displayed in a ‘more pedagogical’ form as:

A1 : 0+, 3−, 4+, (6+, 6−)︸ ︷︷ ︸
doublet

, 7−, 8+, (9+, 9−)︸ ︷︷ ︸
doublet

, (10+, 10−)︸ ︷︷ ︸
doublet

, 11−, 2× 12+, 12−︸ ︷︷ ︸
triplet

, · · ·

︸ ︷︷ ︸
Forming a common parabola

(5.4.16)

Recall that the difference between Td as a subgroup of Oh consists in the fact that
inversion is a symmetry element of the latter, but not of the former. Consequently,
we may interpret the presence of tetrahedral symmetry as a result of a spontaneous
symmetry breaking of the octahedral one, under certain conditions. Which ones?
We will attempt to answer this question by reminding the reader that, as it is shown
in textbooks, see also more dedicated ref. [29], the sequence displayed in eq. (5.4.16)
can be seen as decomposed of two sub-sequences called even (in German: gerade, A1g)
and odd (in German: ungerade, A2u) which take the following forms:

A1g : 0+, 4+, 6+, 8+ 10+, · · · , Iπ = I+︸ ︷︷ ︸
Forming a common parabola

(5.4.17)

A2u : 3−, 6−, 7−, 9−, 10−, 11−, · · · , Iπ = I−︸ ︷︷ ︸
Forming a common parabola

(5.4.18)

One can observe that the tetrahedral band in eq. (5.4.16) contains the spin-parity states
from the two octahedral bands in eqs. (5.4.17) and (5.4.18).

If the two parabolic sequences above, which correspond to two different irreducible
representations, have nevertheless very close curvatures, they can be seen as perturbing
the overall curvature of the parabola in eq. (5.4.16) or approximately reproducing the
latter. When this happens we may claim that a small difference between the curva-
tures of parabolas in eqs. (5.4.17) and (5.4.18) is an expression of a small octahedral
symmetry breaking by the system or that the dominating octahedral deformation is
influenced by a small tetrahedral deformation α32 6= 0. We sometimes express this type
of relation as Oh symmetry breaking by Td.
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5.4.5 More Examples: D4h and D2d Symmetries
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Figure 5.4.1 – The structure of the lowest energy sequence obtained within the realistic
HFBC method together with spin and parity projection techniques, results of 226Th
adopted from ref. [1]. On the left we present the positive and negative parity states
and related degenerate multiplets in the ‘ladder’ format similar to the one used when
presenting the experimental data, while on the right the parabolic dependence of the
energies with respect to spin, the negative parity levels are denoted by dotted lines. The
doublet or triplet looking structures are strictly degenerate

In figure (5.4.1) we illustrate the results form ref. [1], obtained within the micro-
scopic projected HFBC calculations for the nucleus 226Th. We limit our discussion to
states with I ≤ 12. As seen from the figure, both even and odd spin states follow a
parabolic sequence even though the microscopic calculations involve neither explicit
considerations of symmetries nor group theory. Interested readers may compare this
diagram with the results in figure 138 of ref. [38] discussing the spectra of tetrahedral
symmetry molecules.

Illustration shows the degenerate states, such as spin-parity doublets at Iπ = 6±, 9±

and 10± and a triplet-state combined a doublet Iπ = 12+ and a single state Iπ = 12−.
These degeneracies form the core of experimental identification criteria.

5.4.5 More Examples: D4h and D2d Symmetries

Examples of exotic rotational properties in the case of the tetrahedral and octa-
hedral symmetries are probably among the most important since freshly discovered;
however there are many other symmetries which are worth investigating – we discuss
2 more examples following ref. [34].

•D4h Point-Group Symmetry. In this case only the combinations of spherical har-
monics with even-λ and specific µ can be used to form the D4h point group symmetry.
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We limit ourselves to the first four λ-orders:

λ = 2 : α20; (5.4.19)

λ = 4 : α40, α4±4; (5.4.20)

λ = 6 : α60, α6±4; (5.4.21)

λ = 8 : α80, α8±4, α8±8... (5.4.22)

One can find in ref. [27] that the elements of D4h point-group symmetry are

D4h = {E, 2C4, C2, 2C ′2, 2C ′′2 , 2S4, σh, 2σv, 2σd} (5.4.23)

An example of the D4h shapes is shown in Figure. (5.4.2).

α 2, 0 = 0.20
α 4, 0 = 0.15
α 4, 4 = 0.10

Deformations:

Figure 5.4.2 – Illustration of a D4h-symmetric surface with deformation parameters
selected as {α20 = 0.20, α40 = 0.15, α44 = 0.10}.

Spin-Parity Sequence for Selected Representations of the D4h Symmetry.
Two spin-parity sequences with pure positive parity and negative parity are predicted
by D4h symmetry:

A1g : 0+, 2+, 2× 4+︸ ︷︷ ︸
doublet

, 5+, 2× 6+︸ ︷︷ ︸
doublet

, 7+, 3× 8+︸ ︷︷ ︸
triplet

, 2× 9+︸ ︷︷ ︸
doublet

, · · · (5.4.24)

B1u : 2−, 3−, 4−, 5−, 2× 6−︸ ︷︷ ︸
doublet

, 2× 7−︸ ︷︷ ︸
doublet

, 2× 8−︸ ︷︷ ︸
doublet

, 2× 9−︸ ︷︷ ︸
doublet

, · · · (5.4.25)
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D2d Point-Group Symmetry. Some special combinations of the odd- and even-λ
form D2d symmetry, a series of possible choices is presented as follows

λ = 2 : α20; (5.4.26)

λ = 3 : α3±2; (5.4.27)

λ = 4 : α40, α4±4; (5.4.28)

λ = 5 : α5±2; (5.4.29)

λ = 6 : α60, α6±4; (5.4.30)

λ = 7 : α7±2, α7±6; (5.4.31)

λ = 8 : α80, α8±4, α8±8 ... (5.4.32)

D2d symmetry point group, in addition to the neutral element E, contains one 2-fold
rotation axis (the principal axis), two 2-fold rotation axes perpendicular to the principal
axis, σv plane and S4 axis:

D2d = {E,C2, 2C ′2, 2σd, 2S4} (5.4.33)

An example of the D2d-symmetry shape is shown in figure (5.4.3). Proceeding as

α 2, 0 = 0.20
α 3, 2 = 0.15
α 4, 0 = 0.10

Deformations:

Figure 5.4.3 – Illustration of a D2d-symmetric surface with the deformation parameters
chosen as {α20 = 0.20, α32 = 0.15, α40 = 0.10}.

before we can determine the spin-parity sequences for the corresponding rotational
bands, here for the lowest, so-called D2d ground-state band, whose energies form a
parabolic sequence.
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• Spin-Parity Sequence for D2d Symmetry. The spin-parity sequence based on
0+ state combines positive and negative parities,

A1g : 0+, 2+, 2−, 3−, 2× 4+︸ ︷︷ ︸
doublet

, 4−, 5+, 5−, 2× 6+︸ ︷︷ ︸
doublet

, 2× 6−︸ ︷︷ ︸
doublet

, 7+, 2× 7−︸ ︷︷ ︸
doublet

, 3× 8+︸ ︷︷ ︸
triplet

, 2× 8−︸ ︷︷ ︸
doublet

, · · · .

(5.4.34)

B1u : 1−, 2+, 3±, 4±, 5+, 2× 5−︸ ︷︷ ︸
doublet

, 2× 6+︸ ︷︷ ︸
doublet

, 6−, 2× 6−︸ ︷︷ ︸
doublet

, 2× 7+︸ ︷︷ ︸
doublet

, 2× 7−︸ ︷︷ ︸
doublet

, 2× 8+︸ ︷︷ ︸
triplet

, 2× 8−︸ ︷︷ ︸
doublet

, · · · .

(5.4.35)

Comparing the above spin-parity sequence, eq. (5.4.34), with the ones obtained for
D4h seen in eqs. (5.4.24) and (5.4.25), we observe that the spin-parity sequence of D2d

ground-state band can be decomposed into two D4h-type bands.
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Chapter 6

Exotic Shape Symmetries in Heavy
and Super-Heavy Nuclei: Results

In this chapter, we present our analysis of nuclear shape properties in terms of shape
evolution and competition together with shape isomers in heavy and super-heavy nuclei.
We focus on exotic point-group symmetries which to our knowledge were not discussed
yet in the literature, or very rarely. We employ the macroscopic-microscopic method
with the classical energy calculated using the so-called Yukawa-folding realisation of
the nuclear liquid-drop model and a phenomenological mean-field Hamiltonian of the
Woods-Saxon type with the universal parametrisation in which parametric correlations
have been eliminated. The nuclear shapes are described employing spherical-harmonic
basis, {Yλµ}, and including selected combinations of deformation parameters {αλµ}
with multipole orders λ ≤ 8. To facilitate the discussion of the nuclear shape evolution
and competition the energy minimisation is performed together with the corresponding
projections on 2D sub-spaces.

6.1 Short Summary of the Scheme of Calculations

To study the nuclear shapes and symmetries at ground-state configurations we per-
form the calculations of the total nuclear energy as a function of deformation parame-
ters {αλµ}. Calculations are based on the macroscopic-microscopic method presented
in Annex A. Let us recall the principal energy expression used within this method:

Etotal.(Z,N ;α) = Emacro(Z,N ;α) + Emicro(Z,N ;α) ↔ α ≡ {αλµ}, (6.1.1)

where Emacro(Z,N ;α) denotes the macroscopic liquid drop model energy, in our case
either the Yukawa-folding realisation, or, alternatively, the Lublin-Strasbourg Drop
(LSD) Model, cf. Annex (8.1.3). Comparing these two realisations we found out that
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the Yukawa-folding approach gives more realistic results at the vicinities of the nuclear
ground-states and thus we have used this model in the majority of the calculations
within this project.

The microscopic energy, Emicro(Z,N ;α), is composed of the Strutinsky-type shell
and pairing correction energies, detailed expressions of which are discussed in Annex
(8.2):

Emicro(Z,N ;α) = +δEshell(Z,N ;α) + δEpair(Z,N ;α). (6.1.2)

We proceed to summarising our description of the deformation space used in the
calculations.

6.1.1 Multi-Dimensional Deformation Space

The nuclear shapes are parametrised by expressing the equation of the nuclear
surface, Σ, with the help of the spherical-harmonic basis, {Yλµ(θ, ϕ)}, as

Σ : R(θ, ϕ;α) = c(α)R0

1 +
∑
λ

λ∑
µ=−λ

αλµYλµ(θ, ϕ)
 . (6.1.3)

In our analysis of the nuclear shape properties we focus on the deformation parameters
with multipole order λ ≤ 8 appearing in various sub-sets:

• Quadrupole deformations: α20, α22;

• Octupole deformations: α30, α31, α32, α33;

• Hexadecapole deformations: α40, α42, α44;

• Higher order deformations: α60, α80.

Let us provide at this point some estimates of the dimensions of the deformation
sub-spaces in terms of the numbers of the deformation points in selected 2D-, 3D-
and 4D-sets referred to as 2D-, 3D- and 4D-meshes. After systematic comparisons of
various geometric properties of nuclei, we selected the typical deformation ranges and
deformation steps as follows:

• Quadrupole-axial deformation, α20 ∈ [−0.9, 0.9] with the step 0.025;

• Quadrupole non-axial deformation, α22 ∈ [−0.3, 0.3] with the step 0.025;

• Octupole deformations, α3µ ∈ [−0.3, 0.3] with the steps of 0.025 (for µ = 0, 1, 2, 3);
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• Hexadecapole deformations, α4µ ∈ [−0.3, 0.3] with the steps 0.025 (for µ =
0, 2, 4);

• Deformation α60 ∈ [−0.3, 0.3] with the step 0.025;

• Deformation α80 ∈ [−0.3, 0.3] with the step 0.025.

The total number of deformation points for one 4D-mesh is typically 106, with the
numerical effort which requires 3 or 4 days of the c.p.u. time with typically 300 pro-
cessors. The results of the 3D and 4D calculations are presented in the form of the
potential energy maps after projecting onto 2D planes and minimising at each point
over the remaining deformations.

6.1.2 Defining (Z,N)-Sectors of Nuclei in Nuclear Mass Table

In order to set up the numerical calculations, we split the mass table into the
so-called (Z,N)-sectors, each one centred around a selected central nucleus (Z0, N0).
Given the fact that the mean-field single-particle energies vary very smoothly with
proton and neutron numbers it is possible to use the single-particle energies at any
given deformation point not only for the central nucleus for which those energies were
calculated but also for a number of neighbouring nuclei. However, the calculations
become less realistic for Z and N too far away from the central nucleus. For this
reason we define the (Z,N)-sectors as follows,

Z ∈ [Z0 −∆Z, Z0 + ∆Z], and N ∈ [N0 −∆N, N0 + ∆N ]. (6.1.4)

The choice of the Z and N ranges which provide an acceptable compromise between
satisfactory numerical precision of the final results and the c.p.u. computing time is
obtained with ∆Z ≈ ∆N ≈ 8, employing one spectrum of each central nucleus for the
whole sector.

Example of a Total Potential Energy Map. In what follows we present an example
of a 3D-mesh calculation results showing a projection on the (α20, α30) plane, at each
point minimised over hexadecapole deformation α40. By convention we normalise the
total energy in such a way that the macroscopic energy of the spherical nucleus is set
to zero. Certain numerical details are printed on the right-hand side of the diagram
including:
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Figure 6.1.1 – Example of the nuclear potential energy map for 226Th nucleus. The 3D
mesh energy values are projected on the (α20, α30) plane and minimised over hexade-
capole deformation α40. The minimum value of the energy is denoted by Emin, while E0

represents the shell-correction energy at the spherical shape. The details characterising
the used options of the algorithm and certain numerical values of parameters are shown
on the right-hand side, see also the text.

• Nuclear energy variant chosen. The text “E(FYU) + Shell[e] + Correlation[BCS]”
signifies that the liquid drop model variant chosen is the Yukawa-folding type.
It is accompanied by the Strutinsky shell correction variant denoted “[e]”. The
latter signifies that the shell energy is calculated using the traditional Strutinsky
method, cf. Annex (8.2). An alternative method to calculate shell energy was
proposed by Pomorski in ref. [39] in 2004. The rest of the comment-string signifies
that the pairing energy contribution was calculated using the BCS correlation (in
contrast to correction) energy variant.

• Woods-Saxon parametrisation: The string “Com-OxCaCANiZrSnGdPb”, refers
to the parameterisation variant of the Woods-Saxon Hamiltonian specified in
section (2.5).

• Specification “Nx = 60, Ny = 60, Nx = 60”, gives the numbers of Gauss-Hermit
nodes used in the numerical 3D integrations.

• Central nucleus specification: “Zo = 86, No = 128”, defines the central nucleus
for which the mean-field Hamiltonian has been diagonalised to obtain the single-
particle energies used in the calculations for the whole (Z,N)-sector.
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• Specification related to the energy minimisation: “Minim: α40, Fix: α22 = 0.0”
signifies that at each point of the 2D projection illustrated the minimisation over
α40 with α22 = 0.0 was employed and the minimisation result at the ground state
is αmin

40 = 0.075.

• Pairing variant specifications: “BOLSTE, αp = 11.0, Gp = 0.103, αn = 10.6, Fn =
1.00, Gn = 0.074”, means that the paring constant G is defined from eq. (8.3.6)
cf. ref. [40] with the optimal α-factor selected for nuclear range Z ≥ 82, N ≥ 126.

• Single-particle energies (in MeV) of the last occupied proton and neutron levels:
{εp = −3.995, εn = −4.820}.

• The extremum values of the neutron numbers of nuclei whose existence has been
identified experimentally for Z = 90 (after the NNDC database). In the present
case these are: {NNNDC ∈ [118, 148]}, the lowest neutron number is 118 and the
highest one 148.

6.2 Exotic α3µ-Octupole Magic Number N = 136

Studying pear-shape nuclear configurations and the related spectroscopy of negative
parity rotational bands has become one of the common interests in nuclear structure
physics over the past decades. There exists well recognised regions in the nuclear mass
table of nuclei with pronounced octupole deformations corresponding to the particle
numbers at 34 (g9/2 ↔ p3/2 coupling), 56 (h11/2 ↔ d5/2 coupling), 88 (i13/2 ↔ f7/2

coupling), and 134 (j15/2 ↔ g9/2 coupling), cf. refs. [41][4]. Octupole correlations are
also observed in numerous neighbouring nuclei, for instance N = 136 was predicted to
have the strongest octupole correlations cited e.g. eq. (C1) in ref. [42]. The nuclei with
ground-states dominated by octupole correlations often manifest low-lying negative-
parity vibrational Iπ = 3− states, which in turn become band-heads of the resulting
rotational negative-parity bands.

Spherical nuclei can often generate octupole pear-shape vibrations. For instance,
the first excited state at 2615 keV of the doubly magic spherical nucleus 208Pb is an
Iπ = 3− state. The transition strength of the associated E3-transition from Iπ = 3−

to the Iπ = 0+ ground-state has measured reduced transition probability of B(E3) =
33.8(6) W.u., cf. ref. [43]; one of the strongest ever measured. Similar results are found
in certain neighbouring nuclei.

Octupole correlations were investigated at strongly elongated quadrupole deforma-
tions in the light Pb and Hg nuclei, cf. e.g. ref. [44] and references therein. Strong
octupole effects caused by the octupole deformation components with µ = 0 and µ = 2
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at super-deformed minima were predicted in refs. [45, 46]. However, octupole correla-
tions at ground-states in nuclei around Pb have not been analysed in much detail.

To study nuclear octupole shape effects we perform multi-dimensional calculations
involving octupole deformation parameters {α30, α31, α32, α33} combined with appro-
priately selected other ones. Recall the expansion of the nuclear surface in terms of
the spherical harmonics

Σ : R(θ, ϕ) = c({α})R0

1 +
∑
λ

λ∑
µ=−λ

αλµYλµ(θ, ϕ)
 . (6.2.1)

The typical 4D deformation sets (meshes) are defined as:

• Deformation Mesh, set No.1 (Nmesh = 953 125 ≈ 1 · 106 mesh points):

– α20 ∈ [−0.6, 0.9], step 0.025;

– α22 ∈ [−0.3, 0.3], step 0.025;

– α3µ ∈ [−0.3, 0.3], step 0.025, for µ = either 0, or 1, or 2, or 3;

– α40 ∈ [−0.3, 0.3], step 0.025.

• Deformation Mesh, set No.2 (Nmesh = 390 625 ≈ 0.39 · 106 mesh points):

– α30 ∈ [−0.3, 0.3], step 0.025;

– α31 ∈ [−0.3, 0.3], step 0.025;

– α32 ∈ [−0.3, 0.3], step 0.025;

– α33 ∈ [−0.3, 0.3], step 0.025.

The total nuclear potential 4D energy meshes lead to 6 different 2D projections; we
will illustrate the corresponding results in due course.

6.2.1 Single-Nucleon Shell Effects in Terms of Octupole Shapes

To discuss the presence of deformed shell gaps in the single nucleon spectra we
are going to present the corresponding single nucleon energies as functions of α3µ-
deformations. To obtain an overview of the shell effects for N ≥ 126 it will be instruc-
tive to compare the diagrams in fig. (6.2.1) showing that the octupole deformation
related gaps at the neutron number N = 136 play a distinct role. These gaps are
caused by a repulsive interaction between the 1j15/2 intruder orbital from the main
shell N = 7 and the 2g9/2 orbital from the main shell N = 6.
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Figure 6.2.1 – Neutron single-particle energies as functions of the octupole deformations
α30, α31, α32 and α33. All other deformation parameters are set to zero.
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Since the corresponding orbital angular momentum quantum numbers differ by
∆` = 3 it becomes clear that the octupole-octupole two-body residual interactions are
at the microscopic origin of the discussed shell effect, cf. eq. (C1) in refs. [42] and [47].
In the case of α32 the nuclear shapes possess tetrahedral symmetry. The energy gap
at N = 136 is particularly well pronounced in this case with the size of the gap of
well over 2 MeV. With growing α32 its size is becoming comparable with the size of
the spherical gap at N = 126 (!). The strong shell effects can be traced back to the
particular degree of freedom of the irreducible representations of tetrahedral group TDd
discussed later.

As presented in chapter 5, section (5.2.2), the double-tetrahedral symmetry group
TDd applicable to the Fermion mean-field Hamiltonian has one 4-dimensional irreducible
representation, which corresponds to 4-fold degeneracy of single particle levels and two
2-dimensional irreducible representations assuring the usual Kramers (double) degen-
eracy. On average, the 4-fold degeneracy leads to increased single-particle energy spac-
ings. Moreover, a strong tetrahedral symmetry gap opening at large α32 for N = 142
deserves noticing.

At the same time the presence of the pronounced octupole energy gaps at N = 136
for the octupole deformations α31 and α33, extending up to deformation ±0.2 should be
emphasised. Comparing the single-particle energies as functions of the four octupole
deformations α3µ=0,1,2,3 we may conclude that the neutron number N = 136 plays a
role of a special, common octupole magic number with respect to all the 4 octupole
deformations, with tetrahedral symmetry (α32 case) dominating.

With the help of the compared single-particle energy spectra we can learn the global
properties of the underlying shell effects qualitatively. However, we cannot use the
single-particle energy diagrams to learn about more directly experiment-comparable
nuclear properties, such as nuclear equilibrium deformations, shape evolution and the
fission barriers. Thus in the following section, we will illustrate the results of these
octupole shell effects obtained via our large-scale total potential energy calculations.

6.2.2 Octuple Effects in Heavy Pb Isotopes

In order to learn about the impact of the octupole single-particle shell-gaps on
the nuclear structure effects which can be identified experimentally, we will present
the resulting potential energy maps projected on the (α20, α3µ=0,1,2,3) planes with the
energies minimised over α22 and/or α40 deformations. We will illustrate the evolution
of octupole susceptibilities for Pb isotopes with increasing neutron number between
N = 126 and N = 136. Since the magic number Z = 82 is known to generate the
strongest spherical proton shell-effects, by selecting the Pb isotopes we focus mainly
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6.2.2 Octuple Effects in Heavy Pb Isotopes

on the evolution of the octupole effects caused by increasing N and the implied neutron
configurations. We begin by showing representative examples of projection (α20, α30)
with energies minimised over α22 and α40 in figs. (6.2.2) and (6.2.3).

Results show the effect of increasing pear-shape deformation susceptibility with in-
creasing neutron numbers. For 208Pb the octupole equilibrium deformation is formally
non-zero, α30 ≈ ±0.05, even though the energies are flat along α30 direction. This
result is comparable to the one cited in ref. [48], α30 ≈ ± − 0.0375, obtained using
minimisation-after-projection approach with Hartree-Fock-Bogoliubov self-consistent
mean field theory. Comparison of the results in figs. (6.2.2)-(6.2.3) shows an increase
in the barriers separating the two symmetric octupole minima, from nearly 0 to over
2 MeV.

Analysing further the shape evolution accompanying an increase of neutron number
within the sequence of lead isotopes shown in figs. (6.2.2) and (6.2.3), we find that the
equilibrium shapes correspond to vanishing quadrupole deformation, thus α20 = 0, and
this for all examined isotopes and all the 4 octupole deformations. The results for
α3µ=1,2,3 are similar to the ones presented for α30 and are not shown. Thus we are
dealing here with the situation rare in nuclear structure physics:

The lowest multipolarity which breaks the spherical symmetry is not quadrupole.
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Figure 6.2.2 – The total nuclear energy projections on the (α20, α30)-plane, minimised
over α22 and α40 for 208−212Pb126−130 nuclei. Growing octupole susceptibility deserves
noticing.
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Figure 6.2.3 – Results similar to the preceding ones but for 214−216Pb132−136 nuclei.
Barriers separating α30 double-minima increase with N reaching the height of the order
of 2 MeV for N = 136.
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Since the most pronounced pear-shape octupole equilibrium deformations appear
at N = 136, it is instructive to examine the impact of other three octupole compo-
nents, i.e., α31, α32 and α33 for this particular neutron number. Figure (6.2.4) shows
the octupole equilibrium deformations in the potential energy surfaces projected on
{α20, α3µ=0,1,2,3} planes, after minimisation over α22 and α40. Comparison shows that
all 4 equilibrium deformations are of the similar order of magnitude, α3µ=0,1,2,3 ≈ 0.12,
and all correspond to the vanishing quadrupole deformation: α20 = 0 .

It can be seen from the figure that the energies at the equilibrium configurations
are about 1.5 MeV lower in the case of tetrahedral symmetry as compared to the other
cases. Comparing the potential energy surfaces in fig. (6.2.4), we find that the barriers
separating the double tetrahedral minima are over 3 MeV, while the barrier heights are
about 2 MeV in the cases of α30, α31 and α33. Recall that the strongest α32 octupole
(tetrahedral) shell effects result from the properties of the irreducible representations
of the TDd group.

Studying the tetrahedral point-group symmetry is very important in nuclear struc-
ture both for theory and experiment because of its exotic features. In particular,
according to the characteristic property of rotational bands based on tetrahedral sym-
metry ground states, they generate neither the collective E1 nor E2 transitions. This
property leads to the so called isomeric bands, the subject discussed in detail in ref. [29].
Other than that, we also observe the pronounced super-prolate minimum at the exci-
tation of the order of 4 MeV above the ground-state.

However, the experimental information about the heavy Pb isotopes is very limited.
These nuclei cannot be easily populated and can be considered as increasingly exotic.
It is therefore worth extending our discussion to some heavier nuclei with Z > 82 which
are easier accessible from the experimental view point, and such an extension will be
discussed next.
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Figure 6.2.4 – Projections of the potential energies for 218Pb136 on (α20, α3µ=0,1,2,3)
planes after minimisation over {α22, α40}; illustration of the 4-fold octupole magic gap
at N = 136.
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6.2.3 Impact of all 4 Octupole Components in Heavy Nuclei

In what follows we will extend our discussion of the symmetries based on the 4
octupole deformations to the heavier nuclei with Z > 82. This is motivated by the
fact that these nuclei are easier accessible experimentally and thus the newly predicted
exotic symmetry effects can be in principle easier identified. According to the results
shown so far, the double octupole minima with well pronounced separating barriers
correspond to N ≥ 132. We will focus on Radium isotopes for which there exists
relatively rich experimental information in the literature, cf. e.g. refs. [49–52].

We begin with the total energy maps for the sequence of nuclei Ra132,134,136, compar-
ing the projections (α20 vs. α30) and (α20 vs. α32) in figs. (6.2.5) and (6.2.6), respectively.
As seen from the figures there exists a shape competition between the octupole unsta-
ble ground-state configurations and the super-prolate minima at α20 ≈ 0.5, together
with the less pronounced oblate minima at α20 ≈ −0.25.

Referring to the pear-shape evolution seen from fig. (6.2.5) one notices a steady
increase of quadrupole equilibrium deformation starting from α20 ≈ 0.10 in 220Ra132

to α20 ≈ 0.15 in 224Ra136. In comparison to the 214−218Pb132−136 isotopes, the barriers
separating the double octupole minima are lower in Ra132−136 nuclei. The calculated
equilibrium deformations αth

20 = 0.125 and 0.150 for 222,224Ra can be compared with
experimental ones from ref. [2], αexp

20 = 0.1915(76) and 0.179+11
−8 . These results illustrate

the level of predictive power of the newly adjusted universal parametrisation.

It is worth mentioning that the pear-shape octupole deformation commonly dis-
cussed in the literature is characterised by the octupole bands or parity-doublet bands,
which correspond to the equilibrium shapes with simultaneous nonzero quadrupole and
pear-shape octupole combination (α20 6= 0, α30 6= 0). A typical experimental evidence
of pear-shape octupole configurations referring to the E1 transition strengths can be
found, e.g., in refs. [49, 50].

From our calculations it follows that the evolution of the α31 and α33 equilibrium
deformations are quite similar to the ones with α30. Because of the similarity of the
evolution properties, we present only the selected maps in terms of α30 and α32 de-
formations in this section. For more detailed discussion of the effects of α31 and α33

deformations see the next section.

As seen from comparison of figs. (6.2.5) and (6.2.6), the evolution of the tetrahedral
deformation with N is qualitatively different as compared to the one of the pear-shape
deformation. The energy barriers increase with increasing neutron numbers, and yet
the tetrahedral minima remain at the quadrupole deformation α20 = 0.
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Figure 6.2.5 – Total energy projections illustrating the pear-shape minimum evolution
for 220−224Ra. The calculated equilibrium values are αth

20 = 0.125 and 0.150 for 222,224Ra
which can be compared with experimental ones, αexp

20 = 0.1915(76) and 0.179+11
−8 , from

ref. [2].
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Figure 6.2.6 – Results similar to those in fig. (6.2.5) but for the projections (α32 vs. α20).
Ground state configuration with quadrupole shape α20 ≈ 0.15 is most pronounced in
224Ra.
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The barriers between tetrahedral minima and the prolate shape minimum with
α20 ≈ 0.15 increase with the neutron number, leading to the prolate ground-state
minimum best visible in 224Ra136. This implies the shape coexistence of tetrahedral
and the prolate shape configurations. It follows the hypothesis of the low energy
‘tetrahedral type’ α32-oscillatory motion of the quadrupole-deformed configurations in
parallel with the tetrahedral rotation at α32 6= 0 and α20 = 0. As it is known from
ref. [1], the exact tetrahedral symmetry implied by (α20 = 0, α32 6= 0) leads to the
special exotic structures with both E1 and E2 transitions vanishing. Therefore, the
symmetry with α32 6= 0 and α20 = 0 are expected to produce a sequence of isomers
with increasing spins.

6.2.4 Implications of the Four-Fold Magic Number N = 136

As illustrated so far, the strongest octupole shell effects in the form of the large
single-particle gaps correspond to N = 136 for all the 4 octupole components α3µ.
In what follows we compare the total energy maps for Po, Rn, Ra and Th nuclei at
fixed neutron number N = 136. In analogy to the presentation in figure (6.2.4), we
will concentrate on the impact of the four octuple components commenting about the
underlying symmetries based on the point group theory.

Begin with some comments about the combinations of octupole and quadrupole
deformations. One can demonstrate using the results of the point group theory, that
both combinations, (α20 = 0, α30 6= 0) and (α20 6= 0, α30 6= 0), lead to the same
point group symmetry known as C∞v. Similarly, shapes with (α20 = 0, α31 6= 0) and
(α20 6= 0, α31 6= 0) lead to the common point group C2v. The situation is different for
the combination of α20 and α32. Indeed, (α20 = 0, α32 6= 0) represents the tetrahedral
point group Td whereas (α20 6= 0, α32 6= 0) generates the point group D2d. Finally, for
the case of (α20 = 0, α33 6= 0) and (α20 6= 0, α33 6= 0) the underlying symmetry is again
common: the point group D3h.

As shown in figure (6.2.7), we find soft pear-shape octupole twin-minima with
no clearly separating barriers in Po, Rn, Ra and Th nuclei, whereas the quadrupole
deformation increases from α20 = 0.10 to 0.15 for increasing Z. The flatness of the
potential in terms of octupole deformation indicates, from the experimental point of
view, that the positioning of the lowest negative parity band members Iπ = 1− and
3− should be close to-, or below the state of 4+, cf. ref. [4]. Indeed, the experimental
energies of the E1− , E3− and E4+ for 222Rn, 224Ra and 226Th listed in table (6.3.1)
correspond to the experimental excitations discussed in ref. [4].
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Figure 6.2.7 – Octupole α30 effects at the magic number N = 136. Theoretical
quadrupole deformations for 222Rn, 224Ra and 226Th are αth

20 =0.13, 0.15 and 0.16,
respectively; the experimental ones from ref. [2] are: αexp

20 =0.1417(45), 0.179+11
−8 and

0.2299(19).
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Table 6.2.1 – Comparing experimental energies of the lowest negative parity E1− and
E3− and the positive parity E4+ states, whose mutual closeness, according to ref. [4],
indicates the flatness of the potential as function of the octupole deformation. The
values are taken from National Nuclear Data Center (NNDC) database. There are no
experimental results available for 220Po.

E1− (keV) E3− (keV) E4+ (keV)
222Rn 230.4 307.5 226.4
224Ra 216.0 290.4 250.8
226Th 600.7 635.5 448.4

In what follows we compare the evolution of the potential energy surfaces in terms
of exotic α31-deformation in fig. (6.2.8). The general properties of those diagrams
are similar to the ones seen in fig (6.2.7). The soft octupole α31-deformation combined
with nonzero quadrupole deformation increase from 0.10 to 0.15 with increasing proton
number, whereas the potential valleys are slightly broader and shorter.

Recall that the point-group symmetry generated by α31 deformation in terms of
group theory is C2v with or without the contributions from the axial quadrupole de-
formation. Since the potential energies are steeper in the present case, one may expect
that the corresponding vibration energies are higher than the ones generated by α30-
deformation. Moreover, the non-axial octupole minima are predicted to be in compe-
tition with the super-prolate minima at α20 ≈ 0.5, with only a few hundreds of keV
above the ground-state.

We continue comparing the potential energies as functions of tetrahedral defor-
mation α32 in fig. (6.2.9). Tetrahedral minima at α32 = ±0.15 are separated by the
potential barriers of about 1 to 2 MeV. They are accompanied by vanishing quadrupole
α20 = 0 equilibrium deformation. At the same time, in this particular case, there ap-
pear axially symmetric quadrupole minima at α20 ≈ 0.15 in 222Rn, 224Ra and 226Th
nuclei. Such quadrupole minima may give rise to the β-, and α32-vibrations, the latter
considered as analogues of the γ-vibrations. As mentioned earlier, the formal point
groups are different for the α32 deformation pure as opposed to the combination of α32

with the quadrupole shape components, the former representing Td -, and the latter
D2d-symmetry.

The super-deformed prolate minima at α20 ≈ 0.5, lying about a few hundreds of
keV above the ground-state are present in the discussed 2D projections.
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Figure 6.2.8 – Similar to the preceding figure but for α31 deformation.
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Figure 6.2.9 – Illustration similar to the preceding ones but for the tetrahedral symmetry
generating α32-deformation.
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In figure (6.2.10) we compare analogous potential energy surfaces with α32 replaced
by α33. Again we note a systematic tendency with the quadrupole minima varying
from α20 = 0.05 to 0.150, whereas the double α33 minima are getting less and less
pronounced with increasing proton numbers from Z = 84 to 90. More precisely, in 220Po
and 222Rn, there clearly exist double α33 minima, with the separating potential barriers
of the order of 1 to 2 MeV. They can be considered sufficiently high to stabilise static
D3h configurations. In contrast, in 224Ra and 226Th nuclei, the separating potential
barriers are only of the order of a few hundreds of keV, indicating the inclination for
the large amplitude oscillations. More precise information concerning such oscillations
can be obtained by solving the collective Schrödinger equation, the problem which
will be introduced it the next sections. Since the point-group symmetry D3h remains
the same with and without quadrupole deformation, we may expect the presence of
coexisting D3h -, and quadrupole vibrations.

Results discussed so far illustrate the mechanisms possibly generating the presence
of exotic symmetries in the Pb, and in the neighbouring Po, Rn, Ra and Th nuclei.
These exotic symmetries are mainly caused by neutron shell effect generated by the
octupole-octupole two body residual interactions sandwiched between the neutron 2g9/2

and 1j15/2 orbitals, whereas the impact of the proton shell effect can be considered
small, and slightly destabilising the exotic symmetries lead by the neutrons.
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Figure 6.2.10 – Similar to the preceding ones but for α33 deformation.
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6.3 Exotic Symmetries and Their Identification

In the preceding sections we have discussed structural links between the single-
particle gaps involving octupole deformations and the repulsion between the neutron
2g9/2 and 1j15/2 orbitals. In this section we will examine specific properties of rotational
bands implied by exotic symmetries in nuclei. These properties turn out to be unique
and, in contrast to the “well known rotational properties”, they differ from symmetry to
symmetry. Consequently, they provide the criteria for the experimental identification
of the underlying symmetries. We will also provide schematic illustrations of the typical
properties of those specific rotational bands.

6.3.1 Evolution of the Magic Gaps with Rotational Frequency

Before examining the general quantum properties of the rotational bands generated
by the exotic shape geometry, it will be instructive to test the evolution with increasing
spin of the underlying exotic shell structures which stabilise such shapes. In order to be
able to study the octupole shell evolution with increasing spin (alternatively: rotational
frequency) we are going to use the 3D cranking approximation by solving the mean-field
cranking problem as summarised in chapter 4, section (4.3.3).

Let us recall the form of the mean-field cranking Hamiltonian

Ĥws → Ĥω
ws = Ĥws − ~ω · ̂, (6.3.1)

in which the mean-field Woods-Saxon Hamiltonian, Ĥws, was defined in eq. (4.3.21).
The symbol ~ω = {ωx, ωy, ωz} in eq. (6.3.1) represents the collective rotational frequency
vector and ̂ the nucleonic angular momentum vector-operator.

Representative illustrations of the single-particle Routhians and their evolution with
rotation about Oy-axis as functions of nuclear cranking frequency, here ωy, are shown in
figures (6.3.1)-(6.3.4). Calculations indicate that the total angular momenta (i.e., sums
of the proton and neutron contributions) at the maximum frequency presented in the
diagrams are of the order of 20 ~, an approximate estimate valid for all the studied
nuclei. This indicates that the discussed exotic shell effects are strong enough to
generate rotational bands with exotic quantum properties over sufficiently large spin
ranges, possibly allowing for their experimental identifications.
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Figure 6.3.1 – Neutron single-particle Routhians at pear-shape deformation α30 = 0.15
representative for the minima predicted by the potential energy calculations for Pb, Po,
Rn, Ra and Th nuclei. The gap appearing at ~ωy = 0 is slightly over 1.5 MeV and
decreases with cranking frequency.
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Figure 6.3.2 – Similar to the preceding one but for the octupole deformation α31 = 0.15.
The gap of about 1.5 MeV at ~ωy = 0 remains relatively stable over the frequency range
up to ~ωy = 0.20.
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Figure 6.3.3 – Similar to the preceding ones but for the tetrahedral octupole deformation
α32 = 0.15 characteristic for the predicted equilibrium deformations in the studied
nuclei.
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Figure 6.3.4 – Similar to the preceding ones but for the α33-octupole deformation rep-
resenting the D3h-symmetry. Compared to the other octupole deformations, the shell
effects in the present case are the weakest and/or their vanishing with rotational fre-
quency the fastest.
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Calculations show that the discussed octupole shell gaps at N = 136 decrease with
increasing frequency as expected and that the ‘speed’ of their vanishing depends non-
negligibly on the rank µ ∈ {0, 1, 2, 3} of the octupole deformation. For instance, in the
case of α31-deformation, the N = 136 energy gap stays almost constant in the tested
frequency zone, but the strongest shell effects correspond to the tetrahedral symmetry
α32-deformation, due to specific degeneracies of the single-particle spectrum applying
in the TDd -symmetry case. Comparing the shell effects among all the 4 octupole defor-
mations we find that α33-effect may be considered the weakest and its vanishing with
~ωy the fastest.

We conclude from the presented mean-field cranking estimates that the oc-
tupole shell-gaps at N = 136, even though decreasing with increasing spins
due to the Coriolis mixing, nevertheless survive within the frequency range
large enough to produce rotational bands within the spin range of the order
of a dozen of ~.
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6.3.2 Rotational Bands within C2v, D3h and D2d Symmetries

Results presented in the preceding sections encourage us to extend our study to
include the symmetries built on the exotic α31-, and α33-octupole deformations which
lead to C2v and D3h symmetries, respectively. Furthermore, we wish to include exotic
shapes with non-zero quadrupole component, (α20 6= 0, α32 6= 0) i.e., D2d point group
symmetry.

Symmetry C2v: The Case of (α31 6= 0). According to eq. (5.4.9) and with the help
of the characters of C2v group we obtain the table of multiplicity factors shown below.
The schematic illustration of the structure of rotational band built on the ground-state
with Iπ = 0+ is presented in fig. (6.3.6). It shows in particular that, characteristically,
the states Iπ = 0− and 1+ are absent in this ‘C2v ground-state’ band.

Table 6.3.1 – Multiplicity factors a(Iπ)
n for C2v group corresponding to 4 irreducible

representations denoted A1, A2, B1 and B2 for integer spins I ≤ 12 and positive parity
are shown. The reader interested in details of the representation theory jargon and
notation may consult the Annex “Groups”.

C2v Multiplicity Factors for D(Iπ=+)

I+ 0+ 1+ 2+ 3+ 4+ 5+ 6+ 7+ 8+ 9+ 10+ 11+ 12+

A1 1 0 2 1 3 2 4 3 5 4 6 5 7
A2 0 1 1 2 2 3 3 4 4 5 5 6 6
B1 0 1 1 2 2 3 3 4 4 5 5 6 6
B2 0 1 1 2 2 3 3 4 4 5 5 6 6

Table 6.3.2 – Results similar to those in table (6.3.1) but for negative parity.

C2v Multiplicity Factors for D(Iπ=−)

I− 0− 1− 2− 3− 4− 5− 6− 7− 8− 9− 10− 11− 12−

A1 0 1 1 2 2 3 3 4 4 5 5 6 6
A2 1 0 2 1 3 2 4 3 5 4 6 5 7
B1 0 1 1 2 2 3 3 4 4 5 5 6 6
B2 0 1 1 2 2 3 3 4 4 5 5 6 6
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Figure 6.3.5 – Schematic illustration of the structure of the rotational band based on
Iπ = 0+ ground-state for the symmetry C2v.

As seen from figure (6.3.5), the degeneracies of the multiplets increase with increas-
ing spins, reaching the order 7 at spin 12+ and the order 6 at spin 12−.

Symmetry D3h: The Case of α33 6= 0. In what follows we will examine rotational
properties of nuclei with the octupole deformation α33 6= 0 leading to theD3h symmetry.
The corresponding point-group contains among other symmetry elements a three-fold
symmetry axis. In analogy to the tables of the multiplicity factors for the C2v symmetry,
we obtain the following tables based on the irreducible representation of D3h point
group.

Schematic illustration of the rotational structure built on the lowest Iπ = 0+ with
intrinsic symmetry D3h state is shown in figure (6.3.6). It shows that the numbers of
the degenerate states increase with increasing spins. In particular the negative parity
states with spins I ≤ 2 are absent, similarly the positive parity states with spins I = 3
and 5 are missing.
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Figure 6.3.6 – Schematic illustration of the structure of the rotational band built on top
of the Iπ = 0+ “D3h ground-state”.

Table 6.3.3 – Results similar to the ones in table (6.3.1) but for octupole symmetry
D3h.

D3h Multiplicity Factors for D(Iπ=+)

I+ 0+ 1+ 2+ 3+ 4+ 5+ 6+ 7+ 8+ 9+ 10+ 11+ 12+

A1 1 0 1 0 2 1 2 1 3 2 3 2 4
A2 0 1 0 1 1 2 1 2 2 3 2 3 3
E 0 1 1 2 2 3 3 4 4 5 5 6 6
B1 0 0 1 1 1 1 2 2 2 2 3 3 3
B2 0 0 1 1 1 1 2 2 2 2 3 3 3

144



6.3.2 Rotational Bands within C2v, D3h and D2d Symmetries

Table 6.3.4 – Results similar to the ones in the preceding table but for the negative
parity.

D3h Multiplicity Factors for D(Iπ=−)

I− 0− 1− 2− 3− 4− 5− 6− 7− 8− 9− 10− 11− 12−

A1 0 0 1 1 1 1 2 2 2 2 3 3 3
A2 0 0 1 1 1 1 2 2 2 2 3 3 3
E 0 1 1 2 2 3 3 4 4 5 5 6 6
B1 1 0 1 0 2 1 2 1 3 2 3 2 4
B2 0 1 0 1 1 2 1 2 2 3 2 3 3
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Octupole Symmetry D2d: The case of α20 6= 0, α32 6= 0. As presented in
the preceding sections, equilibrium deformations in some heavy nuclei contain com-
bination of the α20 6= 0 and α32 6= 0 contributions corresponding to the D2d point
group symmetry. Similarly as before we will examine the multiplicity factors implied
by the irreducible representations of this group. They are given in tables (6.3.5) and
(6.3.6), whereas a schematic illustration of the implied rotational band is presented in
fig. (6.3.7). As seen from the figure the states Iπ = 1+ and 3+ are absent, as well as the
negative parity states Iπ = 0− and 1−. Moreover, the spin-parity sequence contains
an ample selection of degenerate both positive and negative parity states of both even
and odd spins. In contrast to the ‘pure α32 6= 0’ tetrahedral-symmetry states, they all
may lead to the combinations of the electromagnetic E2 and E1 transitions, even if not
very strong. This can be seen as a factor encouraging the corresponding experimental
identification employing modern γ-detection systems.

Table 6.3.5 – Similar to the results in table (6.3.4) but for octupole symmetry D2d.

I+ 0+ 1+ 2+ 3+ 4+ 5+ 6+ 7+ 8+ 9+ 10+ 11+ 12+

A
′
1 1 0 1 0 1 0 2 1 2 1 2 1 3

A
′
2 0 1 0 1 0 1 1 2 1 2 1 2 2

E
′ 0 0 1 1 2 2 2 2 3 3 4 4 4

A
′′
1 0 0 0 1 1 1 1 1 1 2 2 2 2

A
′′
2 0 0 0 1 1 1 1 1 1 2 2 2 2

E
′′ 0 1 1 1 1 2 2 3 3 3 3 4 4

Table 6.3.6 – Results similar to the ones in table (6.3.5) but for the negative parity
states.

I− 0− 1− 2− 3− 4− 5− 6− 7− 8− 9− 10− 11− 12−

A
′
1 0 0 0 1 1 1 1 1 1 2 2 2 2

A
′
2 0 0 0 1 1 1 1 1 1 2 2 2 2

E
′ 0 1 1 1 1 2 2 3 3 3 3 4 4

A
′′
1 1 0 1 0 1 0 2 1 2 1 2 1 3

A
′′
2 0 1 0 1 0 1 1 2 1 2 1 2 2

E
′′ 0 0 1 1 2 2 2 2 3 3 4 4 4
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Figure 6.3.7 – Schematic illustration of the structure of the rotational band based on
Iπ = 0+ “ground-state of symmetry D2d”.

6.3.3 Identification Schemes of Exotic Symmetries

According to our mean-field theory calculations, potential energy surfaces manifest
strong octupole shell effects leading to non-vanishing α3µ equilibrium deformations.
The properties of rotational band structures built on such exotic shapes are derived
with the help of the point group and group representation theories and are presented in
the preceding sections together with the schematic illustrations. Given the fact that the
tetrahedral symmetry, one of the most exotic ones discussed here, has been discovered
experimentally in 152Sm nucleus in ref. [29], we believe that the other exotic structures
accompanying symmetries C2v, D3h and D2d are worth attention in the future, both
from experimental and theory view points. In what follows we will comment on possible
experimental identification of the exotic symmetries as they were presented in the
preceding sections.

Identification of Exotic Symmetries: Collective-Level Degeneracies. As shown
in figures (6.3.5) to (6.3.7), one of the characteristics of the exotic-band structures gen-
erated by symmetries C2v, D2h and D2d are the degeneracies of certain levels. Therefore
the most evident technique to follow would be to attempt establishing the presence of
those degeneracies experimentally. However, such an identification may encounter cer-
tain specific difficulties which will be discussed next.

To start, the nuclei which are optimal from the theory view-point usually do not
correspond to the potentially most successful experiments, which depend on the optimal
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target-projectile combinations as well as on the available detection instrumentation.
Therefore the choice leading to the final experimental proposals will be subject to
necessary compromises.

Consider next a given spin-parity Iπ, d-fold degenerate multiplet. The related wave
functions ΨIπ

M,ρ for ρ = 1, 2, ...d, are mutually orthogonal and therefore representing in
general independent, thus different substructures. It follows that the feeding conditions
of each of the multiplet members are expected to be generally different. Consequently,
some states may not at all be measurably populated within a given reaction, and
several alternative reactions and/or experiments may be needed to succeed with the
population of all the members of the multiplet of interest.

Despite certain practical difficulties mentioned, there exists a strongly helping fac-
tor: All the band levels form parabolic EI -vs.- I dependence. The latter will be very
helpful in eliminating or accepting certain experimental levels as multiple members
belonging to the studied band.

Identification of Exotic Symmetries: 4-Fold s.p. Level Degeneracies. In-
dependently of the collective rotational-state degeneracies just discussed, there exists
another class of degeneracies implied by the presence of 4-dimensional irreducible rep-
resentations in the case of TDd tetrahedral symmetry. The underlying configurations
belong to the non-collective, particle-hole type excitations, first of all of the tetrahedral
Iπ = 0+ lowest-lying states, the same on which the collective, rotational bands just
discussed are built.

Let us consider first the ‘usual’, double (also called Kramers) single-particle degen-
eracy in some deformed nucleus. Any single particle eigenvalue eν is common for both
ψν and its time-reversed image ψν̄ = T̂ψν ,

Ĥψν = eνψν and Ĥψν̄ = eν̄ψν̄ with eν = eν̄ , (6.3.2)

where the solutions ψν and ψν̄ are linearly independent. Next let us consider a particle-
hole excitation of an even-even nucleus in which the lower level is originally occupied
by two nucleons and the upper level is empty. We have 4 combinations of the 1-particle
1-hole excitations leading to the same energy of the final result as follows:

δe∗1p−1h ↔ eµ − eν = eµ − eν̄ = eµ̄ − eν = eµ̄ − eν̄ , (6.3.3)

where ψν and ψν̄ represent originally occupied states and ψµ and ψµ̄ originally unoccu-
pied states. There are 4 linearly independent particle-hole configuration wave-functions
constructed out of the appropriate combinations involving {ψν orψν̄} and {ψµ orψµ̄}.

We conclude that in the case of the ‘usual’ (i.e., Kramers double degeneracy) with
the lower level originally fully occupied by 2 particles and the upper level totally empty,
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there are 4 independent wave functions of the 1-particle 1-hole excitations with the ex-
citation energies satisfying a 4-fold degeneracy expressed by a single excitation energy,
δe∗1p−1h as in eq. (6.3.3). This provides an experimental (and theoretical) reference
structure which will be next compared with the exotic situation of TDd single-nucleon
4-fold degeneracies in place of the Kramers double degeneracies.

In the case of 4-fold single nucleon degeneracies, let us consider a configuration
with the lower energy states originally fully occupied by 4 particles with their wave
functions ψν1 , ψν̄1 , ψν2 and ψν̄2 and the upper ones totally empty with their single-
particle solutions ψµ1 , ψµ̄1 , ψµ2 and ψµ̄2 . Consider next the possible particle-hole excited
states which can be constructed in the present situation:

• 1-particle 1-hole excitations leading to 16 linearly independent configurations i.e.,
with 16 mutually orthogonal wave functions, whose accompanying particle-hole
excitation energies are equal δe∗1p−1h,

• 2-particle 2-hole excitations leading to 36 linearly independent configurations,
with mutually orthogonal wave functions, while the corresponding single ex-
citation energy δe∗2p−2h is given by twice the single-particle energy difference
(2× δe∗1p−1h).

In the case of a slightly broken TDd -symmetry – the situation which very likely will be
encountered in experiments – each of the 4-fold degenerate multiplets will split into a
pair of two very close lying levels eν1 and eν2 corresponding to the lower energy and
a pair eµ1 and eµ2 corresponding to the higher one, each of them Kramers doubly-
degenerate. Using our earlier notation we may write:

Exact TD
d : {eν1,ν2 = eν1 = eν2 ; eµ1,µ2 = eµ1 = eµ2} ↔ {eν1 ≈ eν2 ; eµ1 ≈ eµ2}.

(6.3.4)
Such configurations with slightly broken symmetry lead to 4 slightly different δe∗1p−1h-
type excitation energies and 8 slightly different δe∗2p−2h-type excitation energies. Thus
experimentally we arrive at challenges of identifying the quadruplets of δe∗1p−1h-type
excited states or octuplets of δe∗2p−2h-type excited states with different spins.

More precisely, some information about these spins can be obtained through the
mean-field theory employing the angular momentum and parity projection techniques
as mentioned above. One may expect numerous weak (single-particle strength) elec-
tromagnetic transitions feeding or depopulating those numerous states and the electro-
magnetic selection rules can exclude certain (forbidden by the spin-parity selection
rules) transitions. It is worth mentioning that the most important problem in this
part of the discussion is to focus on the evidence for the relatively large number of
excited states lying closely. An evidence of even a few of such excitations with their
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number exceeding the numbers expected from the usual Kramers-degenerate configura-
tions can be treated as an encouraging step towards the ‘full evidence’ of the multi-fold
degeneracies such as the 4-fold TDd degeneracies.

Missing States as Symmetry Identifiers. As shown in figures (6.3.5) to (6.3.7)
states with certain spin-parity combinations are simply absent. Let us stress that those
absent states can be seen as characteristic signals of the corresponding symmetries.
However, we might expect that there exist contaminating transitions originating from
levels with the right spin-parity combinations and with energies coinciding with the
energies whose absence we try to demonstrate. In what follows we will discuss how
to facilitate the elimination of the structural contaminations, which originate from
collective and/or non-collective excitations.

Observation: Let us emphasise that demonstrating experimentally an abso-
lute absence of certain facts, e.g., the absence of certain levels or transi-
tions, is a very difficult issue. Certain effects may not be measurable with
the present day instrumentation and may become observable with future,
better devices. It follows that the issue in question must be considered as
very important but challenging one.

Collective rotational signals may originate either from exotic symmetry minima or
from the competing prolate-oblate configuration, and possibly super-deformed configu-
rations. Since the latter ones correspond to big moments of inertia, the signals of those
configurations should be easy to distinguish. In the former case because of the charac-
teristic parabolic spin-parity sequences, the collective rotational band signals coming
from the exotic symmetries can also be recognised with some extra effort. When the
possible competition from collective vibrational states is concerned, the later ones are
expected in the energy range of the order of 1 MeV, and should not interfere with the
low-spin rotational transitions.

Similarly, we need to consider the possible contamination originating from non-
collective (particle-hole) excitations either from the competition of prolate-oblate min-
ima or from exotic deformation minima. In the case of axial-symmetry prolate/oblate
structures the non-collective excitations will lead to the irregular energy vs. spin ex-
citation patterns, what implies the presence of the so-called K-isomers and yrast-trap
energy pockets. Such structures can be interpreted theoretically by employing the well
known and well tested so-called ‘tilted Fermi surface method’, cf. ref. [6] or with the
spherical shell-model approach so that this type of contamination can be eliminated
(at least to an extent) from the considerations in the present context, in particular
with the help of the rather well established theory tools.

The last point to consider is excluding a possible misinterpretation due to the
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presence of a state coming from a predefined spin-parity combination in the parabolic
energy zone while originating in fact from a particle-hole excited state of the studied
exotic symmetry state. However, we believe that in this context incidentally positive
signals are not very likely. It is known that the total nuclear spins and parities of such
states originate from combinations of the nucleonic spins and parities of the levels near
the Fermi level, and one can expect that it is very unlikely that the strict energy and
spin conditions would fit incidentally.

6.4 Nuclear Shape Properties in 4D Octupole Space

We will address a number of algorithmic problems, which one encounters studying
properties of nuclear shapes and symmetries in 4D deformation spaces. Even though
the effects of this kind are expected in many regions of the nuclear mass table, we
will focus on the lead nuclei in which a panorama of various complementary scenarios
seems very rich.

One of the reasons of a particular interest in this mass region is that the equilibrium
deformations in the nuclei of interest are in many cases characterised by (α20 = 0, α3µ 6=
0), therefore with no significant contributions from the quadrupole shape components.

This element alone is of specific interest in nuclear structure physics, since
it allows for examining nuclear properties in which the “usually second rang
multipolarity begins playing the first rang roles”.

However, as it turns out, from comparison of the potential energy maps presented in
the preceding sections we might expect that there exists a competition between various
octupole deformation components and this problem will be addressed next.

6.4.1 Potential Energy Surfaces in the Octupole 4D-Space

In this section we will limit ourselves to discussing the properties of the potential
energy surfaces in the 4D octupole deformation space. Ignoring the other shape degrees
of freedom is justified in the present case by the fact that the usually leading quadrupole
deformation components, λ = 2, are absent in many non-negligible nuclear ranges of
nuclei with the consequence that the leading role is overtaken by the next multipole
λ = 3 with µ = 0, 1, 2, 3, wherefrom the dimension of the considered space equal 4 –
rather than 2 for the quadrupole deformations.

We will begin with the usual 2D projections out of the originally 4D space within
which our calculations of the potential energies are performed. It follows that for the 4D

151



6 Exotic Shape Symmetries in Heavy and Super-Heavy Nuclei: Results

octupole space considered we have 6 independent combinations of any two octupole
deformations. Consequently, we will deduce the physics information of interest by
comparing the corresponding six projections. This will bring us to posing a number of
problems encountered in this type of analysis.

Results presented in fig. (6.4.1) show rather rich structures composed of 2 to 4
minima separated by the potential barriers of the order of 1 MeV, whereas the maxima
in the centres of the landscapes corresponding to the spherical shapes indicate that
the system chooses non-spherical configurations by gaining in this way of the order
of 2.5 MeV in the case of the (α30, α31) combination and about 3.5 MeV in all other
combinations.

In contrast, results presented in fig. (6.4.2) in which the minimisation over the two
other available deformations were performed, show essentially flat-bottom potential
landscapes contrasting with the preceding figure showing rather rich structures.

It becomes clear that the comparison of the results in figures (6.4.1) and (6.4.2)
warns us about significant differences between physical consequences and theory pre-
dictions implied by differences between the compared structures. In particular: It is
expected that the octupole collective vibration energies are of the order of 1 MeV.
The presence of the barriers of the order of 1 MeV separating the discussed minima
will result, in terms of the solutions of the collective Schrödinger equation, in the low
lying parity-doublet excitation patterns whereas the absence of those barriers will lead
more to the vibrator type (harmonic oscillator) excitation patterns. It becomes clear
that we will need to address the issue of the ‘true physics’ behind the two-dimensional
reduction to produce the 2D graphical illustrations (maps).
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Figure 6.4.1 – Comparison of the 6 total energy 2D projections with the octupole-
octupole (α3µ, α3µ′) combinations for 218Pb with octupole magic number N = 136. At
each given 2D-point visible on the plot the remaining two deformations are set to 0.
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Figure 6.4.2 – Similar to the preceding one but here at each (α3µ, α3µ′) deformation
point the minimisation over the remaining two octupole deformations (α3µ′′ , α3µ′′′) is
performed. We conclude from comparison of the shown diagrams that the local minima
present on the 2D projections in the preceding figure vanish in the present case.
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Figure 6.4.3 – Similar to the preceding ones, but with the energy scale unit decreased
by a factor of 10 in order to show the ’fine structures’ and the corresponding symmetry
patterns of the diagrams. Deformation ranges on the axes are shorter (factor of 2).
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It will be instructive to return to the illustration with the minimisation option but
with the ‘magnifying glass’ in that we multiply the energy scale by a factor of 10. In
this way we may address the issue of the effective flatness of the studied potential
landscapes, the possible presence of fluctuations and their amplitudes, and, most im-
portantly, trying to deduce the physical interpretation of the obtained final images.
Results shown in fig. (6.4.3) show various structures but with the much smaller ampli-
tudes of variation, of the order of a few hundreds of keV, markedly below the expected
octupole vibration energies and therefore without direct impact on the solutions which
we are interested in.

Inherent Drawbacks of the ‘Usual’ 2D Minimisation Algorithms. Clearly,
the minimisation algorithm, which to our knowledge has been used in the majority of
the published articles cannot be accepted as the final solution even if its application
can provide some useful schematic / approximate estimates. Indeed, according to the
discussed algorithm, at each (α3µ, α3µ′) point we look for the absolute minimum by
minimising over the whole plane spanned by the two partner variables (α3µ′′ , α3µ′′′).
This means that we repeat independently for each point (α3µ, α3µ′) analysis of the
full 2D map in variables (α3µ′′ , α3µ′′′) with all the local minima and other structures
varying from one original point (α3µ, α3µ′) to another. Let us emphasise that by doing
so we do not control possibly drastic ‘jumps’ in the deformation sub-space (α3µ′′ , α3µ′′′)
appearing as a result of smooth moving from one (α3µ, α3µ′) to its neighbour.

Consequently it may happen, that even if the so obtained final 2D landscapes in
terms of (α3µ, α3µ′) may look smooth, in reality, they will hide uncontrolled deformation
jumps (discontinuities) in the (α3µ′′ , α3µ′′′) subspace, which in any case are unphysical,
but occasionally may become unacceptably large.

As it happens, the 2D projections from 4D nuclear potential energies may provide
useful qualitative information about the predicted structures, such as global properties
of the nuclear path to fission, deducing predictions about mass-asymmetric vs. mass-
symmetric fission properties or addressing the large amplitude oscillations influenced
by possible deformation-flatness of the potential landscapes.

This brings us to the need of searching for alternative solutions, the subject which
will be treated next.

6.4.2 Quasi-Classical Analysis in the Full 4D Octupole Space

One of the central problems we are interested in is not so much a graphical illustra-
tion of the 2D projections, but rather constructing the physical paths of the motion in
the multidimensional spaces which – starting from a given point selected by a physicist
– leads the system to another deformation point in the studied space. In addition, we
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will often be interested in estimating quantum-mechanical transitions probabilities.

In classical physics, the Euler-Lagrange approach (cf. e.g. ref. [53]) provides a solu-
tion to this kind of a problem by formulating differential equations, which allow one to
find an n-dimensional trajectory of the motion in the space of generalised coordinates
{qi} and velocities {q̇i} for i = 1, 2, ..., n. These differential equations are obtained
with the help of the variation/minimisation of the action integral employing trajecto-
ries that connect the initial and the final points, Qin and Qfin, respectively. One may
say that the physical solution-trajectory is obtained by selecting among the infinity of
trajectories passing through the initial and final points – the one minimising the action
integral.

In this project we are going to be more interested in a quasi-classical approach
to the quantum problem of probability of penetration of multi-dimensional potential
barriers known under the name of Wentzel-Kramers-Brillouin (WKB) approximation,
cf. for instance refs. [13, 53]. This approach will be applied to the octupole space of
interest with dimension n = 4 and with the correspondence qi ↔ α3µ.

Traditionally the WKB potential barrier penetration problem is formulated for a
given energy of the system, E, by specifying the so-called entrance-, and the exit
points, here denoted Q1 and Q2. The trajectory connecting these two points, q = q(s),
is considered known; s is a real argument, which can be chosen as the curve length.
The probability of the barrier penetration, P1→2(E), is then given by

P1→2(E) = exp
−2

∫ Q2

Q1

√
2m∗
~2

[
V [q(s)]− E

]
ds

 , (6.4.1)

where m∗ represents effective inertia of the system. In principle, this simplified expres-
sion is applicable for any given continuous trajectory q(s).

Applying the above generic WKB expression of the barrier transmission probability
for a nuclear system requires specifying the two points of interest, Q1 and Q2, which
in our case will correspond to some potential minima selected by the physicist in
the 4-dimensional octupole deformation space, and a known connecting trajectory.
Consequently, we will need to have at our disposal an algorithm constructing the
multi-dimensional trajectories of interest. In this context, we will apply the so called
Dijkstra algorithm, ref. [54], which can be seen as a chapter of the Graph Theory, a
branch of Applied Mathematics.

6.4.3 A Short Description of the Dijkstra Algorithm

In what follows we will present briefly the Dijkstra algorithm, designed to construct
a predefined form of the distance, e.g. the shortest one, d, between two points, Q1
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and Q2, in an n-dimensional space spanned by variables {qi}, corresponding to the
deformation parameters {qi} ↔ {αλµ}, to adapt the notation to our problem of nuclear
motion.

A graph is by definition an ensemble of, say N points, called vertices and of the
corresponding edges connecting pairs of vertices. Some or all the points are connected
by paths that are composed of edges and it is assumed that each edge has attributed
a positive number called length, alternatively, weight. A tree is defined as a graph
with one and only one path between every vertex. Dijkstra algorithm solves two basic
problems:

1) Constructing a tree with minimal total length among N vertices,
2) Finding a path with minimal total length between two points of interest.

In the present content, the vertices refer to the deformation points defined by 4
coordinates {α30, α31, α32, α33}, alternatively, deformation mesh. We will be looking
for the shortest path problem applying the graph theory algorithm to find the shortest
path from one minimum to another, (better: the maximum WKB probability path
connecting two given minima), ref. [55]. Our problem of interest belongs to the second
class of the above mentioned sequence.

Our geometrical deformation space forms a 4D hyper-cube with the 4 coordinates
α3µ=0,1,2,3 ∈ [−0.3, 0.3] and with the step ∆α3µ = 0.025. Consequently, the total
number of vertices is Nv = 390625 and the graph has Ne ≈ N2

v = 152 587 500 000 ≈
1.5 ∗ 1011 connecting edges. The single 4D-cell related distances of the smallest 4D
hyper-cubes in terms of Pythagorean relations are

∆1α = 0.025, (6.4.2)
∆2α =

√
2× 0.0252 = 0.0353, (6.4.3)

∆3α =
√

3× 0.0252 = 0.0433, (6.4.4)
∆4α =

√
4× 0.0252 = 0.050, (6.4.5)

where ∆1α is just a step along any of the 4 axes, ∆2α is the length of the diagonal
of an elementary square on any of the 2D planes, ∆3α is an analogue in the 3D space
referring to the elementary (smallest possible) cube and ∆4α yet another generalisation
to the smallest 4D hyper-cube.

The local minima of the 4D potential energy can be determined numerically from
the calculated Strutinsky results. Our goal is to determine, which minima are best
stabilised by the surrounding barriers. For this purpose, for any given pair of candidate
minima, we determine with the help of the Dijkstra algorithm, the 4D paths with
the smallest barrier-penetration between any two minima (the largest transmission
probability) as the best estimate of the stability.
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In the construction of our computer program, we divide the full trajectory into the
smallest steps possible to construct the pre-calculated mesh of octupole deformation
points. Consequently, the WKB potential barrier penetration in eq. (6.4.1) will be
formed by summing up the contributions to the calculated integral of every pair of
vertices, which are treated as the limit points Q1 and Q2:

∆P1→2 =
∫ Q2

Q1

√
V̄ − E ds, (6.4.6)

in which

V̄
df.= 1

2 [V (Q1) + V (Q2)] . (6.4.7)

In what follows we will employ the Dijkstra shortest-path search algorithm introduced
in ref. [54] to find the maximum WKB probability paths, which connect two local
minima. One can find examples of the 2D application of the Dijkstra algorithm in
ref. [56], which employed the algorithm to describe the fission process for some heavy
nuclei.

6.4.4 Typical Results Obtained Using Dijkstra Algorithm

According to the calculations of the total nuclear potential energy, it is straightfor-
ward to find the coordinates of the local minima, which are considered as the starting
points in the Dijkstra shortest-path search algorithm.

In order to illustrate the path variation between any two minima, we select two par-
ticular minima, one corresponding to the lowest energy state on the energy projection
of (α30, α32) and another one on the projection (α30, α33), cf. figure (6.4.3). Suppose
the initial deformation is selected as the one to represent the tetrahedral symmetry
Q1 = {α30, α31, α32, α33} = {0.0, 0.0, 0.1, 0.0}, and the final point of the trajectory is
chosen at Q2 = {α30, α31, α32, α33} = {−0.10, 0.0, 0.0, 0.075}. The illustration of the
trajectory with the maximum probability is shown in Figure (6.4.4), where 4 consec-
utive diagrams illustrate the corresponding projections of the trajectory in terms of 4
octupole deformations. Comparison implies that the trajectory is contained in the 4D
hyper-cube defined by −0.1 ≤ α3µ ≤ +0.1.
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Figure 6.4.4 – Illustration of the application of the Dijkstra algorithm to find a 4D
trajectory connecting two minima. The starting deformation has been selected as Q1 =
{α30, α31, α32, α33} = {0.0, 0.0, 0.1, 0.0} and the final one is Q2 = {α30, α31, α32, α33} =
{−0.10, 0.0, 0.0, 0.075}, cf. the lowest energy minimum (red crosses) on the energy pro-
jections (α30, α32) and (α30, α33) in figure (6.4.3).

Discussion and Conclusions from the Application of the Dijkstra Algorithm.
Figure (6.4.5) illustrates the potential energy along the maximum probability trajec-
tory. The result shows that the variations of the potential energy between the discussed
minima do not bypass 100 keV, a result which is comparable to the results with the
total energy maps in the figure (6.4.3). The flatness of the effective potential energy is
confirmed both within the 2D projection of the potential energy surface with minimi-
sation and with the Dijkstra path algorithm.

Observations related to the two-dimensional projections without minimisation:

• The discussed projections show rather rich structures with numerous min-
ima separated by the potential barriers of the order of 1 MeV.

• The energy barriers at the central zone of the projections are of the order
of up to 4 MeV for 5 among 6 projections, suggesting that the spherical
symmetry is strongly unfavored.
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In contrast, the 4D behaviour of the nuclear potential represented in terms of six
2D projections with minimisation resembles a 4D flat bottom potential. The results
obtained with the Dijkstra approach are qualitatively comparable but quantitatively
different. In particular, they are free from the discontinuity problem the latter un-
avoidable when employing the minimisation algorithm.
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Figure 6.4.5 – Illustration of potential energy along the Dijkstra path.

6.5 Notion of Dynamical Equilibrium Deformations

The method of Strutinsky which, in the light of many publications can be considered
a realistic theoretical tool, provides the total energy surfaces with a number of minima
separated by the barriers. The behaviour of the potential in the vicinity of the minima
may vary from nucleus to nucleus and it becomes clear that the nuclear behaviour is
expected to be significantly different when the minima are surrounded by flat energy
zones as compared to the minima surrounded by steep potential walls. To advance with
quantitative estimates of physical differences generated by various potential energy
scenarios we will need to address the quantum description of the collective motion
with the specifically adapted Schrödinger equation. Such an adaptation is provided by
the so-called collective model of Bohr and we intend to present briefly its principles
and results of applications.
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6.5.1 A Brief Description of the Collective Model of Bohr

The model of Bohr is based on collective Hamiltonian, which is usually written in
the following compact form

Ĥcol. = T̂col. + V̂col., (6.5.1)

in which the collective kinetic energy operator T̂col. is constructed with the help of
the collective inertia tensor discussed below, whereas the collective potential, V̂col., is
obtained in this project employing the macroscopic-microscopic method of Strutinsky,
as discussed in details in the preceding sections. The kinetic energy operator is often
defined with the help of the Laplacian ∆, written down in the curvilinear space, whose
curvature is defined with the help of the inertia tensor Bmn(q). To shorten the notation
the ensemble of our collective coordinates {αλµ} is represented in a compact manner by
the symbol q. Following the Bohr model, with the notation adapted to our applications,
cf. e.g. ref. [57], the collective kinetic energy operator can be written down as follows

T̂col. = −~2

2 ∆ ↔ ∆ df.=
d∑

m,n=1

1√
|B(q)|

∂

∂qn

(√
|B(q)|Bnm(q) ∂

∂qm

)
, (6.5.2)

where |B(q)| denotes the determinant of Bnm(q) with m,n = 1, 2, . . . N , and where
N denotes the dimension of the space of the collective variables αλµ selected for the
calculations.

There exist modern methods of calculating the tensor of inertia using the nuclear
mean field theory. The interested reader may consult the latest and most advanced
study of this subject in ref. [57]. From the mathematical and/or numerical construction
view points, we may consider

Bmn = Bmn(q ↔ αλµ) for m,n = 1, 2, . . . N , (6.5.3)

as an ensemble of known functions. Solving the resulting collective Schrödinger equa-
tion

ĤcolΨcol,ρ(q) = Ecol,ρΨcol,ρ(q), with ρ = 1, 2, 3, . . . (6.5.4)

will provide the collective eigenvalues {Ecol,ρ} and the corresponding eigenfunctions
representing the amplitudes of probability of finding a nuclear system at the deforma-
tion q ↔ αλµ. We will discuss certain simplified solutions of the discussed problem to
illustrate the typical conclusions, which can be deduced when the analysis of the static
equilibrium deformations deduced from the minima of potential energy surfaces is re-
placed by the analysis of the most probable deformations, sometimes called dynamical
equilibrium deformations.
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6.5.2 Solutions of Collective Model of Bohr: Discussion

We are not going to address any multidimensional analysis of the collective model
just schematised. Instead we will concentrate on the one-dimensional approximations,
which will be sufficient to draw the main physical conclusions of interest for the present
project.

An example of the one-dimensional total energy calculations for 218Pb, N = 136,
is presented in fig. (6.5.1), top, showing the potential energy as a function of octupole
pear-shape deformation α30, all other deformations set to zero in this case. The double
octupole minima, here at α30 ≈ ±0.13, are separated by an energy barrier of the
order of 2 MeV. The ground-state and the first excited state energies are obtained by
solving the 1D collective Schrödinger equation assuming for simplicity a constant mass
parameter, Bmn(q)→ Bmass = 200~2 MeV−1, according to the notation adopted in our
graphical illustrations.

The corresponding probability density functions are shown in fig. (6.5.1), bottom.
The probability density functions of the ground-state solution with energy E0 and the
first excited state solution, E1, show characteristic asymmetry of the solutions. It is
worth mentioning that the energies of E0 and E1 are nearly degenerate. The so-called
‘root-mean-square’ estimate, αeq

rms, the latter taken as the measure of the most probable
equilibrium deformation is defined as

αeq
rms =

√
〈α2〉 df.=

∫
Ψ∗(α)α2Ψ(α) dα. (6.5.5)

163



6 Exotic Shape Symmetries in Heavy and Super-Heavy Nuclei: Results

12

En
er

gy
[M

eV
]

Fi
xe

d
de

fs
.:
α

2
0
=

0
.0
0
0
,α

m
in

2
2

=
0
.0
0
0
,α

m
in

4
0

=
0
.0
0
0

E
ne

rg
y

C
ho

ic
e

=
E
(F

Y
U

)
+

Sh
el

l[e
]+

C
or

re
la

ti
on

[B
C

S]

Potential Energy: Macro-Micro vs. HO

218
82Pb136

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3
Deformation α30

-3

0

3

6

9
EHO

ETot

EHO

ETot

E0 = 0.943, E1 = 0.998 MeV

Fi
xe

d
de

fs
.:
α

2
0
=

0
.0
0
0
,α

m
in

2
2

=
0
.0
0
0
,α

m
in

4
0

=
0
.0
0
0

E
ne

rg
y

C
ho

ic
e

=
E
(F

Y
U

)
+

Sh
el

l[e
]+

C
or

re
la

ti
on

[B
C

S]

Probability Density Functions

218
82Pb136

Bmass =200 h̄2MeV−1

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3
Deformation α30

0

2

4

6

8

10

12

14

Ψ
∗ co

ll
Ψ

co
ll

[0.14]

[0.11]

E1

E0

Figure 6.5.1 – Top: Illustration of the potential energy for 218Pb as a function of octupole
deformation α30, ETot (solid line). For comparison, the harmonic oscillator potential
EHO, dashed line, serving as the basis generating potential is shown. Bottom: Resulting
probability density functions for the ground-state, denoted E0 and the first excited state,
denoted E1. The labels in square brackets give αeq

rms representing the most probable
(dynamical) equilibrium deformation, cf. eq. (6.5.5).

It follows from the information at the bottom of figure (6.5.1) that the dynamical
equilibrium deformations, αeq

rms = 0.11 and 0.14 for the ground-state and the first
excited state, respectively, are relatively close to the static equilibrium deformations
α30 ≈ 0.13 in the discussed case.
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Figure 6.5.2 – Illustration of the potential energies, ETot (solid lines), resulting from
the macroscopic-microscopic method as functions of octupole deformations α3µ,µ=0,1,2,3,
in the left column. The corresponding probability density functions for ground-, and
first excited states are presented in the right column.

165



6 Exotic Shape Symmetries in Heavy and Super-Heavy Nuclei: Results

Figure (6.5.2) illustrates comparison of potential energies, ETot, as functions of
the octupole deformations α3µ=0,1,2,3, left column, and the related probability density
functions, right column. The energy barriers separating double minima happen to be
comparable in the α30 and α32 cases, nearly 3 MeV each, and similarly for the α31 and
α33 cases, comparable, nearly equal 2 MeV each. The probability density functions show
similarities pairwise: in the α30 compared to α32 case, and analogously in the other
two cases. However, the dynamical equilibrium deformations remain close both for
the ground-, and the first excited states and close to the respective static equilibrium
deformations. Let us notice that the calculated energies of the collective solutions
happen to be significantly lower than the barriers separating the two minima of about
3 MeV in the α30 and α32 cases and remain pairwise nearly degenerate: E0 = 0.943
and E1 = 0.998 for α30 and E0 = 1.377 and E1 = 1.447 for α32 deformations.

It follows from the discussed illustrations that variations of the barrier heights, even
if seemingly not very significant, may lead to systematic differences in terms of the level
degeneracies and behaviour of the wave functions (the latter may imply differences in
predictions of the reduced transition probabilities which, however, are not our subject
in the present project). To examine closer the impact of the variation in the separating
barrier heights we are going to compare the effects of this mechanism by artificially
setting the barrier heights at the levels of approximately 5, 2 and nearly 0 MeV, as
illustrated in fig. (6.5.3), left column, compared to the resulting solutions, right column.

When decreasing the barrier heights from 5 MeV to 2 MeV, dynamical equilib-
rium deformations do not change in any significant manner. Comparing the analogous
change in the case of 5 MeV vs. 0 MeV, shows that the dynamical equilibrium defor-
mation decreases by about 30% in the case of the ground-state configurations and by
about 40% in the case of the 1-phonon solutions. Let us notice that an approximate
degeneracy of the two solutions remains as along as the barriers separating the two
minima are significantly higher than the energies E0 and E1. At the vanishing barri-
ers, the degeneracy between the two compared energies vanishes totally. We arrive at
the following conclusions:

1) The dynamical equilibrium deformations decrease with decreasing heights
of the barriers separating the doublet-minima. Importantly, even for totally
vanishing barriers (flat bottom potentials) the dynamical equilibrium defor-
mations remain at the level of 60-to-70% of the original ones calculated with
the very high barrier separations.

2) These are the dynamical equilibrium deformations corresponding to the
quantum solutions of the collective motion problem which should be taken
into further consideration.
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6.5.2 Solutions of Collective Model of Bohr: Discussion

3) Importantly, in the case of the flat potential wells the dynamical equi-
librium deformations might be quite far from the mathematical minimum
points.

4) Most importantly: The exotic symmetries will be manifested in subatomic
physics even in the case of flat potential landscapes extending into the exotic
αλµ-zones.
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Figure 6.5.3 – Illustration of the potential energy of ETot (solid lines, left column) with
energy barriers of the order 5 MeV (top), 2 MeV (middle) and 0 MeV (bottom), and
the corresponding probability density functions for the ground-state and the first excited
states presented in the right column.
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6 Exotic Shape Symmetries in Heavy and Super-Heavy Nuclei: Results

6.6 Coexisting Octupole Shape Symmetries

In the light Actinide region, the ground-state equilibrium deformations contributed
by both quadrupole and octuple degrees of freedom have been discussed in the liter-
ature both from the experimental and theoretical view points. To cite some exam-
ples, stable octupole shapes have been observed experimentally in the Actinides in
220Rn, and furthermore in 222,224,228Ra [49][50], as well as in 228Th [58]. These proper-
ties have been studied employing numerous theoretical approaches, i.e., macroscopic-
microscopic model [59], Hartree-Fock-Bogoliubov (HFB) method with Gogny density
functional [52, 60, 61], but also within the covariant density functional theory [62],
with the relativistic energy density functional [63], using the algebraic methods such
as interacting boson approximation (IBA) [51] and references therein as well as with
the geometrical collective models [64, 65].

The possible presence of the high-rank symmetries, tetrahedral and octahedral ones,
has been predicted in a series of articles using the realistic phenomenological mean-
field calculations, cf. refs. [26, 29, 33, 35]. According to ref. [26] tetrahedral (octupole
deformation α32) magic numbers are predicted at the proton and neutron numbers 34,
40, 56, 64, 70, 90, 112 and 136, suggesting the presence of strong shell effects in the
Zirconium, Rare-Earth and Actinide regions. Nuclei with exact tetrahedral symmetry
have all deformations equal to zero except for the tetrahedral degrees of freedom. From
the results presented in the preceding sections of this document it follows that the
tetrahedral and octahedral symmetry minima could be accompanied by the presence
of competing octupole shape exotic deformations and we could expect the coexistence
of the specific rotational bands generated by these special symmetries.

In this section, we intend to review the properties of the ground-state equilibrium
deformations obtained with the help of the phenomenological mean-field Hamiltonian
with the optimal universal parametrisation as discussed in the first chapter. We will
focus on the nuclei in which the pear-shape and tetrahedral symmetries have been
predicted in the past, i.e., those with neutron numbers close to the magic number
N = 136 and proton numbers centred around Z = 90.

We begin with the illustration of the single nucleon shell effects impacted by the
corresponding octupole deformations. Characteristic results are presented in the dia-
grams in fig. (6.4.1) for the protons, top, and the neutrons, bottom. As one can see
from the figure, the proton single-particle energy spectra are dominated by the gaps at
Z = 90, together with Z = 100 and Z = 110 in the case of the tetrahedral-symmetry
deformation, the corresponding sizes of the gaps are about 1.5 and 2 MeV, respectively.
The analogous shell effects are significantly weaker in the case of the pear-shaped de-
formations, with main gaps localised at Z = 92 and Z = 100.
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Figure 6.6.1 – Proton single-particle energies (top) and neutron single-particle energies
(bottom) as functions of the octupole deformations α30 and α32. All other deformation
parameters are set to zero. For interpretation see the text.
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Compared with those, the neutron gaps presented in the figure are significantly
bigger, approaching about 3 MeV at N = 136, which confirms the neutron domination
in the octupole deformations effects on the nuclei in this region.

As discussed in refs. [51, 52] and references cited therein, in light actinide nuclei
around Radium and Thorium, some well deformed quadrupole shapes are expected.
In the following figures (6.6.2) to (6.6.7), we compare the potential energy surfaces for
N = 136 isotones with proton numbers varying between Z = 82 and 92 by using the
α3µ=0,2 vs. α20 representation. The underlying potential energies were obtained by the
corresponding projections from the 4-dimensional mesh with {α20, α30, α32, α40} defor-
mations. The series of illustrations is constructed in such a way that we first compare
the landscapes characterising the competition between α30 and α32 deformations using
2D (α30, α20) and (α32, α20) representations, top and middle diagrams, followed by the
projections (α32, α30) demonstrating in such a way a direct competition between these
two octupole degrees of freedom.

With increasing proton number, typical landscapes combining vanishing quadrupole
deformation with the non-zero octupole components evolve into a combination of non-
vanishing both quadrupole and octupole components. In particular, a flatness of the
potential energy in terms of the pear-shape deformation around quadrupole deforma-
tion α20 ≈ 0.0 is visible from figures (6.6.5) to (6.6.7). However, in view of the preceding
discussion we may conclude that measurable effects will be compatible with the pres-
ence of the corresponding deformations due to the just demonstrated properties of the
dynamical equilibrium shapes.
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Figure 6.6.2 – 2D projections of the potential energies on the deformation planes dis-
played, obtained for 218Pb from the 4D mesh involving {α20, α30, α32, α40}.
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Figure 6.6.3 – Similar to the preceding one but for 220Po nucleus.172
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Figure 6.6.4 – Similar to the preceding one but for 222Rn nucleus. 173
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Figure 6.6.5 – Similar to the preceding one but for 224Ra nucleus.174
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Figure 6.6.6 – Similar to the preceding one but for 226Th nucleus.
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Figure 6.6.7 – Similar to the preceding one but for 228U nucleus.
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α 2, 0 = 0.15
α 3, 0 = 0.16

Deformations:

α 3, 2 = 0.15

Deformation:

Figure 6.6.8 – Illustrations of the nuclear surfaces corresponding to the typical equi-
librium deformations discussed. Top: for (α20 ≈ 0.15, α30 ≈ 0.16). Bottom: for
(α20 = 0.0, α32 ≈ 0.15).
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6.7 Effects of λ > 2 Deformations in Heavy Nuclei

It is well known that among 3000 nuclei known experimentally, a great majority
are deformed. One of the important questions in studying the fission process and other
properties of the ground-state is how many various multipole deformations should
be employed in order to obtain a realistic description. Since the shell structures are
generally sensitive to deformation, various deformation degrees of freedom should be
treated as accurately as possible in describing the nuclear structure. For example,
selected higher-order deformations, including β6 were discussed in refs. [66][67], and
the authors stressed that still higher-order deformations could have a certain impact
on studying heavy nuclei.

The nuclear shapes are described with the help of the spherical harmonics and the
related multipole deformation parameters. To study the stability and the symmetry
properties of the heavy nuclei we take into account the multipole orders with λ ≤ 8.
Using the macroscopic-microscopic approach with the phenomenological mean-field
Woods-Saxon Hamiltonian and the universal parameters adjusted for 8 doubly magic
nuclei, we review the effects of higher-order deformations in the nuclear range Z ∈
[92, 112] and N ∈ [148, 168].

6.7.1 4D Deformation Spaces: Particular Test-Selections

In this section, we are going to present a series of ‘pedagogical’ illustrations of 2D
potential energy surfaces for selected combinations of variables obtained by projections
from the original sets of results calculated in 4D spaces. Examples of 4D sub-spaces
will be constructed by selecting the quadrupole set {α20, α22} as the standard reference
supplemented with selections of extra sub-sets of multipole deformations λ ≤ 8.

Let us begin by recalling the standard conventions used to describe the quadrupole
deformations {α20, α22}, which are often presented with the help of relations involving
alternative variables {β, γ} and/or {x, y}:

α20 = β cos(γ), (6.7.1)

and
α22 = 1√

2
β sin(γ), (6.7.2)

cf. for instance, ref. [68], where β is referred to as elongation parameter and angular
variable γ as a measure of quadrupole triaxiality. In our project we use the equivalent
Cartesian coordinates {x, y}, which are defined as follows

x = β cos(γ + 30o), (6.7.3)
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and
y = β sin(γ + 30o). (6.7.4)

To study the impact of selected multipole deformations with λ ∈ [3, 8] we have cho-
sen to present the 2D projections on the {x, y}-plane each time changing the extra
2 deformations over which the minimisations are performed. This choice offers some
possibilities for comparing the effects of the extra degrees of freedom considered as
complementary with respect to the leading, quadrupole ones.

Figure 6.7.1 – Illustration of the nuclear shapes expressed with the help the coordinates
{x = β cos(γ+30o), y = β sin(γ+30o)}. Nuclear prolate and oblate shapes are defined by
appropriately specifying γ: γ = 0o, 120o and −120o represent axially-symmetric prolate
shapes with different orientations with respect to a fixed Cartesian reference frame. By
specifying γ = ±60o and −180o one obtains a series of axially-symmetric oblate shapes
with varying roles of the three reference axes.

At each of those {x, y} points, the energies are minimised over the remaining two de-
formations. The 4D spaces are chosen (we define below the ranges of each deformation
and the corresponding deformation steps) as follows:
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• Deformation Mesh No.1:

– x ∈ [0.0, 0.8], ∆x = 0.025;

– y ∈ [−0.4, 0.4], ∆y =0.025;

– α30 ∈ [−0.3, 0.3], ∆α30 =0.025;

– α40 ∈ [−0.3, 0.3], ∆α40 =0.025.

• Deformation Mesh No.2:

– x ∈ [0.0, 0.8], ∆x =0.025;

– y ∈ [−0.4, 0.4], ∆y =0.025;

– α40 ∈ [−0.3, 0.3], ∆α40 =0.025;

– α42 ∈ [−0.3, 0.3], ∆α42 =0.025.

• Deformation Mesh No.3:

– x ∈ [0.0, 0.8], ∆x =0.025;

– y ∈ [−0.4, 0.4], ∆y =0.025;

– α40 ∈ [−0.3, 0.3], ∆α40 =0.025;

– α44 ∈ [−0.3, 0.3], ∆α44 =0.025.

• Deformation Mesh No.4:

– x ∈ [0.0, 0.8], ∆x =0.025;

– y ∈ [−0.4, 0.4], ∆y =0.025;

– α40 ∈ [−0.3, 0.3], ∆α40 =0.025;

– α60 ∈ [−0.3, 0.3], ∆α60 =0.025.

• Deformation Mesh No.5:

– x ∈ [0.0, 0.8], ∆x =0.025;

– y ∈ [−0.4, 0.4], ∆y =0.025;

– α40 ∈ [−0.3, 0.3], ∆α40 =0.025;

– α80 ∈ [−0.3, 0.3], ∆α80 =0.025.

Our limited selection of deformation parameters used for comparisons may seem arbi-
trary, but it summarises a richer choice checked within the project and illustrates, even
if to some limited extent, the roles of shape components with increasing rang λ and/or
with varying the kind of triaxiality in the shape parametrisation.
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6.7.2 Results of Multi-Dimensional Mesh Calculations

We begin by showing in figure (6.7.2) an example of the total nuclear potential
energy for 248Cf nucleus projected on (x, y) plane and minimised over {α30, α40} de-
formations. For convenience the nuclear shape variation within the same deformation
space is shown on top of the diagram. By combining the two, fig. (6.7.2) illustrates di-
rect interpretation in terms of the nuclear geometry of the contour plots defined within
the {x, y} coordinate frame. Still in reference to fig. (6.7.2), top, the up-sloping dashed
straight line represents a collection of the axial prolate shapes (γ = 0o), whereas the
down-sloping one represents a collection of oblate shapes (γ = −60o). Similarly, the
prolate (γ = −120o) and oblate (γ = +60o) axes represent the axial symmetry shapes
as indicated.

Let us remind the reader that for pure quadrupole deformations, presenting the
2D projections in the full x > 0 half-plane may seem superfluous since as one can
easily demonstrate, the three γ-sectors limited by the dashed straight lines contain
repetitions of the same information. Indeed, the ∆γ = 60o sectors separated by the
lines γ = 0o and γ = −60o are mutually symmetric and the related energies in the
sectors remain in one-to-one correspondence. However, when an extra deformation
is introduced (here we introduce each time 2 deformations with respect to which the
energies are minimised) the symmetry just mentioned is broken.
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Figure 6.7.2 – Illustration of the nuclear shapes within Cartesian deformation coordi-
nates {x = β cos(γ + 30o), y = β sin(γ + 30o)} (top). The nuclear potential energy
surface for 248Cf projected on the {x, y} plane and minimised over {α30, α40}, mesh
No.1 (bottom). Straight dashed lines represent the shapes with axial symmetry, while
the dashed circles refer to increasing quadrupole deformation β.
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6.7.2 Results of Multi-Dimensional Mesh Calculations

In figure (6.7.3) we present a comparison of the total nuclear potential calculations
for 248Cf nucleus selected as an example. The potential energy surfaces are projected
on the {β, γ} ↔ {x, y} plane and minimised over the deformations: (a) {α30, α40}, (b)
{α40, α42}, (c) {α40, α44}, (d) {α40, α60} and (e) {α40, α80}.

We notice that the deformation of the ground-state equilibrium remains the same
in all the plots. The equilibrium deformation marked with the red cross, βth = 0.267
at γth = 0o, is in a very good agreement with the experimental value βexp = 0.285(74)
from ref. [2]. Remark in passing: The experimental quadrupole deformation β can
be obtained from the measured electric quadrupole reduced transition probabilities,
B(E2), between the ground-state and the first excited 2+ state using known empirical
expressions, cf. e.g. ref. [69]

β = 4π
3ZR2

0

[
B(E2)
e2

]
; (6.7.5)

Z is the atomic number, R0 = 1.2A1/3 the nuclear radius and e is the electric charge
unit.

Comparing the energy minima at the potential energy surfaces shown in fig. (6.7.3),
we observe that in the case (d) the minimum energy (marked at each diagram at the
bottom, right), Emin = −8.70 MeV, is lower by 1.7 MeV as compared to the reference
value Eref

min = −7.02 MeV (the latter visible in the preceding 3 diagrams), when defor-
mations α40 and α60 were used for the minimisation. The resulting equilibrium values
are αmin

40 = 0.05 and αmin
60 = −0.05. Let us notice that in the case of the minimisation

over α40 and α80, case (e), the ground-state minimum is also lower (by approximately
300 keV) than the original reference value Eref

min = −7.02 MeV, indicating that α80-
minimisation has some impact on the ground-state energy. At the ground-state, the
octupole deformation αmin

30 = 0, and the components of hexadecapole deformations
αmin

42 = 0 and αmin
44 = 0, which indicates that these deformations do not influence the

stability of the ground-state for this particular nucleus. Overall, these observations
confirm that the higher-rank deformations α60 and α80 may have a certain importance
for modeling of the nuclear ground-states in the discussed heavy nuclei.

Let us also notice the presence of a secondary minimum which appears at γ = −120o

axis, at the point which corresponds to another axial-prolate configuration with differ-
ent orientation with respect to the reference frame and different contributions of the
non-quadrupole deformation components. Another secondary minimum corresponds
to a very large elongation, β ≈ 0.65, referred to as super-deformed. Both of these
secondary minima change only very little from one projection to another visible in the
figure.

The contour maps shown in the figure can be considered characteristic for several
nuclei in this mass range as shown in the diagram (6.7.3).
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(a) Minimised over {α30, α40} (b) Minimised over {α40, α42}
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(c) Minimised over {α40, α44} (d) Minimised over {α40, α60}
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(e) Minimised over {α40, α80} (f) Behaviour characteristic for (Z,N) shown

Figure 6.7.3 – Total energy projected on the quadrupole deformation plane represented
by {x, y} coordinates, for 248

98 Cf. At each point the minimisation over: (a) {α30, α40},
(b) {α40, α42}, (c) {α40, α42}, (d) {α40, α60} and (e) {α40, α80} has been peformed.
The ground state minimum is predicted at αth

20 = 0.267 which is comparable with the
experimental result αexp

20 = 0.285(74) from ref. [2]. The energy maps shown can be
considered characteristic for the nuclei encircled in the diagram (f).
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6.7.2 Results of Multi-Dimensional Mesh Calculations

To compare in a more direct manner the effect of the axial deformations of rank
λ > 2 in the nuclei of interest, we illustrate the one-dimensional cuts in the form of
the energy curves as functions of quadrupole deformation α20 = β2 = β, shown in
fig. (6.7.4). These energy curves were extracted fixing γ = 0o in the potential maps in
fig. (6.7.3) taking the projections (a), (b), (d) and (e) with minimisation over {α30, α40},
{α40, α42}, {α40, α60} and {α40, α80}, respectively.
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Figure 6.7.4 – Illustration of the deformation energy cuts at γ = 0o. These curves are
extracted from the total potential energy maps in figure (6.7.3) including minimisations
over {α30, α40}, {α40, α42}, {α40, α60} and {α40, α80}, respectively.

The comparison shows that the energy curve including α60 minimisation generates
significantly deeper ground-state energy. To extend the comparison, we show similar
one-dimensional projection curves for a few isotopes of Cf nucleus (Z = 98) in figure
(6.7.5) and for N = 150 isotones in figure (6.7.6), respectively. Results for Z = 98
isotopes show that the effect of α60 decreases with increasing neutron number; the
effect is most pronounced at neutron numbers N = 150 and 152 and disappears around
N = 160. Similarly, the effect of α60 deformation for N = 150 isotones in figure (6.7.6)
shown for proton numbers Z ∈ [94, 106] is the most pronounced for Z = 102 and the
nearest neighbours.
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Figure 6.7.5 – Similar to the preceding one but for a series of isotopes of the Cf nucleus,
as indicated.

186



6.7.2 Results of Multi-Dimensional Mesh Calculations

244
94Pu150

Axial Deformation Energy Curves

Deformation β2

E
F
Y
U

m
a
cr
o
+
δ
E
sh

e
ll
+
δ
E
[B

C
S
]

co
rr
e
l
(M

eV
)

-6

-8

-10

0.70.60.50.40.30.20.10.0

4

2

0

-2

-4

αmin
α30α40

α40α42

α40α60

α40α80

.
246
96Cm150 Deformation β2

Axial Deformation Energy Curves

E
F
Y
U

m
a
cr
o
+
δ
E
sh

e
ll
+
δ
E
[B

C
S
]

co
rr
e
l
(M

eV
)

4

2

0

-2

-4

-6

-8

-10

0.70.60.50.40.30.20.10.0

αmin
α30α40

α40α42

α40α60

α40α80

.

248
98Cf150 Deformation β2

Axial Deformation Energy Curves

E
F
Y
U

m
a
cr
o
+
δ
E
sh

e
ll
+
δ
E
[B

C
S
]

co
rr
e
l
(M

eV
)

4

2

0

-2

-4

-6

-8

-10

0.70.60.50.40.30.20.10.0

αmin
α30α40

α40α42

α40α60

α40α80

.
250
100Fm150 Deformation β2

Axial Deformation Energy Curves

E
F
Y
U

m
a
cr
o
+
δ
E
sh

e
ll
+
δ
E
[B

C
S
]

co
rr
e
l
(M

eV
)

4

2

0

-2

-4

-6

-8

-10

0.70.60.50.40.30.20.10.0

αmin
α30α40

α40α42

α40α60

α40α80

.

252
102No150

Axial Deformation Energy Curves

Deformation β2

E
F
Y
U

m
a
cr
o
+
δ
E
sh

e
ll
+
δ
E
[B

C
S
]

co
rr
e
l
(M

eV
)

-6

-8

-10

0.70.60.50.40.30.20.10.0

-4

4

2

0

-2

αmin
α30α40

α40α42

α40α60

α40α80

.
254
104Rf150

Axial Deformation Energy Curves

Deformation β2

E
F
Y
U

m
a
cr
o
+
δ
E
sh

e
ll
+
δ
E
[B

C
S
]

co
rr
e
l
(M

eV
)

-6

-8

-10

0.70.60.50.40.30.20.10.0

4

2

0

-2

-4

αmin
α30α40

α40α42

α40α60

α40α80

.

256
106Sg150

E
F
Y
U

m
a
cr
o
+
δ
E
sh

e
ll
+
δ
E
[B

C
S
]

co
rr
e
l
(M

eV
)

Axial Deformation Energy Curves

Deformation β2

4

2

0

-2

-4

-6

-8

-10

0.70.60.50.40.30.20.10.0

αmin
α30α40

α40α42

α40α60

α40α80

.
258
108Hs150

Axial Deformation Energy Curves

Deformation β2

E
F
Y
U

m
a
cr
o
+
δ
E
sh

e
ll
+
δ
E
[B

C
S
]

co
rr
e
l
(M

eV
)

-6

-8

-10

0.70.60.50.40.30.20.10.0

4

2

0

-2

-4

αmin
α30α40

α40α42

α40α60

α40α80

.

Figure 6.7.6 – Similar to the preceding one but for a series of N = 150 isotones, as
indicated.
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We may conclude that among the axial multipole deformations with λ > 2
the impact of α60 on the ground-state energy minima is the strongest in
heavy and super-heavy nuclei discussed in our project.

6.7.3 Selected Ground-State Properties – Concluding Remarks

The energy values at the ground-states were obtained via total potential surface
calculations combining various multipole deformations. It turns out that in the test
accomplished the axial symmetry deformations α60 and α80 have the most significant
impact on the ground-state minimum energies.

To give a general picture of the properties of the ground-state energies, in figure
(6.7.7) we summarise the equilibrium energy values using (Z,N) representation. For
the heavy and super-heavy nuclei with 94 ≤ Z ≤ 112, we present here the energy
values obtained from the 3D-dimensional calculations (top) with the potential energies
projected on (β, γ) plane and minimised over (α40), and from the 4D-dimensional
calculation (bottom) where the minimisation deformations are {α40, α60}.

Figure (6.7.7) shows that the energy minima obtained minimising over α60 are by
1-2 MeV lower for the nuclei around Z ≈ 98− 110 and N ≈ 144− 160. It follows that
the higher-order, α80, allows to gain still a few hundreds of keV.
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Figure 6.7.7 – Ground-state energy minima calculated from 3D mesh projected on
the (β, γ) plane and minimised over α40 deformation (top), and the ones from 4D
mesh projected on the (β, γ) plane and minimised over α40 and α60 deformations (bot-
tom). White squares denote the experimentally confirmed existence limits (from NNDC
database).
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6 Exotic Shape Symmetries in Heavy and Super-Heavy Nuclei: Results

6.8 Exotic Symmetries in Super-Heavy Nuclei

Only 278 nuclei among about 3000 experimentally known today can be found in
nature. Scientific attempts to synthesise new elements beyond uranium were under-
taken since the early 1930’s. One of the fundamental questions about the existence of
nuclear systems, which intrigues nuclear physicists, concerns the limits of the existence
of nuclei, which can be found in nature or produced in the laboratory. In particular:
What are the biggest proton and neutron numbers leading to existing nuclear objects?
One of the limitations is caused by the nucleon binding: As soon as the neutron or
proton separation energies bypasses zero, Bn/p = 0, the existence of the correspond-
ing system becomes impossible. Another one is related to the balance between the
Coulomb repulsion and the nuclear binding determining the heights of the nuclear fis-
sion barriers. Vanishing of those barriers, Bf = 0, leads to vanishing of the nuclear
stability and thus existence as well. In other words: With the fission barriers tending
to zero, the nucleus losses its stability and can fission in very short times of T ≈ 10−19s,
whereas the limit of the existence of the chemical elements defined by the spontaneous
fission model is about T ≈ 10−14s, cf. e.g. ref. [70].

In 1955, J. A. Wheeler [71] attempted for the first time to search for the limitations
of existing nuclei with the mass values twice heavier than the element 256

100Fm156, which
was the heaviest element known at that time. The properties of these nuclei were
discussed in detail in 1958, cf. ref. [72]. The concept ‘super-heavy nuclei’ was used for
the first time at the conference on the Peaceful Uses of Atomic Energy, in Geneva,
in 1955, ref. [73]. Nowadays, super-heavy nuclei are referred to as elements beyond
Rutherfordium, Z = 104.

In the experimental research, the new generation of facilities such as GANIL1,
FRIB2, RIKEN3, HILAC4, SHIP5, and EXCYT6 etc., have served for many years to
explore the limits of stability of super-heavy nuclei. Between 1981 and 1992, the super-
heavy elements Z = 107 − 112 were discovered and identified at the GSI7 laboratory,
see ref. [74] and the references therein, where Z = 107 was the first new synthe-
sised element. Synthesis of the element Z = 113 was produced in RIKEN laboratory,
cf. ref. [75]. The recent experiments in Dubna have discovered the super-heavy nu-

1Grand Accelerateur National d’Ions Lourds, Accelerator Laboratory in Caen, France.
2The Facility for Rare Isotope Beams (FRIB), at Michigan State University.
3Institute of Physical and Chemical Research in Saitama near Tokyo, Japan.
4Heavy Ion Linear Accelerator at LBNL in Berkeley, California, later updated to the SuperHILAC.
5Separator for Heavy Ion reaction Products, velocity filter for fusion reaction products at GSI,

Darmstadt, Germany.
6Exotics with Cyclotron and Tandem is the development of a facility for producing and accelerating

exotic beams up to 8 MeV/amu. The laboratory is located in Catania, Italy.
7Gesellschaft für Schwer-Ionen-Forschung, Accelerator laboratory in Darmstadt, Germany.
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6.8 Exotic Symmetries in Super-Heavy Nuclei

clei Z = 114 − 118 and confirmed through hot fusion processes refs. [76–79]. Other
attempts to produce or synthesise the new elements with Z > 120 were discussed in
refs. [80–82].

On the theoretical side, although many collective properties can be reproduced by
the charged liquid drop model, the shell structures such as the spherical energy gaps
with proton and neutron numbers, 2, 8, 20, 28, 50, 82, and neutron number 126 can
only be explained by microscopic description more explicitly nucleon-nucleon interac-
tions, cf. early attempts e.g. in ref. [83]. In ref [84], the proton number Z = 114 and
neutron number N = 184 were predicted as the next spherical shell closures. In 1967,
Strutinsky introduced his macroscopic-microscopic method to calculate the binding
energies of nuclei and to discuss several problems, e.g., nuclear deformations, shell ef-
fects in deformed nuclei and nuclear fission, etc., ref. [85]. In particular, the binding
energy as a function of deformation for heavy fissioning nuclei was used to determine
the fission barriers, which provide important information about nuclear stability. One
of the most important results of the calculation of fission barriers was discovering the
fission isomers resulting from the secondary minima at large deformations, ref. [86].

As an alternative to the macroscopic-microscopic approach, purely microscopic
self-consistent approaches such as self-consistent Skyrme-Hartree-Fock-Bogolyubov ap-
proximation within the effective density functional formalism have been used to pre-
dict the spherical magic numbers at Z = 126 and N = 184 in super-heavy region
cf. ref. [87, 88]. On the other hand, a systematic study using spherical relativistic and
non-relativistic mean-field calculations showed that the spherical shell gaps appeared
at Z = 114, N = 184 or Z = 120, N = 172 or Z = 126, N = 184 depending on param-
eterisations, ref. [89], while the deformed relativistic mean-field calculation predicted
the possible magic numbers at Z = 120 and N = 184, cf. refs. [90, 91] and references
therein. More recently, the predictions of the existence and shell stabilisation of super-
heavy nuclei using the non-relativistic Skyrme-Hartree-Fock approach were extended
to hyper-heavy nuclei regions around N = 258 and 308, where the nuclei with Z > 126
are referred to as hyper-heavy, cf. ref. [92]. Three regions of the spherical hyper-heavy
nuclei: (Z ≈ 138, N ≈ 230), (Z ≈ 156, N ≈ 310), and (Z ≈ 174, N ≈ 410) are
predicted within the framework of the relativistic Hartree-Bogolyubov approximation,
ref. [93]. The heaviest elements in the mass table are predicted at Z = 173 based on
the relativistic multi-configuration Dirac-Fock calculations [94].

Theoretical studies of the properties of the super-heavy nuclei were fast developing
in nuclear physics over the past 70 years. The analysis of different theoretical models
has been presented in a number of review articles [70, 95–99].

It is worth mentioning that in the studies of super-heavy nuclei not only the predic-
tions of the closed spherical shells, but also the existence of exotic nuclear geometry has
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been considered. The possible existence of strongly deformed spheroidal nuclei and the
spherical bubble nuclei were discussed already in 1967 ref. [100]. The stability of these
exotic structures was studied in detail by Wong in 1973, cf. ref. [101]. He investigated
nuclei around the β-stability line, and found that around certain nuclei, e.g. 200

80 Hg120

and 138
58 Ce80, the spherical bubble-structure configurations are more stable, whereas in

some others the toroidal shapes may gain additional stability. Later, with the help of
the generalised rotating liquid drop model, Wong also discussed the nuclear toroidal
shapes appearing at high angular momentum, ref. [102]. Recent publications [93, 103–
105] showed that the spherical bubble nuclei may exist in the superheavy region with
A ≈ 450. The evolution of toroidal configuration is dominated by hyper-heavy nuclei
with Z > 130 and the flattest toroidal nuclei are placed in the Z ≈ 136 and N ≈ 206.

The physical origin of these particular shapes is the rapidly increasing repulsion
between the protons and attractive interactions of all other nucleons. In other words,
since the repulsive Coulomb interaction increases with increasing proton number, form-
ing extended exotic shapes such as bubbles or toroidal forms, may lead to a reduction
of the electrostatic energy of the nucleus, ref. [104].

In our project, we extend the multi-dimensional deformation mesh calculations to
super-heavy nuclei with Z ∈ [110, 130], to study possible exotic symmetries. The
discussion will be presented in the following sections.

6.8.1 Octupole Magic Numbers in Super-heavy Nuclei

As discussed so far, the exotic shapes in the form of spherically symmetric bubbles
and toroidal forms were discussed in several publications. Besides that, calculations of
the pear-shape octupole deformation effects in neutron-rich actinides and super-heavy
nuclei were carried out over the last decades as well.

The axial reflection-asymmetric Hartree-Fock-Bogolyubov approach showed that
many neutron-rich actinide nuclei, in particular with 184 < N < 206 are pear-shaped
in their ground-states, cf. fig. 4 in ref. [106] and the references therein. Within the
relativistic Hartree-Fock-Bogolyubov theory, a region of octupole deformation in heavy
nuclei around Z ∼ 98, N ∼ 196 was predicted, whereas the octupole effects were
predicted not to appear in these super-heavy nuclei according to refs. [62, 107, 108].
In contrast, the existence of octupole deformed nuclei in the super-heavy region of
Z ≈ 120, N ≈ 190 was predicted by the macroscopic-microscopic model of ref. [109] and
the Hartree-Fock-Bogolyubov approach with density-dependent Gogny interactions,
ref. [110]. Moreover, recent macroscopic-microscopic calculations in refs. [111, 112]
have shown that the tetrahedral-octupole deformation appears in Z ≈ 98, N ≈ 192
and Z ≈ 126, N ≈ 192. More generally, it follows from these articles that octupole
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deformation in super-heavy nuclei occurs at the neutron numbers around N ≈ 190.

Since the octupole effects are expected as the results of the strong gaps in the
single-particle spectra, we examine first the proton and neutron single-particle spectra
as functions of the octupole deformations α3µ=0,1,2,3 in figs (6.8.1-6.8.2), respectively.
The spherical shell gap of the order of 2 MeV at N = 114 is clearly visible. It is
caused by a repulsive spin-orbit interaction between 2f7/2 and 2f5/2 orbitals shown in
fig. (6.8.3). The strongest proton shell effects appear at tetrahedral deformation α32,
but the overall octupole proton gaps are not visibly strong.

As shown in fig. (6.8.2), a strong spherical shell gap is found at N = 184, of the
order 1.5 MeV, while the octupole gap at N = 196 is predicted at all four octupole
deformations. The size of the tetrahedral gap is comparable with the spherical gap,
both with an energy of about 2 MeV. This strong octuple gap is presented by the
interaction between the orbitals 1k17/2 and 2h11/2. Comparing the single-particle energy
spectra for all four octuple deformations we may conclude that the neutron number
N = 196 can be considered as a four-fold octupole magic number similar to N = 136.

In order to study the octupole effects, we focused on the 310
114Fl196 nucleus whose

quadrupole deformation vanishes, similarly to the 218
82 Pb136 case. In fig. (6.8.4) we

represent the potential energy surfaces projected on {α20, α3µ=0,1,2,3} planes and min-
imised over α40 deformation. Comparison shows that all equilibrium deformations are
of the similar order of α3µ = 0.15 with vanishing quadrupole deformation, similarly to
the nuclei with N = 136 in fig. (6.2.4). The highest barrier separating two octupole
minima is found for tetrahedral deformation with the barrier heights of the order of
3-to-4 MeV. The fission barrier in the case of the (α32-vs.-α20)-plane reaches the energy
order of 3-to-4 MeV as well. The remaining octupole deformations produce the barrier
heights of the order of 1.5-to-2 MeV.

As discussed in section (6.2.4) the point group symmetries C∞v, C2v, Td and D3h are
related to the deformations (α20 = 0, α30 6= 0), (α20 = 0, α31 6= 0), (α20 = 0, α32 6= 0)
and (α20 = 0, α33 6= 0), respectively. The structures of the rotational bands for the
above symmetries can be found in fig. (6.3.5), fig. (5.4.1) and in fig. (6.3.6).
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Figure 6.8.1 – Proton single-particle energies as functions of the octupole deformations
α3µ=0,1,2,3 in super-heavy regions. All other deformation parameters are set to zero.
Except for Z = 106 there are no strong octupole shell effects favoured by the protons;
(Z0 = 122, N0 = 186).
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Figure 6.8.2 – Neutron single-particle energies as functions of the octupole deformations
α3µ=0,1,2,3 in super-heavy regions. The strongest octupole shell effects are predicted at
N = 196, caused by tetrahedral symmetry α32 deformation; (Z0 = 122, N0 = 186).
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Figure 6.8.3 – Proton (top) and neutron (bottom) single-particle energies showing the
single particle spherical orbitals and the induced strongest shell gaps; parameters of the
Woods-Saxon Hamiltonian are displayed in the figures.
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Figure 6.8.4 – Projections of the total energy on (α20, α3µ=0,1,2,3) planes, minimised at
each deformation point over axial hexadecapole deformation α40 for the 310

114Fl196 nucleus.
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6 Exotic Shape Symmetries in Heavy and Super-Heavy Nuclei: Results

6.8.2 Oblate-octupole(α33) Symmetry in Super-heavy Nuclei

The presence of super-deformed oblate ground-state in many super-heavy nuclei
with 108 < Z < 128 has been studied in systematic macroscopic-microscopic calcula-
tion ref. [113] and confirmed by the Hartree-Fock calculation by Jachimowicz ref. [114].
One year later the calculations of the ground state energies of the super-heavy nuclei
were extended to the area of Z = 120 − 124 and N = 160 − 168 using the Hartree-
Fock-Bogolyubov approach; they confirmed the predictions of the super-oblate states of
ref. [115]. In particular, the macroscopic-microscopic approach of refs. [111, 112, 116]
showed that the ground states of the nuclei with Z = 119 − 126 and N = 173 − 188
combined the oblate quadrupole deformation with the octupole component α33. It is
worth mentioning that the oblate quadrupole deformation combined with α33 shown
in the above articles was induced by the combination of the oblate minimum combined
with two octupole deformations α30 and α32 in proportion α32/α30 ≈

√
3/5, which is

equivalent to α33 deformation.

In contrast to the method mentioned above, in our actual project, we employ the
multi-dimensional mesh calculations including quadrupole α20 deformation, all four oc-
tupole deformations {α30, α31, α32, α33}, and the hexadecapole deformation α40, which
is considered for the minimisation. One of the advantages is that the equilibrium de-
formation can be read directly from the potential energy surfaces, which are projected
on the {α20, α3µ} planes.

In figs. (6.8.1-6.8.2) we have shown variations of the proton and neutron single-
particle energy spectra with respect to the pure octupole deformations α3µ with all
other deformations set to zero. To study the impact of the oblate vs. octupole α33

combination, in fig. (6.8.5) we compare of the proton single-particle energy spectra
in terms of the pure octupole-α33 deformation with the ones obtained by combining
oblate quadrupole deformation α20 = −0.15 with variable α33. This particular value
of the oblate deformation is obtained from our systematic calculations. It shows that
the new shell gaps at Z = 112, 116, 118, 120 are opening when the oblate quadrupole
deformation is considered.

A similar comparison for neutrons is illustrated in fig. (6.8.6) and it follows that the
new gaps at N = 174, 176, 182, 184 are opening. As presented in the preceding section,
the neutron number N = 184 is predicted as the spherical magic number, whereas it
losses its stability by introducing an oblate quadrupole deformation; here it enters a
new competition.

The nucleus 118Og is the heaviest element known experimentally today. Basing on
the shell effects just discussed, in fig. (6.8.7) we compare to potential energy surfaces
for Og nuclei: 290Og172, 294Og176, 298Og180, and 302Og184 to illustrate the evolution of
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6.8.2 Oblate-octupole(α33) Symmetry in Super-heavy Nuclei

the combination of the quadrupole-oblate and α33 deformations. It follows that the
equilibrium deformations with α33 ≈ 0.1 are accompanied by the oblate deformation
α20 = −0.15. The effect of α33 increases with increasing neutron numbers leading to
up to about 2.5 MeV separations between the double minima.

It is instructive to verify the impact of the other octupole components in the nucleus
302
118Og184 showing strongly developed α33 minima. The results in fig. (6.8.8) show that
the oblate minima at α20 = −0.15 remain with no octupole-α30, -α31 and -α32 effects.
The effect of the octupole-α33 deformation lowers the energy of the oblate minimum
at α20 ≈ −0.15 by about 1-to-1.5 MeV.

In fig. (6.8.9) we present the evolution of the oblate-octupole minimum in N = 184
isotones with proton numbers Z = 114, 118, 122, 126. We can conclude from the figure
that the pronounced oblate-octupole type minima are produced in the super-heavy
nuclei with proton number Z ≥ 118 and neutron numbers around N = 184.
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Figure 6.8.6 – Similar to fig. (6.8.5) but for neutrons.
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Figure 6.8.7 – Projections of the total energy on (α20, α33) plane and minimised at each
deformation point over axial hexadecapole deformation α40 for 290−302Og (Z = 118)
isotopes with neutron numbers N = 172, 176, 180, 184. 201
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Figure 6.8.8 – Projections of the total energy on (α20, α3µ=0,1,2,3) plane and minimised
at each deformation point over axial hexadecapole deformation α40 for the 302

118Og184

nucleus.
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Figure 6.8.9 – Projections of the total energy on (α20, α33) plane and minimised at each
deformation point over axial hexadecapole deformation α40 for the N = 184 isotones
with proton numbers Z = 114, 118, 122, 126. 203
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6.8.3 Results on Super-heavy Nuclei: Concluding Remarks

As an extensive study of exotic symmetries, we presented the multi-dimensional
mesh calculations including all four octupole deformations in super-heavy nuclei with
112 ≤ Z ≤ 130 and 166 ≤ N ≤ 206.

One of the most visible conclusions is that the adjusted new parametrisation applied
in our calculations gives reliable results, e.g., the prediction of the spherical magic
numbers at Z = 114 and N = 184 and the properties of the ground-states, which can
be comparable with our theoretical models, although the shell effects in super-heavy
nuclei are strongly model dependent. The quadrupole deformations at the ground-
states are summarised in fig. (6.8.10), which reveals that the majority of super-heavy
nuclei have oblate deformations.

Exotic symmetries, in particular, the octupole components α32 and α33 are impor-
tant in stabilising the ground-state configurations, as seen in fig. (6.8.11). The highest
fission barriers are found for tetrahedral deformation (α32 ≈ ±0.15) in super-heavy
nuclei around N = 196, which is predicted as the tetrahedral magic number next to
N = 136. Figure (6.8.11) (bottom) shows the impact of the octupole-α33 the latter
leading to a new exotic oblate-quadrupole vs. octupole (α33) shapes, with energies
lower than in the case of the pure oblate configurations by about 1.0-1.5 MeV – in the
super-heavy nuclei around 118 ≤ Z ≤ 130 and 170 ≤ N ≤ 186.
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Figure 6.8.10 – Ground-state deformation α20 calculated from 3D mesh projected on
the (α20, α30) plane and minimised over α40 deformation.
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Figure 6.8.11 –Ground-state deformation α32 (top) and α33 (bottom) calculated from 3D
mesh projected on the (α20, α30) plane and minimised over α40 deformation. Note that
the signs of the octupole deformations are irrelevant due to the elementary symmetry
properties.
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Chapter 7

Conclusions and Perspectives

In order too be able to describe nuclear symmetry properties using the realistic
methods of theoretical modelling we combined four among the most powerful tools
of the nuclear structure theory: The nuclear mean-field-theory, the group and group
representation theories and the inverse problem theory.

The present PhD research project has been realised following Memorandum
of Understanding between the Maria Curie Skłodowska University of Lublin,
Poland, and the University of Zhengzhou, China, with one of the important
goals being the training of young researchers in our domain of physics.
To this end, efforts were undertaken to present in this thesis document
several elements of description of the nuclear structure theory methods to
facilitate entering into our research field to the new-coming PhD students
or post-doctoral fellows who will choose working in our domain.

During the last year of the preparation of this thesis, the financing of a
new nuclear physics related European Project Theo4Exp via EuroLabs ini-
tiative has been announced. This project consists in the preparation of the
specialised internet based service allowing to the nuclear experimentalists
working in the European accelerator related laboratories to use especially
adapted nuclear theory computer programs and theory data bases, in partic-
ular related to the nuclear mean field theory. The latter part of the project,
referred to as MeanField4Exp will be realised in collaboration between the
nuclear physics laboratories in Cracow, Strasbourg and Warsaw. Computer
programs which will be installed within this European project will contain,
among others, the ones employed for the present PhD project. The per-
son in charge of the realisation of the MeanField4Exp project will be the
supervisor of the present thesis.
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In this PhD project we have studied systematically exotic shape symmetries and
implied shape isomers, as well as shape evolution and competition in heavy nuclei. We
used realistic mean-field theory and its phenomenological Woods-Saxon Hamiltonian.
Parameters of the Hamiltonian were adjusted eliminating the parametric correlations
with the help of the Monte-Carlo simulations. Point group and group representation
theories were used to examine the underlying mathematical features. In particular,
rotational properties of nuclei with exotic symmetries and the implied spectral prop-
erties were derived to construct the experimental symmetry identification criteria. We
focussed our analysis on nuclear realisations of symmetries: Td, Oh, C2v, D2d and D3h.

Concerning the phenomenological realisation of the Woods-Saxon Hamiltonian, in
the past, a parametrisation involving 12 parameters, 6 for protons and 6 for neutrons
was used. These Woods-Saxon parameters were reviewed by our group in recent years
and with the help of the Monte-Carlo approach the parametric correlations were de-
tected and eliminated. The new parameters were fitted to single particle levels of
eight doubly magic spherical nuclei. We have shown that among 12 parameters only
8 are independent; they were used for the systematic calculations within this project.
Predictive power of our model with the new parametrisation was analysed and it was
shown that our modelling provides a very good agreement with experimental results,
among others, on the nuclear equilibrium deformations.

We have used spherical harmonic expansion to describe nuclear surfaces and shapes.
Our deformation space involved deformation parameters αλµ of the following orders:
λ = 2 (quadrupole), λ = 3 (octupole), λ = 4 (hexadecapole) and selected orders λ > 4.
The lowest order multipolarities, {α20, α22}, are found most often in the literature.
The latter leads to the simplest, ellipsoidal symmetries. We have focussed on the exotic
symmetries just listed involving various combinations of {α30, α31, α32, α33} octupole
degrees of freedom together with specific combinations involving higher multipolarities.

To set up the numerical calculations for the present project and to save c.p.u. time,
we split the mass table into the so called (Z,N)-sectors. Each sector is defined by
a central nucleus, say (Z0, N0), together with the ∆Z and ∆N intervals: The nuclei
belonging to the sector are those with proton numbers Z ∈ [Z0 − ∆Z,Z0 + ∆Z] and
with the neutron numbers N ∈ [N0 − ∆N,N0 + ∆N ]. The calculations of the single
nucleon energies are performed by solving the mean-field Schrödinger equation for the
central nucleus only. These were used to calculate the total nuclear energies of all
the nuclei in the sector employing the well known macroscopic-microscopic method of
Strutinsky. Such an approximation was found very practical thanks to the fact that
the dependence of the single particle energies on the Z and N numbers is very regular;
we have used the selection ∆Z ∼ 8 and ∆N ∼ 10.

The calculations for the selected deformation spaces were run on the multiprocessor
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7 Conclusions and Perspectives

systems involving, in our case, typically several hundreds of processors. We have intro-
duced various deformation sub-sets forming 2D-, 3D-, and 4D-deformation meshes. In
order to analyse and illustrate the results for 3D and 4D deformation spaces, projec-
tions on 2D sub-spaces were introduced and the minimisation of the nuclear potential
energies over the extra deformation parameters were performed. Such a structure leads,
e.g., for a 4D mesh to 6 distinct 2D projections. The corresponding total energy maps
for all even-even nuclei in each of the (Z,N)-sectors and possible projections have been
performed and stored. In this way we have constructed a data base facilitating the
nuclear geometry analysis in a direct and relatively fast manner.

About Results Selected for Presentation and Selection Criteria

In this PhD document we have presented merely a small fragment of the full infor-
mation accumulated as the result of our massive calculations. Below we give certain
indications about our choice criteria.

• As indicated in the preceding text, we have performed systematic analysis of the
nuclear shapes and the corresponding symmetry properties by calculating the
potential energy surfaces for several hundreds of even-even nuclei in multidimen-
sional deformation spaces defined using the multipole expansion concept.

• A typical scenario of this type of analysis of the nuclear shape properties found
in the literature follows the scheme of an expansion series: the lower the ex-
pansion multipole (here: quadrupole, octupole, hexadecapole ...) the strongest
its presumed importance. It then follows that the first rank symmetry under
consideration is the ellipsoidal (‘tri-axial’) symmetry spanned by (α20, α22) shape
coordinates.

• Our systematic calculations have shown that important exceptions from such
series expansion rules exist in certain zones of the mass table. This happens in
particular in the whole region of nuclei in the ‘north-east zone of mass table’
treating 208Pb as a reference center. Indeed, for Z ≥ 82 nuclei, an increase in
the neutron number leads to a built up of the deformed equilibrium shapes with
the lowest multipolarity λ = 3, i.e., octupole rather than quadrupole shapes and
this, often for all the 4 octupole αλ=3,µ=0,1,2,3 degrees of freedom.

• It then follows that all the implied shapes break the inversion invariance in the
intrinsic reference frames. They correspond to non-ellipsoidal symmetries which
in this document are referred to as exotic point-group symmetries – 4 distinct
ones. For this reason we have selected this particular zone of the nuclear mass
table for a detailed presentation as offering potentially the most promising, new
research perspectives.
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• These octupole shape effects causing strong shell-gaps are induced by the presence
of the ‘four-fold’ or ‘universal’ neutron octupole magic number N = 136 related
to the repulsion between the neutron 2g9/2 and 1j15/2 orbitals with the ∆` = 3
angular momentum difference, influencing the matrix elements with the potential
depending on the Yλ=3,µ multipoles.

• With the help of the point group theory we have shown that the point group
symmetries corresponding to pure octupole shapes are

– C∞ for (α20 = 0, α30 6= 0),
– C2v for (α20 = 0, α31 6= 0),
– Td for (α20 = 0, α32 6= 0), and,
– D3h for (α20 = 0, α32 6= 0),

whereas a combination of the non-null quadrupole axial-symmetry deformation
with the above octupole ones – repeats 3 among 4 above symmetries except for

– D2d for (α20 6= 0, α32 6= 0).

• Experimental identification criteria of the exotic symmetries listed above have
been formulated using the point-group representation theory and were discussed
in detail.

Analysing 4D Nuclear Geometry via 2D Projections: Shortcomings

In this thesis we have performed, as a part of the project, the analysis of the nuclear
geometrical properties calculated principally within 4D-type meshes via 2D projections
and the ‘geographical like ’ map illustrations.

Let us consider the functioning of this type of algorithm in more detail. Suppose
that the potential energy is calculated in a space of variables (x, y, z, w) and construc-
tion of a 2D map with coordinates, say (y, w) corresponds to a minimisation over x
and z at each (y, w)-point. This is equivalent to looking for the absolute minimum of
the (x, z) surface which changes each time we pass from (y, w)-point to its neighbour,
(y ′, w ′). There is no reason for which the evolution of the positions of such absolute
minima should develop smoothly (continually) with (y, w) varying, with the result that
the (y, w)-map may look smooth but in general will contain unphysical shape-jumps
(discontinuities) which will bias the physical interpretation of the results.

• To avoid this type of artificial ‘jumps’ when analysing the shape evolution, some
alternative algorithms should be proposed; such algorithms should consider all
the (x, y, z, w)-points with all the coordinates treated at the same time at the
same footing.
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• In the past, some algorithms of this type were proposed in the literature – based
on the one-dimensional trajectories considered in the n-dimensional spaces – the
trajectories connecting some potential energy minima of interest for the physicist.

• Such trajectories were sought by minimising the one-dimensional trajectory po-
tential barrier transition probabilities using a one-dimensional Wentzel-Kramers-
Brillouin (WKB) quasi-classical approximation.

• To find such trajectories via minimisation of the WKB barrier penetration ex-
pressions we have applied the so-called Dijkstra algorithm very well known in the
Graph Theory, an important chapter in Applied Mathematics. With the help of
this technique we were able to obtain an interpretation of the multi-dimensional
potential energy calculation results free from the 2D minimisation artefacts which
were illustrated in the thesis document.

Static vs. Dynamic Equilibrium Deformations

As it is well known from the collective model of Bohr, the collective motion of the
nucleus in a deformation space is described with the help of the corresponding collective
Schrödinger equation, whose solutions – wave-functions depending on the deformation
parameters – define the shape probability density distributions. Such wave functions
can then be used to estimate, e.g., the most probable nuclear deformations, which in
general differ significantly from the static ones corresponding to the local potential
energy minima.

• We have calculated the dynamical equilibrium deformations and estimated the
differences between the static and dynamic ones by solving collective Schrödinger
equation in the one-dimensional sections of the potential surfaces.

• At the same time we have studied the collective nuclear energies within zero-
phonon and one-phonon approximations. Calculations show that such energies
are nearly degenerate, when the potential barriers separating the two octupole
minima are higher than the energies in question. It turns out that the implied
dynamical equilibrium deformations are comparable.

• Importantly, in the case of flat potential energies, i.e., when the static equilibrium
deformations lose their meaning, the dynamical calculations predict significant
most probable (dynamical) equilibrium deformations, and thus strengthen our
interest in exotic symmetries.
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Coexistence Between Octupole Shape Geometrical Symmetries

It follows from our realistic mean-field calculations that the octupole super-magic
number N = 136 generates strong shell gaps simultaneously in all the 4 α3µ-octupole
space directions. As the result, we can expect competing octupole shape coexisting
minima and consequently a possible simultaneous manifestation of several exotic sym-
metries in a single nucleus at the same time.

• Calculations show systematic differences in the ‘strength of the octupole effects’
measured by the depth of the minima and the heights of the separating barriers.
By far the strongest appear the shell effects generated by the tetrahedral sym-
metry variable α32; next to it appear the pear-shape effects generated by α30,
followed by the effects of α31 and α33.

• It turns out that in Z ≥ 82 nuclei, pure octupole effects, α20 = 0, appear when
increasing N as soon as the spherical symmetry is gone; further increase in neu-
tron number leads to combined effects of α20 6= 0 simultaneously with α3µ 6= 0.

Effects of Higher Order Deformations: λ ≥ 4

In order to verify the stability of theoretical predictions of the nuclear symmetry
properties and their possible dependence on the cut-off choice in terms of λ, we have
performed comparative calculations with deformations of increasing multipolarities.

• We have included various combinations of multipole deformations often studied
in the literature by other authors, such as α40 which was kept most of the time as
one of our standard minimisation variables and then the combinations {α40, α42},
{α40, α60} and {α40, α80}.

• The impact of α60 on the ground-state minima is the strongest among other
higher order multipolarities in the nuclei in the ranges of Z ≈ 98 − 110 and
N ≈ 144 − 160. The ground-state energy minima obtained including α60 were
typically lowered by about 1-2 MeV.

Exotic symmetries in Super-heavy Nuclei

As an illustration of or study of exotic symmetries, we presented the multi-dimensional
mesh calculations in super-heavy nuclei with 112 ≤ Z ≤ 130 and 166 ≤ N ≤ 206.

• The predictive power of our model with the new parametrisation is confirmed in
super-heavy nuclei by reproducing the spherical shell closures at Z = 114 and
N = 184 and the comparable results of the properties of the ground-state.
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• In the super-heavy nuclei region, the highest fission barriers are found for the
tetrahedral deformation (α32 ≈ ±0.15) around N = 196, which is predicted as
the tetrahedral magic number.

• A new exotic symmetry is deduced by combining the oblate-quadrupole deforma-
tion with octupole deformation α33. The oblate energy minima obtained including
octupole deformation α33 are lowered by 1.0-1.5 MeV in the super-heavy nuclei
around 118 ≤ Z ≤ 130 and 170 ≤ N ≤ 186.

Perspectives and Challenges

In our project we have focussed on the effects of all the 4 octupole deformations
which turn out to play a very important role in the heavy nuclei with Z ≥ 82. We
confirmed the effects of the tetrahedral symmetry with the strongest effects centred at
the doubly magic 226

90Th136 nucleus.

To our knowledge our research is the first suggesting systematic experimental iden-
tification criteria of the point group symmetries other that Td, the latter identified by
our group in 2018. Consequently, proceeding with such an identification via systematic
investigation of the existing experimental data seems to be the most urgent challenge.

Extending the study of the simultaneous 4-fold octupole effects to medium heavy
and lighter nuclei, is another natural challenge.

In recent years the pear-shape octupole effects have been studied by other authors
in super-heavy nuclei, cf. e.g. refs. [62, 107, 108] and the strong pear-shape octupole
effects were predicted around N ≈ 196. In the present project, we also extended the
calculations to cover the zone of super-heavy nuclei up to Zmax = 130 and Nmax = 206.
Compared to the 4-fold octupole effects around the lead region, similar effects with
vanishing quadrupole deformation were found around Z ≈ 110 and N ≈ 190.

One of the most interesting observations is that the octuple component α33 ≈ 0.2,
accompanied by strong oblate deformation α20 ≈ −0.9 plays an important role in the
super-heavy nuclei with Z > 120.
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Chapter 8

ANNEX: Macroscopic-Microscopic
Method

An approximate, phenomenological method of calculating total nuclear energies
known under the name of the Strutinsky method, or macroscopic-microscopic method,
has been introduced by V. Strutinsky, ref. [85]. It is based on the observation that com-
bining certain properties of the nucleon-level densities calculated with the help of the
nuclear mean-field approximation (as discussed below) and the classical, macroscopic
liquid drop model expression for the nuclear energy offers unprecedented precision in
the description of several nuclear structure properties. In particular, nuclear masses,
nuclear shape properties such as shape coexistence and competition, fission properties,
and many others can be described very successfully and one can find literally thousands
of articles employing this method, published by various authors.

The macroscopic-microscopic method has been used in the literature in its various
realisations and can be considered a very well established element in nuclear struc-
ture physics. In this Annex, we limit ourselves to recalling its principal elements and
definitions in the actual realisations used in this project.

8.1 Basic Ideas and Nuclear Energy Expressions

The underlying idea of the macroscopic-microscopic method consists in assuming
that the total energy of the nucleus can be expressed as the sum of contributions
calculated using classical, macroscopic liquid drop energy expression, below denoted
Emacro, and a contribution usually denoted Emicro, involving mean-field single-nucleon
energies:

Etotal. = Emacro + Emicro. (8.1.1)
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8 ANNEX: Macroscopic-Microscopic Method

Both terms depend on nuclear deformation parameters and on the proton and neutron
numbers. The microscopic energy is composed of two contributions called shell and
pairing corrections,

Emicro = δEshell + δEpairing, (8.1.2)

representing the quantum shell effects on top of the deformed liquid drop macroscopic
energy leading term.

8.1.1 Macroscopic Energy – Spherical Configuration Variant

The liquid drop model has been constructed to calculate approximately the nuclear
energy as a function of deformation and can be used for modelling in particular nuclear
binding energies and fission barrier properties in analogy to the drop of a charged liquid.
The concept is based on similarities of certain properties of nuclear matter and those of
the classical charged and incompressible liquid drop. The corresponding semi-empirical
formula used for spherical nuclei reads, cf. ref. [117]:

EMacro(A,Z) = avA− asurA
2
3 − aC

Z2

A
1
3
− aasym

(N − Z)2

A
+ δ(Z,N), (8.1.3)

where Z, N , and A represent the proton, neutron and mass numbers, respectively. The
meaning of the introduced symbols is as follows:

1. The volume term, avA, represents the bulk of the nuclear binding energy pro-
duced by A nucleons;

2. The surface term, asurA
2
3 , represents an attractive contribution from the surface-

tension of the drop;

3. The Coulomb energy term, aC
Z2

A1/3 , represents the repulsive electrostatic forces
between protons. It increases fast with the number of protons;

4. The so-called asymmetry term, aasym
(N−Z)2

A
, describes the variation of stability

of the nuclear system with proton-neutron asymmetry, N − Z;

5. The phenomenological pairing term, δ(Z,N), represents the corrections due to
the nuclear pairing gaps, for details see below.

It turns out that the selected, systematic features of the nuclear average binding energy
can be described successfully according to eq. (8.1.3), with the help of just a few
parameters. Notice that the volume and surface terms depend on the nuclear mass
number N +Z only, whereas the remaining terms depend on Z and N more explicitly.
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8.1.2 Nuclear Yukawa Folded Macroscopic Energy Term

In our approach the macroscopic energy is calculated following the prescription
referred to as the finite-range liquid drop model (FRLDM), also called Yukawa folded
realisation, ref. [109], introducing the deformation of the liquid drop as discussed next.

8.1.2 Nuclear Yukawa Folded Macroscopic Energy Term

Modifications of the historical, spherical-shape formulation of the liquid drop energy
expression were introduced by Krappe et al., ref. [118]. The corresponding formulation
is very well known in nuclear structure physics and description of any details thereof
would bypass the scope of the present project. We limit ourselves to citing the final
expression after ref. [109], together with the terminology used in the literature:

EFY
Macro(Z,N ;α) = MHZ +MnN mass excesses

− avol(1− κvolI
2)A volume energy

+ asurf(1− κsurfI
2)Bsurf(α) surface energy

+ 3
5
e2Z2

r0A
1
3
BCoul(α) Coulomb energy

− 3
5
e2

r0

[
5
4

( 3
2π

)3/2 Z4/3

A1/3

]
Coulomb exchange correction

+ Z2

A
f(kF rp) proton form-factor correction

to the Coulomb energy
− aasym(N − Z) charge-asymmetry correction
+W (|I|+ d) Wigner energy
+ a0A

0 A0 term
− 1.433× 10−5Z2.39 energy of bound electrons
+ δ(Z,N) pairing energy,

(8.1.4)

where the mass number A = Z + N and the relative neutron excess I = (N − Z)/A,
whereas α ≡ {αλµ} denotes the ensemble of the deformation parameters.

Deformation-Dependent Terms – Surface Energy. In deformed nuclei, increasing
deformation usually increases the nuclear surface and the impact of the correspond-
ing energy contribution Bsurf(α). The corresponding 6-fold integral expression reads
after ref. [118],

Bsurf(α) = − 1
8π2r2

0a
4

∫
V
d~r
∫
V ′
d~r ′

(
|~r − ~r ′|

a
− 2

)
e−|~r−~r

′|/a

|~r − ~r ′|
, (8.1.5)

in which a is the diffuseness range of the Yukawa term and exponential e−|~r−~r ′|/a models
the effect of the finite range of the nuclear interaction. With the help of the twofold
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application of the Gauss divergence theorem one can transform the above expression
into a simplified double surface integral,

Bsurf = 1
8π2r2

0a
4

∫
Σ

∫
Σ′

{
2−

[(
σ

a

)2
+ 2σ

a
+ 2

]
e−σ/a

}
(~σ · d~S )(~σ · d~S ′ )

σ4 , (8.1.6)

where σ = |~r − ~r ′|, ~σ = ~r − ~r ′. The above expression allows to calculate the surface
energy employing 4-fold integration which is numerically much faster than the original
6-fold integration. For a spherical nucleus the above expression can be transformed
explicitly as in ref. [109],

B0
surf = 1− 3

(
a

R0

)2
+
(
R0

a
+ 1

) [
2 + 3 a

R0
+ 3

(
a

R0

)2
]
e−2R0/a. (8.1.7)

Deformation-Dependent Terms – Coulomb Energy. According to ref. [109],
Coulomb energy is calculated as

BCoul(α) = 15
32
A−5/3

r5
0

∫
V

∫
V ′

d~rd~r ′

|~r − ~r ′|

[
1−

(
1 + 1

2
|~r − ~r ′|
aden

)
e−|~r−~r

′|/aden

]
, (8.1.8)

where aden represents the diffusivity constant. For a spherical nucleus, one obtains

B0
Coul(α) = 1− 5

y2
0

[
1− 15

8y0
+ 21

8y3
0
− 3

4

(
1 + 9

2y0
+ 7
y2

0
+ 7

2y3
0

)
e−2y0

]
, (8.1.9)

where y0 = R0
aden

. The Coulomb corrective factor f(kF rp), is given by

f(kF rp) = −1
8
r2
pe

2

r3
0

[145
48 −

327
2880x

2 + 1527
1209600x

4
]
with x =

(9πZ
a4A

)
rp
r0
, (8.1.10)

in which rp = 0.8 fm and r0 = 1.16 fm represent the proton root-mean-square radius
and nuclear radius constant ref. [109], respectively.

The Empirical Corrective Pairing Term. The corresponding paring energy con-
tribution is defined as

δ(Z,N) =



∆̄p + ∆̄n − δnp for Z and N odd,
∆̄p for Z odd and N even,
∆̄n for Z even and N odd,
0 for Z and N even,

(8.1.11)

where ∆̄p, ∆̄n represent the average proton and neutron pairing gaps and δnp is the
average neutron-proton interaction energy, with the corresponding expressions after
ref. [109] given by:

∆̄p = rmacBs(α)
Z

1
3

; ∆̄n = rmacBs(α)
N

1
3

; δ̄np = h

Bs(α)A 2
3
, (8.1.12)
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where rmac represents the average pairing-gap constant and h, the neutron-proton in-
teraction constant. Above, Bs(α) is defined as the numerical factor representing the
ratio of the surface of the deformed nucleus and the surface of the same nucleus at the
spherical shape,

Bs = A−
2
3

4πr0

∫
Σ
dS. (8.1.13)

The parameters (constants) used in Eq. (8.1.4) can be found in ref. [109].

8.1.3 Lublin-Strasbourg Drop (LSD) Model

The nuclear liquid-drop model was revisited and extended in ref. [119] within the
Lublin-Strasbourg collaboration. The new version is referred to as Lublin-Strasbourg
Drop (LSD) Model. The main idea was to add the surface-curvature terms and re-
adjusting the parameters to improve the over-all energy description including the
fission-barrier heights. The corresponding parameters in the LSD model were adjusted
using experimental binding energies of 2766 known nuclei with Z ≥ 8 and N ≥ 8.

The final energy expression is given by:

ELSD
Macro(Z,N, {α}) = MHZ +MnN mass excesses

− avol(1− κvolI
2)A volume energy

+ asurf(1− κsurfI
2)A 2

3Bsurf({α}) surface energy
+ acur(1− κcurI

2)A 1
3Bcur({α}) curvature energy

+ 3
5
e2Z2

rch0 A
1
3
BCoul({α}) Coulomb energy

− C4
Z2

A
proton form-factor correction

to the Coulomb energy
+ Econg(N,Z) congruence energy.

(8.1.14)

The last term, so-called congruence energy, Econg(N,Z), is defined as in ref. [120]

Econg(N,Z) = −10 exp(−42|I|/10). (8.1.15)

It is well known that the Coulomb and surface terms depend strongly on deformation.
The behaviour of the two discussed macroscopic energy models at small and moderate
deformations are rather similar, while at larger deformations they become increasingly
different due to the presence of the surface-curvature contributions in the LSD case.
These terms are sensitive to the increasing geometrical complexity of the surface since
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8 ANNEX: Macroscopic-Microscopic Method

they involve the geometrical curvature-radii. Taking into account these mechanisms,
which may be considered as introducing new degrees of freedom, improves in particular
the description of the fission barriers.

8.1.4 Macroscopic Energy Comparison: FYU vs. LSD

In figures (8.1.1)-(8.1.2) we compare differences between the two discussed macro-
scopic energy models by illustrating the nuclear energies represented as functions of
quadrupole, α20, octupole, α3µ=0,1,2,3 and hexadecapole, α40 deformations.
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Figure 8.1.1 – Macroscopic energy comparison between FYU (red curve) and LSD (blue
curve) for even λ = 2 and 4. The energies are comparable at quadrupole deformation
λ = 2 and at small values of the hexadecapole deformation.

Comparison shows that the deformation dependence on quadrupole deformation
α20 of the two macroscopic energy expressions are nearly identical. They are relatively
close at small values of the hexadecapole deformations α40. We also compare the two
macroscopic energies as functions of the octupole deformations {α30, α31, α32, α33} in
figure (8.1.2). The energy variations are similar, the energies of FYU are always lower
than the ones of LSD. It is worth mentioning that the parameters in LSD model have
been adjusted to the ground-states and the fission properties of known nuclei. In our
present work, we use FYU expression within the macroscopic-microscopic approach.
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Figure 8.1.2 – Similar to the preceding one: Comparison of FYU (red curve)
and LSD (blue curve) macroscopic energies as functions of octupole deformations
{α30, α31, α32, α33}. The energies are comparable at small deformations.
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8.2 Strutinsky Shell Correction Method

The nuclear shell correction energy expression was introduced in 1966 by Strutinsky
employing the single-particle energies treated as functions of deformation, cf. refs. [85]
and [121]. The basic idea behind the Strutinsky approach is to express the total
nuclear energy as the sum of the macroscopic liquid drop energy and the nuclear shell
energy.

After Strutinsky the shell correction energy is defined by

δEshell = E − Ẽ, (8.2.1)

where the first term represents the sum of the single-particle energies for particle num-
ber n, which are obtained by solving the Schrödinger equation with a mean-field Hamil-
tonian,

E =
∑
n

εn, (εn < ελF ), (8.2.2)

in which λF is called Fermi level related to the last occupied particle. The second term
in eq. (8.2.1) depends on an auxiliary, so called ‘smooth level density function’

Ẽ =
∫ ελF

−∞
εg̃(ε)dε, (8.2.3)

where g̃(ε) denotes the ‘Strutinsky-smoothed’ single particle level density. The single-
particle energy density is defined by

g(ε) = dn

dε
. (8.2.4)

It represents the number of levels per energy unit. It follows that the particle numbers
of the system define the Fermi energies by

Z orN =
∫ ελF

−∞
g(ε)dε, (8.2.5)

whereas the energies are given by

E =
∫ ελF

−∞
εg(ε)dε. (8.2.6)

The auxiliary density of single-particle levels, g(ε), is usually represented using the
Dirac δ-distribution,

g(ε) =
∑
n

δ(ε− εn). (8.2.7)

Summations/integrations in the above relations extend over the single-particle energies
up to the Fermi level.
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8.3 Pairing Effects within Strutinsky Approach

The formal definition of the density involving Dirac δ-distributions in eq. (8.2.7) can
be written down alternatively using an identity expressing the Dirac δ as the infinite
series of Hermit polynomials, cf. ref. [40]:

δ(x) = 1√
π
e−x

2
∞∑
n=0

cnHn(x). (8.2.8)

Changing the variable x→ ε− εn we find

δ(ε− εn) = 1√
π
e[−(ε−εn)]2

∞∑
n=0

cnHn(ε− εn). (8.2.9)

With the help of the abbreviation

un = (ε− εn)
γ

, (8.2.10)

we can make the following expressions more compact; the factor γ has the dimension
of energy. It follows that

g(ε) = 1
γ

∞∑
n=1

δ(un) = 1
γ
√
π

∞∑
n=1

e−u
2
n

∞∑
m=0

cmHm(un), (8.2.11)

where cm are expansion coefficients given by

cm =


(−1)m/2

2m(m/2)! , m even,

0, m odd,
(8.2.12)

cf. ref. [40], and it follows that summation over m in eq. (8.2.11) contains only even m.

At this point, we can introduce the ‘smoothed level density function ḡ(ε)’ originally
introduced by Strutinsky by arbitrarily modifying the infinite summation over m in
eq. (8.2.11) in principle extending to∞, by replacing it by a cut-off parameter p selected
as a finite number. It follows that the smoothed energy level density can be written
down as:

ḡ(ε) = 1
γ
√
π

∞∑
n=1

e−u
2
n

p∑
m=0

cmHm(un), (8.2.13)

where parameters γ and p were introduced in ref. [122] as:

γ = 1.2 ~ω with ~ω ∼ 41A− 1
3MeV, and p = 6. (8.2.14)

8.3 Pairing Effects within Strutinsky Approach

One can include the effect of the nuclear pairing correlations in the total nuclear
energy similarly to including the single-particle shell effects of the mean-field by in-
troducing the Strutinsky pairing energy correction. In fact, there are two similar
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8 ANNEX: Macroscopic-Microscopic Method

phenomenological expressions used in the literature to account for the corresponding
contributions; they are called ‘correction’ and ‘correlation’ energies. They will be dis-
cussed next.

• Pairing Correlation Energy. We begin with the paring correlation energy. Recall
the BCS pairing energy expression for the nuclear superfluid phase with pairing ∆ 6= 0.
We have

EBCS =
Np∑
ν=1

(2ενv2
ν −Gv4

ν)−
∆2

G
, (8.3.1)

where v2
ν , G and ∆ represent the probability of occupation of the nucleonic level “ν”,

pairing constant and pairing gap, respectively. The pairing correlation energy is defined
as the difference between the BCS energy of the system with the presence of pairing,
∆ 6= 0, and its parter expression without pairing, i.e., EBCS for ∆ = 0:

δEcorrel =
Np∑
ν=1

(2ενv2
ν −Gv4

ν)−
∆2

G︸ ︷︷ ︸
∆ 6=0

−
Np/2∑
ν=1

(2εν −G)︸ ︷︷ ︸
∆=0

, (8.3.2)

for details cf. Ref. [40]. To provide more details we recall the BCS equations as pre-
sented in chapter 4, eqs. (4.2.58-4.2.58):

Np =
Np∑
k=1

1− εk − λ√
(εk − λ)2 + ∆2

 , (8.3.3)

and

2
G

=
Np∑
k=1

1√
(εk − λ)2 + ∆2

, (8.3.4)

where Np is the number of the nucleonic pairs. Once the pairing gap is known, the
occupation probability v2

k can be calculated form the following standard BCS expression

v2
k = 1

2

{
1− εk − λ

[(εk − λ)2 + ∆2]1/2

}
, where k = 1, 2, ..., Np. (8.3.5)

The pairing strength constants G is given in ref. [40] by

1
G

= ρ̄ ln


1 +

(
2ρ̄∆̄
Np

)21/2

+ Np

2ρ̄∆̄

 , (8.3.6)

in which the average density of pairs at the Fermi level is

ρ̄ = 1
2 ḡ(λ), (8.3.7)

and ḡ(λ) was introduced in Eq. (8.2.13). The so-called average gap, ∆̄, represents an
average empirical trend given by

∆̄ = const.√
A

, (8.3.8)
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in which the constant, approximately 12 MeV, results from fitting to the experimental
data on the odd-even mass differences. However, by using the contemporary experimen-
tal data [123], we find that the traditionally used constant ’12’ is not optimal anymore
for all the nuclear mass ranges of interest. In order to represent the experimental data
more precisely, we re-write eq. (8.3.8) as follows

∆̄ = α√
A
, (8.3.9)

The empirical values of the pairing gaps are usually extracted from the odd-even
mass (or binding energy) differences. The so-called three-point mass formula was in-
troduced by Satuła and coworkers, ref. [124]. For a given Z one writes

∆(3)
Z = 1

2(−1)N [B(Z,N + 1)− 2B(Z,N) +B(Z,N − 1)], (8.3.10)

similarly for a given N ,

∆(3)
N = 1

2(−1)Z [B(Z + 1, N)− 2B(Z,N) +B(Z − 1, N)], (8.3.11)

where B is the (negative) binding energy of the nucleus. In this project the related
experimental information was taken from the mass tables of 2016, ref. [123].

By fitting the average behaviour of empirical pairing gaps, we can find the optimal α
for different nuclear regions as shown in figures (8.3.1)-(8.3.9). We find correspondingly:

Protons :


αp = 11.0, Z ≥ 82,
αp = 11.7, 52 ≤ Z ≤ 80,
αp = 10.2, 28 ≤ Z ≤ 50,
αp = 8.2, 2 ≤ Z ≤ 28,

(8.3.12)

and

Neutrons :



αn = 10.6, N ≥ 126,
αn = 12.0, 82 ≤ N ≤ 126,
αn = 11.8, 52 ≤ N ≤ 80,
αn = 10.0, 28 ≤ N ≤ 50,
αn = 8.2, 2 ≤ N ≤ 28.

(8.3.13)

• Pairing Correction Energy. In analogy to the Strutinsky shell correction en-
ergy we can define the pairing correction energy as the difference between the nuclear
energy contribution from the BCS approximation and the corresponding ’average’ or
’smoothed’ part. With the help of the average density and the pairing strength con-
stants, the uniform distribution of the levels that are treated as the smoothed pairing
correlation is given by

Ēpc = −1
4
N2
p

ρ̄


1 +

(
2ρ̄∆̄
Np

)21/2

− 1

+ 1
2 ρ̄∆̄G tan−1 Np

2ρ̄∆̄
, (8.3.14)
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and the pairing correction is calculated as follows

δEcorrec = δEcorrel − Ēpc. (8.3.15)
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Figure 8.3.1 – Proton experimental pairing gap energies ∆(3)(2n + 1) calculated using
eq. (8.3.10) in the nuclei ranges Z ≥ 82 are presented together with the correspond-
ing experimental error bars. Solid lines represent the results of α-fitting related to
Eq. (8.3.9) with optimal α obtained by χ2 minimisation.
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Figure 8.3.3 – Similar to the preceding one, but for nuclei ranges 28 ≤ Z ≤ 50.
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Figure 8.3.4 – Similar to the preceding one, but for nuclei ranges 8 ≤ Z ≤ 28.
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Figure 8.3.8 – Similar to the preceding one for nuclei ranges 28 ≤ N ≤ 50.
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