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Abstract

This thesis is devoted to the theoretical analysis of phenomena occurring

in nanosystems under nonequilibrium conditions. The objects of the research

are two-terminal nanojunctions consisting of quantum dots with metallic and

superconducting electrodes. The main purpose of the research is to analyse

time-dependent observables and correlation functions describing the system,

e.g. differential conductivity, occupancy of quantum dots, and effective

electron pairing on the dots. The nonequilibrium conditions which can be

applied to the systems are a sudden change in the potential difference between

the electrodes, a quench in the energy level of quantum dots, a sudden change

in the hybridization of the quantum dot with the superconducting electrode,

and the level of quantum dots oscillating in time. Under the influence of the

mentioned perturbations, the evolution of the system takes place, which is

noticed in observables and can be proved experimentally. The analysis of

the above-mentioned quantities reveals the presence of beats in the charge

current, a change in the direction of the flowing current, as well as a transition

between the singlet and doublet states, a type of electron dot configuration.

In periodically driven systems, we observe the appearance of harmonic states,

an additional electron transport channels that contribute directly to the

differential conductivity averaged over the period of the driving. These

theoretical studies are based on Green’s formalism extended by Floquet’s

theory and the Heisenberg equation.
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Streszczenie

Niniejsza praca skupia się na teoretycznej analizie zjawisk zachodzą-

cych w nanoukładach w warunkach nierównowagowych. Obiektami badań

są dwuterminalne nanozłącza skonstruowane na bazie kropek kwantowych,

których elektrody mają charakter metaliczny i nadprzewodzący. Głównym

celem badań jest analiza czasowo zależnych obserwabli oraz funkcji korela-

cyjnych opisujących układ, m.in. przewodnictwa różniczkowego, obsadzenia

kropek kwantowych, efektywnego parowania elektronowego na kropkach.

Warunki nierównowagowe, którym możemy poddać badany układ to m.in.:

nagła zmiana różnicy potencjałów pomiędzy elektrodami, skok poziomu en-

ergii kropek kwantowych, zmiana hybrydyzacji kropki kwantowej z elektrodą

nadprzewodzącą, a także oscylujący sinusoidalnie w czasie poziom kropek

kwantowych. Pod wpływem wymienionych zaburzeń zachodzi ewolucja układu

zauważana w obserwablach, których przebieg może zostać sprawdzony ekspery-

mentalnie. Analiza wymienionych wielkości ujawnia występowanie dudnień

w charakterystykach prądowych, zmianę kierunku płynącego prądu, a także

przejścia pomiędzy stanem singletowym a dubletowym, typem konfiguracji

elektronowej kropki. W periodycznie zaburzanych układach obserwujemy

pojawienie się stanów harmonicznych, dodatkowych kanałów transportu elek-

tronowego, które mają bezpośredni wkład do charakterystyk przewodnictwa

różniczkowego uśrednionego po okresie zaburzenia. Badania teoretyczne opier-

ają się na wykorzystaniu formalizmu funkcji Green’a rozszerzonego o teorię

Floquet’a oraz rozwiązywaniu równania Heisenberg’a.
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Chapter 1

Motivation

In recent decades, nanodevice engineering has become a very well-known

and developed part of the industry. The method of manufacturing nanostruc-

tures offers the possibility of constructing variety nanodevices, information

storages, transistors and other components needed in the high-tech branches.

The breakthrough in the easy fabrication of semiconductors and semicon-

ducting heterostructures enables the experimental verification of theoretical

predictions for new physical phenomena in condensed matter physics. It is

amazing how experiment goes hand in hand with theoretical predictions and

the design of nanostructures. This remarkable development of condensed

matter physics is evident in a growing number of publications in this field, as

well as by its many new specialistic subdisciplines.

Following such trends in physics, this thesis addresses the ideas of the

condensed matter physics and is focused on the processes occurring in the

superconducting nanojunctions. Since the late 1950s, the nanojunctions con-

sisting of the superconductors and quantum impurities have been extensively

studied [1,2]. The preliminary research has been focused on the paramagnetic

impurities and their influence on the superconducting order. It has been

shown that the impurities have negligible impact on the isotropic supercon-

ducting state in the bulk materials [3]. However, it has been proved that the
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CHAPTER 1. MOTIVATION 14

magnetic impurities strongly influence the superconducting order [4–6]. In

nanojunctions, it is known that in the boundary area between the normal

metal and superconducting material there occurs a mixing of those phases [7].

Unfortunately, the experimental examination of bulk materials gives infor-

mation about their macroscopic properties. To observe microscopic physical

processes we need to focus on the study of the quantum impurities. In the

1980’s, the quantum size effect has been observed by the absorption spectrum

of excitons in quantum boxes [8] or in colloidal nanocrystals [9, 10]. Those

quantum boxes are epitaxially-grown quasi-zero-dimensional objects made of

semiconducting materials. In 1986, the evidence of energy quantization in

those objects has been shown and they have been named "quantum dots" [11].

Not much later, it has been presented that quantum dots are characterised

by discrete peaks in resonant tunnelling spectra, indicating an atomic density

of states in zero dimension [12]. Since then, new fabrication methods of quan-

tum dots had been developed, e.g.: the electron beam lithography of narrow

quantum wells made of GaAs/AlGaAs [13] or InGaAs/InP [14], the Stranski-

Krastanow method [15, 16], application of carbon nanotubes [17, 18]. The

easy and well understood fabrication process has contributed to the discovery

of a wide range of quantum dot properties. This knowledge contributed to

the development of laser based on the quantum dots [19], photo-detectors [20]

and also the incoherent light sources [21]. One of the milestone experiments,

performed by Bonadeo et al., was the coherent control, by phase-locked pi-

cosecond pulses, of the excitation in a GaAs/AlGaAs single quantum dot on

a time scale that is short compared to the time scale of quantum coherence

loss [22]. This work has initiated the field of quantum computation based on

the optical properties of quantum dots. It has been shown that quantum dot

experiments can satisfy some of the criteria of DiVincenzo [23] conditions,

necessary for constructing a quantum computer, e.g.: state preparation [24],

state read out [25,26] and coherent manipulation [27,28].

Furthermore, the use of quantum dots in quantum information can be
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based on the spin manipulation. It has been proposed that in the super-

conducting junction with a quantum point contact or the quantum dot, the

Bogoliubov quasiparticles can be trapped in discrete Andreev levels [29,30].

In contrast to the semiconductor quantum dots this type of device has been

called Andreev quantum dot. This proposal of Andreev qubit shows that the

experimental manipulation and measurement of a state defined by spin 1/2 is

possible, which provides the opportunity to quantum computing applications.

Moreover, another theoretical concept of qubit proposed by Nazarov [31]

is based on a superconducting circuit and quantum dot in the form of the

Josephson junction. In systems with the spin-orbit interaction, the two-level

system is realized by the spin state of the electron on the quantum dot and

its polarization can be tuned by the superconducting phase difference across

the junction. Based on those ideas, various families of qubit devices have

been proposed and experimentally examinated [32]: the charge qubits in a

transmission line resonator - transmons [33,34], the gate tunable supercon-

ducting qubits - gatemons [35–37] or combination of transmon qubits with

qubits based on Majorana zero modes [38–42]. This shows that quantum dot

devices have a wide range of applications in the current and future quantum

computing.

Besides the single quantum dot devices, the double quantum systems have

been experimentally studied by the tunnelling spectroscopy using InAs [43–46],

InSb [47], Ge/Si [48] and carbon nanotubes [49,50] as well as by the scanning

tunneling microscopy applied to molecules deposited on superconductors

[51–55]. It has been shown that in such types of systems it is possible to

manipulate and change the state of a single electron [56–58]. It had been

proved that for the electrically isolated double quantum dot the eigenstates

of the system are characterized by surprisingly long coherence time ∼ 220ns.

For quantum computation purpose the double quantum dot systems can be

regarded as a kind of qubit [59].

Furthermore, superconducting circuits based on double quantum dot
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systems are rich in the properties of in-gap bound states [47,60–62], originating

from the ground state configuration with even or odd parity. Due to the

system parameters, the parity change has been experimentally detected by

discontinuities of the Josephson current in S-DQD-S junctions [45,46,63] or

the subgap Andreev current in N-DQD-S junctions [47, 63, 64]. In double

quantum dot systems coupled to superconducting lead the spin of quantum

dots could create a triplet blockade [63]. This spin locking counteracts

the superconducting proximity effect, what has been reported in S-DQD-

S [44] and N-DQD-S [64] nanostructures. Quantum dot heterostructures

can be studied in terms of time-dependent processes that occur under the

influence of step-like pulses or photon exchange with the environment [65–67],

leading to the post-quench evolution and photo-assisted tunnelling processes.

The time-dependent experimental measurements for the Josephson junction

placed in microwave cavity exhibits discretization of super-current and higher-

order effects such as multiple Andreev reflections and Shapiro-like steps in

conductance characteristics [68–70].

This thesis is devoted to theoretical studies of time-dependent processes,

occurring in systems with single and double quantum dots placed between

the normal metal and superconducting leads. The main objective is to study

the evolution of systems induced by the temporary and long-term disturbance

of its properties such as: rapid change of source-drain voltage or energy

level position of quantum dot, sudden coupling to superconducting lead and

periodic driving of the quantum dot energy levels. Depending on the type

of perturbation, the systems exhibit different ways of reaching equilibrium.

We investigate the relaxation times and associated phenomena manifested in

post-quench evolution, evident in the time-dependent current characteristics.

For this purpose we made use of: Green’s function method, Floquet formalism

and Heisenberg’s equation of motion technique.



Chapter 2

Introduction to superconductivity

The superconductors, as their name suggests, are characterised by perfect

conductivity, which can be observed in specific materials under some physical

conditions. Superconductivity, as physical phenomenon has been discovered

more than one century ago [71]. The presence of perfect conductivity is one

of the essential characteristics of superconductors, playing an important role

from an economic point of view. Superconductors are also characterised by

ideal diamagnetism [72]. In the presence of a magnetic field, its lines are

expelled from the bulk of superconductor - the Meissner effect. For corre-

spondingly higher values of the external magnetic field the superconducting

effect disappear, and the field penetrates the volume of the material. The

value of the magnetic field at which the superconducting effect is suppressed

is called the critical point Bc. It happens for the pure superconductors, like

27 metals (e.g. Al, Pa, Th, Pb) which are called Type I superconductors,

having the critical temperature TC < 7.2K, below which the superconducting

effect appears. Type II superconductors are made from alloys (e.g. NbTi,

PbMoS, NbN), they are colloquially known as dirty superconductors. They

maintain the superconducting state to higher temperatures (tens of Kelvin)

and magnetic fields, than I type superconductors. The second type supercon-

ductors can exist in a mixed state of normal and superconducting regions,

17



CHAPTER 2. INTRODUCTION TO SUPERCONDUCTIVITY 18

called a vortex state. This state predicted by Abrikosov is characterized by

vortices of superconducting currents surrounding cores of materials in normal

state.

In this chapter, we will provide a short theoretical description of the

superconductors and the processes occurring at the interface of different

materials. The following sections (Sec. 2.1, 2.2) are based on the popular

books [73–75].

2.1 Electron bound states of bulk materials

The breakthrough step in the formulation of the microscopic theory of

conductivity had been made by Cooper [76]. In 1956, Cooper showed that

two electrons, interacting on the Fermi sphere, can create a bound state,

called later a quasiparticle or Cooper pair. This state appears in the presence

of the weak attractive interaction. One of Cooper’s assumptions was that

pairing between electrons occurs in the singlet state χ = 1√
2
(∣ ↑↓⟩ − ∣ ↓↑⟩),

which guarantees the antisymmetry of wave-function. In theory, the pair of

electrons can be described by the two particle wave-function in the real space

coordinates ri
ψ(r1, r2) = φq(r1 − r2)eiqRχ, (2.1)

where R = (r1 + r2)/2 is the center of mass, φq is wave-function in the center

of mass and q is momentum of the center of the mass of the pair with respect

to the Fermi sea. One of the Cooper’s assumptions is that the center of mass

of the pair lies in the center of the Fermi sphere q = 0. Making a Fourier

expansion of φq, the two particle wave-function takes form

ψ(r1, r2) = ∑
k

g(k)eikr1e−ikr2χ, (2.2)

where g(k) is a Fourier transform of the center-of-mass wave-function. The

wave-function of the pair of electrons consists of the plane waves with equal

and opposite momenta.
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Solving the Schrödinger equation for the introduced wave-function ψ(r1, r2)
of the Hamiltonian

Ĥ = − h̵
2

2m
(∇2

1 +∇2
2) + V (r1, r2), (2.3)

where V (r1, r2) is the interaction term, yields

∑
k′

[ h̵
2

2m
2k′2 + V (ρ)] g(k′)eik′ρ = (ε + 2

h̵2k2
F

2m
)∑
k′
g(k′)eik′ρ. (2.4)

Here, the translational invariance has been assumed V (r1, r2) = V (ρ) and ε

is a total energy of two considered electrons. Multiplying both sides of (2.4)

by eikρ and integrating over d3ρ, we obtain

h̵2

m ∫ ∑k′
ei(k

′−k)ρg(k′)k′2d3ρ + ∫ ∑
k′
V (ρ)ei(k′−k)ρg(k′)d3ρ =

(ε +
h̵2k2

F

m
)∫ ∑

k′
ei(k

′−k)ρg(k′)d3ρ. (2.5)

It is important to notice that the above equation has a non-zero solution only

if k = k′:

∫ d3ρei(k−k
′)ρ = L3δk,k′ . (2.6)

Then (2.5) takes form

h̵2

m
k2g(k) +∑

k′
g(k′)Vkk′ = (ε + 2εF )g(k), (2.7)

where Vkk′ = 1
L3 ∫ V (ρ)ei(k−k′)ρd3ρ.

The Cooper theory assumes that the attraction potential takes a constant

value up to a cut-off imposed by the Debye frequency ωD which is order of

kBθD, where kB is Boltzmann constant and θD Debye temperature. This

means that the coefficient Vkk′ fulfills the following relations:

Vkk′ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

−V /L3 if ∣ξk∣, ∣ξk′ ∣ ⩽ h̵ωD,

0 otherwise,
(2.8)
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where ξk = h̵2k2

2m − εF . Substituting this simple form of potential Vkk′ into (2.8)

we obtain

(−2ξk + ε) g(k) = −
V

L3∑
k′
g(k′). (2.9)

Dividing both sides of (2.9) by the factor (−2ξk + ε) and performing summa-

tion over k, yields

∑
k

g(k) = V

L3∑
kk′

1

2ξk − ε
g(k′). (2.10)

The right-hand side of (2.10) contains term ∑k′ g(k′), which is generally a

constant value, equal to the left side of the equation. This term can be

omitted, which results in the self-consistent condition

V

L3∑
k

1

2ξk − ε
= 1. (2.11)

Converting summation to integration from zero up to the Debye frequency,

yields

V ∫
h̵ωD

0

ν(ξ)dξ
2ξ − ε

= 1, (2.12)

where ν(ξ) is the density of states for electrons (which practically takes

constant value over the range of the integration). Then, performing the

integration and assuming that ∣ε∣ ≪ h̵ωD, we finally obtain the energy electron

pair

ε = −2h̵ωDe
−2/ν(0)V . (2.13)

A negative sign indicates that a bound state is formed from attracting electrons.

In other words, the energy of the bound electrons is lower than that of the

free particles.

2.2 Bardeen-Cooper-Schrieffer theory

This scenario of the bound state formed of two electrons was fundamental

to the macroscopic theory of superconductivity. Theoretical explanation of
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the superconducting state was presented by a group of scientists consisting

of J. Bardeen, L. Cooper and J. R. Schrieffer (BCS) and was awarded the

Nobel Prize in 1972. The BCS theory is based on the Cooper model, the fact

that the attractive interaction can bind two electrons with opposite spins

and momentum vectors (k ↑,−k ↓) into one pair on Fermi sphere [77]. The

Cooper result (see Sec. 2.1) implies that many-body system can reveal the

energy gap in their excitation spectrum. For the many-body case, the Cooper

result suggests that the ground-state wave-function ΨN could be constructed

of the paired electrons

ΨN = ψ(1,2)ψ(3,4)ψ(5,6)...ψ(N − 1,N), (2.14)

where N denotes the number of particle in the system. The pair wave-function

ψ(1, 2) = ∑k g(k)eikr1e−ikr2χ is multiplied by individual coefficient g(k). For a
realistic case this description is useless, because ∼ 10200 individual coefficients

need to be calculated [74].

In the BCS theory and the second quantization representation, the ground

state of the many-body system was proposed as collection of Cooper pairs

∣ΨBCS⟩ = Πk=k1,...,kN (uk + vkĉ
†
k↑ĉ

†
−k↓)∣0⟩, (2.15)

where ∣0⟩ denotes the vacuum and uk, vk are coefficients whose square are

the probability of empty (∣uk∣2) and occupied (∣vk∣2) state with wave-vector k

respectively. In order to satisfy the normalization condition ⟨ΨBCS ∣ΨBCS⟩ = 1,

the probabilities must obey the following relation

∣uk∣2 + ∣vk∣2 = 1. (2.16)

The wave-function ΨN defined in (2.14) describes the system consisting of

N/2 electron pairs, while ΨBCS defined in (2.15) is a superposition of pairs

containing the even number of electrons, without fixed number of particles.

Between those two wave-functions a following relation can be written

ΨBCS = ∑
N

λNΨN , (2.17)
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with the normalization condition ∑N λN = 1.

The many-body system with translational invariance can be described by

Hamiltonian

H = ∑
kσ

ξkĉ
†
kσ ĉ

†
kσ + ∑

kk′,σσ′,q
Vkk′,σσ′,q ĉ

†
k+q,σ ĉ

†
k′−q,σ′ ĉk′σ′ ĉkσ, (2.18)

where ξk = h̵2k2

2m − εF denotes the electron energies with respect to the Fermi

level. The second term of Hamiltonian in (2.18) describes electron-electron

interactions.

The binding energy of the Cooper pair depends on the sum of the total

angular momentum of the electronsK = k1+k2, where k1 and k2 are their wave-

vectors. It reaches a maximum value for K = 0 and decreases dramatically for

other values, implying that the electrons have opposite wave-vectors k1 = −k2.

The origin of the attractive force originate from a phonon exchange, giving

rise to an effective interaction. Considering the negatively charged electrons

Figure 2.1: Diagrammatic representation of the exchange of a phonon q in the

effective electron-electron interaction.

moving through the lattice of the positively charged lattice ions. The phonon

can be exchanged as schematically presented in Fig. 2.1. In this process, the

maximum possible phonon energy is truncated by the Debye frequency ωD
(the crystal lattice is not able to transfer higher energies) and furthermore

the angular momentum should be conserved k + k′ = const.
The Hamiltonian in (2.18) can be written in a simpler, reduced form.

We can restrict the consideration to that part which contributes to the
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superconducting effect, i.e., the interactive part taking into account only

electrons with opposite spins and momenta. We can replace k′ → −k and

k + q → k′, which yields

H = ∑
kσ

ξkĉ
†
kσ ĉ

†
kσ +∑

kk′
Vkk′ ĉ

†
k↑ĉ

†
−k↓ĉ−k′↓ĉk′↑. (2.19)

To determine particular the coefficients uk and vk, we can use the variational

principle of quantum mechanics to minimize the expectation value of the

Hamiltonian (2.19)

δ⟨ψBCS ∣∑
kσ

ξkĉ
†
kσ ĉ

†
kσ +∑

kk′
Vkk′ ĉ

†
k↑ĉ

†
−k↓ĉ−k′↓ĉk′↑∣ψBCS⟩ = 0. (2.20)

The expectation value of the first and the second terms presented in (2.20)

are given by

⟨ψBCS ∣∑
kσ

ξkĉ
†
kσ ĉ

†
kσ ∣ψBCS⟩ = 2∑

k

ξk∣vk∣2 (2.21)

and

⟨ψBCS ∣∑
kk′
Vkk′ ĉ

†
k↑ĉ

†
−k↓ĉ−k′↓ĉk′↑∣ψBCS⟩ = ∑

kk′
Vkk′v

∗
kukvk′u

∗
k′ . (2.22)

For convenience it can be assumed that the coefficient uk and vk are real

numbers

uk = cos θk and vk = sin θk, (2.23)

which gives us the variational minimization condition with respect to the

parameter θk in form

∂

∂θk
(2∑

k

ξk sin2 θk +
1

4
∑
kk′

sin 2θk sin 2θk′) = 0. (2.24)

As a result of minimization we obtain

ξk tan 2θk = −
1

2
∑
k′
Vkk′ sin 2θk′ . (2.25)

At this step, let us define an auxiliary parameter of the energy dimension

∆k = −∑
k′
Vkk′ukvk′ = −

1

2
∑
k′

sin 2θk′ , (2.26)
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which can be called a gap function or order parameter. Substituting (2.26)

into (2.25) we obtain

sin 2θk = 2ukvk =
∆k

Ek
, (2.27)

where Ek =
√
ξ2
k +∆2

k. For completeness, we can also calculate

cos 2θk = u2
k − v2

k =
ξk
Ek
. (2.28)

Having defined the relation between vk and uk in (2.16) and their combinations

in (2.27), (2.28), we can obtain the coherence factors in formal forms

u2
k =

1

2
(1 + ξk

Ek
) ,

v2
k =

1

2
(1 − ξk

Ek
) , (2.29)

where the excitation energy Ek =
√
ξ2
k +∆2

k. Substituting (2.27) into (2.26)

yields a non-linear gap equation

∆k = ∑
k′
Vkk′

∆k′

2
√
ξ2
k′ +∆2

k′
. (2.30)

The BCS theory assumes that the attraction potential takes a constant value

up to a cut-off imposed by the Debye frequency ωD. This means that the

coefficient Vkk′ fulfils the following relation

Vkk′ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

−V if ∣ξk∣, ∣ξk′ ∣ ⩽ h̵ωD,

0 otherwise,
(2.31)

which implies

∆k =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∆ for ∣ξk∣ ⩽ h̵ωD,

0 for ∣ξk∣ > h̵ωD.
(2.32)

We can consider the following extreme situations:

• ∣ξ∣ ≫ ∆ the energy of the particles is greater than the energy of the

superconducting gap and they behave like free electrons,



CHAPTER 2. INTRODUCTION TO SUPERCONDUCTIVITY 25

• ∣ξ∣ ≪ ∆ the electrons experience the pairing energy gap.

Assuming momentum-independent potential (justified in isotropic systems)

parameter ∆k can be cancelled on both side of the equation. Integrating

(2.30) over energy ξ in the range ±h̵ωD yields

1 = ν(0)V ∫
+h̵ωD

−h̵ωD

dξ

2
√
ξ2 +∆2

= ν(0)V sinh−1 ( h̵ωD
∆

) , (2.33)

or

∆ = h̵ωD sinh−1 ( 1

ν(0)V
) , (2.34)

where ν(0) is the normal density of states at the Fermi level. In the weak-

coupling limit V ν(0) ≪ 1 the gap function is given by the expression

∆ ≅ 2h̵ωDe
−1/V ν(0). (2.35)

In the Hartree-Fock-Bogoliubov approximation, the interaction term in

(2.19) can be linearized

−V ∑
kk′
ĉ†k↑ĉ

†
−k↓ĉ−k′↓ĉk′↑ ≃ −∑

k

ĉ†k↑ĉ
†
−k↓V ∑

k′
⟨ĉ−k′↓ĉk′↑⟩

−V ∑
k

⟨ĉ†k↑ĉ
†
−k↓⟩∑

k′
ĉ−k′↓ĉk′↑ + V ∑

k

⟨ĉ†k↑ĉ
†
−k↓⟩∑

k′
⟨ĉ−k′↓ĉk′↑⟩, (2.36)

where V ∑k⟨ĉ−k↓ĉk↑⟩ ≡ ∆. It yields the reduced BCS Hamiltonian

H ≃ ∑
kσ

ξkĉ
†
kσ ĉ

†
kσ − (∆∑

k

ĉ†k↑ĉ
†
−k↓ + h.c.) . (2.37)

Near the critical temperature the energy gap can be approximated by

following relation:

∆(T ) ≈ ∆(0)
√

1 − T

Tc
, (2.38)

where ∆(0) ≈ 1.74kBTC is the energy gap for T = 0. In the bulk supercon-

ductor, the spatial range of the Cooper pairs is called the coherence length
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ξS and is strictly connected with the energy gap ∆. The coherence length

ranges from tens to hundreds of nanometres and is defined as follows

ξS =
h̵vF
π∆

, (2.39)

where vF denotes Fermi velocity. The temperature dependence of the co-

herence length depends of the mean free path for the electrons le. In the

homogenous materials ξS ≪ le the coherence length has form

ξ(T ) = 0.74ξS

√
Tc

Tc − T
. (2.40)

For doped materials ξS ≫ le the coherence length obeys the following equation

ξ(T ) = 0.85
√
ξSle

√
Tc

Tc − T
. (2.41)

In contrast to the phonon superconductors, we can mention other types

of superconducting phases. For example, the superconducting state has been

found in the heavy fermion compound UGe2 [78], which is qualitatively similar

to the classic d−electron ferromagnets. In the ferromagnetic superconduc-

tor the quasiparticles responsible for the ferromagnetism form the Cooper

pairs, for which the triplet pairing appears (k ↑,−k ↑) [79]. Moreover, the

superconducting effect can exist in form of FFLO phase (Fulde-Ferrell-Larkin-

Ovchinnikov) [80–82]. In the presence of a magnetic field, we can find a pair

of electrons (k ↑, q − k ↓) in the bulk of the metal, which have nonzero total

momentum K ≠ 0. The external magnetic field induces a Zeeman energy

splitting, the Fermi spheres differ for individual spins, resulting in the pair-

ing of electrons into singlet pairs with total momentum q. Furthermore, it

is important to mention about the high-temperature superconductors, the

class of the materials which can not be simply described by the BCS the-

ory. High-temperature superconductors exhibit precursor pairing effects at

higher temperatures than Tc. Lately, it has been possible to obtain the first

superconducting state at room temperature, discovered in the mixture of

H2S+CH4 at high pressure 267 GPa [83]. Experimental results indicate that
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the high-temperature superconductors involve singlet Cooper pairing with a

d-wave symmetry [84], unlike in the BCS theory where the superconducting

energy gap has a s-wave symmetry.

2.3 The proximity effect and Andreev reflection

At the metal-superconductor boundary the properties of both materials are

mixed nearby the junction region [85–88]. The superconducting order enters

the metal in the vicinity of the junction and the density of Cooper pair is

exponentially descending together with the distance from the superconductor

(see Fig. 2.2). The leakage of Cooper pairs into the metal can be understood

as classical particle diffusion, where the pairing (coherence of Cooper pair) is

gradually destroyed by scattering on other particles or lattice ions of metal.

In the Ginzburg-Landau theory [89], the Cooper pair function is described by

following macroscopic wave-function

ψ(r) =
√
N(r)eiφ(r), (2.42)

where N(r) is density of Cooper pairs and φ(r) is their phase.

Figure 2.2: The visualization of the Andreev/normal reflection at the metal-

superconductor interface and the superconducting proximity effect (marked by

red dashed line) for T < TC , where ξS denotes the coherence length.
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The electron diffusion differs when particle transport is from metal to

superconductor. In metal, a moving electron characterised by an energy εkσ
with a Bloch wave-vector k and spin σ can cross the metal-superconductor

boundary. When the energy of electron is smaller than the superconducting

gap ∣εk − EF ∣ < ∆, where EF denotes the Fermi energy of the metal, the

electron cannot enter into a superconductor as a single particle (the normal

reflection). In other possible process, an incoming electron can be bound

to another electron with opposite momentum and spin, thus forming the

Cooper pair which next propagates in the superconductor. This process,

called the Andreev reflection, happens when the incoming electron with

energy smaller than the energy gap is reflected as a hole with the opposite

wave-vector −k and spin −σ. The Andreev reflection involves the electron-hole

transition process [90, 91], the reflected hole moves along the same path with

reverse direction as the incoming electron. The incoming electron crosses

the metal-superconductor interface and combines into the Cooper pair with

the remaining electron having the spin and momentum opposite to its own.

In case of ∣εk −EF ∣ < ∆ the reflection is dominated by Andeev process with

high probability RA ≈ 1 and the normal reflection may be ignored. Otherwise,

for energies larger than the gap, the electrons be normally reflected (see Fig.

2.3a).

The Andreev scattering can be described by the microscopic approach

with the Bogoliubov-de Gennes equations [92,93]:

Eψ(x) = (− h̵
2

2m

d2

dx2
− µ)u(x) +∆(x)v(x),

Eψ(x) = ( h̵
2

2m

d2

dx2
+ µ) v(x) +∆(x)u(x), (2.43)

where µ denotes the chemical potential, ∆(x) is a spatial pairing potential

and ψ(x) is the 2-component wave-function

ψ±k+ = (u
v
)e±ik+x, (2.44)
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ψ±k− = (u
v
)e±ik−x, (2.45)

defining the position in the space of the quasiparticles. By k+ and k− we denote

the wave-vectors for electrons and holes, respectively. In such model, we can

expect different Fermi momenta in the two materials, some elastic scattering

in the electrodes and at the metal-superconductor interface. Assuming that

there is no dissipation in the leads, the scattering at the phase boundary can

be modelled by the delta function V (x) =Hδ(x), with a potential barrier H.

At the metal-superconductor interface the following boundary conditions can

be assumed: the continuity of ψ at x = 0, i.e. ψN(0) = ψS(0) and its spatial

derivatives h̵/2m(ψ′S(0) −ψ′N(0)) =Hψ(0). Using these assumptions, the few

types of plane waves can be distinguished: ψinc an incident wave, a reflected

wave ψrefl and a transmitted wave ψtransm, having two possible solutions [93]:

ψinc = (1

0
)eiq+x, (2.46)

ψrefl = a(
0

1
)eiq−x + b(1

0
)e−iq+x, (2.47)

ψtransm = c(u
v
)eik+x + d(v

u
)e−ik−x, (2.48)

with

h̵k± =
√

2m[µ ±
√
E2 −∆2]1/2, (2.49)

h̵q± =
√

2m[µ ±E]1/2, (2.50)

and the appropriate coefficients: a = uv/γ, b = −(u2 − v2)[(H/h̵vF )2 +
iH/h̵vF ]/γ, c = u(1 − iH/h̵vF )/γ, d = ivH/γh̵vF , where γ = u2 + (u2 −
v2)(H/h̵vF )2. Leaving aside the elastic scattering at the boundary of those

two materials, the coefficients b and d are zero, which makes the Andreev

reflection out of dissipation of quasiparticles. The amplitude coefficients u, v

are energy dependent and they are defined in (2.29).
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The Andreev scattering can appear in different heterostructures, e.g.:

two N-S interfaces combined into a S-N-S heterostructure which form a

Josephson junction [91], schematically presented in Fig. 2.3a. In a Josephson

junction charge current flows without an applied voltage, this is known as a

supercurrent. The intensity of the supercurrent is exponentially dependent

on the correlation length of Cooper pairs, thickness of the normal metal layer

and what is the most important the macroscopic phase difference between the

superconductors φ = φS1 − φS2. For the tunnelling processes the transmitted

wave-function is phase dependent

ψtransm = c(ue
iφS1

v
)eik+x + d(ve

iφS2

u
)e−ik−x. (2.51)

Due to the finite length of metallic material, the discrete levels are formed

in the energy spectrum [92–95]. Satisfying the continuity conditions for

wave-functions and their derivates at the material boundaries (at x = ±L/2,
where L is width of the normal metal) the dispersion relation for particle

with energies below the superconducting gap ∣E∣ < ∆ takes form

e2iα(E)ei(k
+−k−)Le±iφ = 1, (2.52)

where the energy-dependent phase factor is defined by α(E) = arccos(E/∆).
In the systems composed of high-density superconductors (with negligible

spin-orbit interaction and without magnetic field), neglecting the elastic

scattering and considering the particle energies much lesser than the Fermi

energy ∣E∣ ≪ EF the eigenvalues can be calculated by using the relation

h̵(k+ − k−) = 2E/vF . It yields

E±
n =

h̵vF
2L

[2π (n + 1

2
) ± φ] (2.53)

where n = 0,1,2, ..., unless the levels approach ∆. In the case of Andreev

limit ∣E∣ ≪ EF [96], the Andreev reflection probability reaches from RA ≈
T 2
n/(2 − Tn)2 at E = 0 upto RA = 1 at E = ∆ [97], where Tn denotes the

normal transmission coefficient. In point contact superconducting junctions,
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Figure 2.3: Scheme of: a) Bound states in a short S-N-S junction with phase-

dependent energy E(φ) below the energy gap ∆, as result of Andreev reflection. b)

Andreev bound states formed in S-QD-N junction, having essential role in transport

spectroscopy [95].

where the superconductors are weakly connected, the contact region can be

treated as the normal metal. Then, the metal region is much smaller than

the coherence length of Cooper pairs LN ≪ ξS. For energies smaller that the

energy gap ∣E∣ < ∆ the relation in (2.52) has following solution

α(E) = arccos(E/∆) = ±(φ/2) (2.54)

which implies a simple relation

E = ±∆ cos(φ/2). (2.55)

Taking into account the elastic scattering, the discrete energy levels (bound

states) are given by

En = ∆ [1 − Tn sin2(φ/2)]1/2
, (2.56)

with n = 1,2, ...m the number of allowed modes and Tn denoting the normal

transmission coefficient for each independent scattering-matrix eigenmode in

the normal phase [98,99]. The scattering-matrix Tn takes values from range

⟨0,1⟩.
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In the metal-superconductor heterostructure, where the quantum dot is a

barrier between the materials, the Andreev states can also appear (see Fig.

2.3b). Emergence of the Andreev states in quantum dot strictly originates

from the neighbouring superconductor. Their nature depends on the size

of the pairing gap ∆ and the Coulomb repulsion U between electrons [7].

For relatively large value of ∆, the multiple Andreev reflections give rise to

Andreev bound states [100]. In the other limit, when the Coulomb repulsion U

is dominant value in the system, the Andreev reflections are suppressed [101].

The influence of ∆ and U on Andreev states will be discussed in details in

Sec. 3.1. Emergence of the Andreev states will be systematically investigated

in Sec. 3.4. Let us emphasize that such bound states are well detectable

experimentally. Fig. 2.4a presents the recent results obtained for the Andreev

in-gap states observed in differential conductance of current versus applied

source-drain voltage and Fig. 2.4b shows their behaviour at the different

temperatures.

Moreover, the proximity effect can be found in the different type of

systems, e.g. in superconductor-ferromagnet heterostructures [102], what

gives opportunity to study the dynamical properties of Josephson nanojunction

with ferromagnet impurities [103,104].

In multiterminal devices based on quantum dots, the other types of

Andreev’s scattering take place. For example, in a Cooper pair splitter device

experimentally realised by Schönenberger’s group [105] and theoretically

investigated by [106–108] (schematically presented in Fig. 2.5), we can

distinguish few types of scattering. The first possibility is ballistic transport

(not presented in figure), which involves the flow of both electrons through the

induced Andreev states on quantum dot, between the left and right electrodes.

A second possibility for charge transport is the Direct Andreev Refflection

(DAR), which occurs when an electron from the left electrode flows through

the quantum dot on which it combines a pair with an electron from the second

electrode (schematically presented in Fig. 2.5a). Then the paired electrons
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flow into the superconductor. The third transport possibility is the Crossed

Andreev Reflection (CAR), which involves the flow of an electron from one

electrode to the quantum dot, on which the electron pairs up with an electron

originating from the electron-hole transition process. In such case, the hole

is reflected to the opposite electrode, what is schematically presented in Fig.

2.5b.

Figure 2.4: The experimental evidence for Andreev bound states (ABS) in graphene

quantum dot: a) the differential tunnelling conductance versus bias voltage, b)

in-gap states observed for different temperatures: 0.26, 0.45, 0.67, 0.86, 1.25 and

1.54 K [109].

Figure 2.5: Schematic visualization of the multiterminal junction showing: a) Direct

Andreev Refflection (DAR), b) Crossed Andreev Reflection (CAR) processes.

We presented a few examples of devices based on quantum dots and
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possible scenarios of charge transport. In this thesis, we consider only two-

terminal nanojunctions with the single and double quantum dot. Their

theoretical investigation will be presented in the next chapters.



Chapter 3

Dynamics of Andreev states in

single quantum dot system

This chapter describes dynamical properties of a single quantum dot placed

between the metallic and the superconducting leads (N-QD-S), schematically

presented in Fig. 3.1. We would like to investigate the time-dependent

processes accompanying the formation of Andreev bound states in the system

caused by the connection of circuit elements to each other. We identify

their features and behavior depending on the system properties and initial

conditions and determine the time necessary to reach equilibrium or steady-

state by the system. Further, we investigate how changes in system settings

affect the Andreev bound states. We analyse the evolution of the system after

these changes, which reveals a number of new physical phenomena. In this

chapter, we present results of time-dependent charge current and differential

conductance, which could be experimentally examined. In what follows, we

investigate the dynamics imposed by: transient effects (Sec. 3.4), rapid

application of source-drain voltage (Sec. 3.5), quench in the orbital level (Sec.

3.6) and quench in coupling to superconducting lead (Sec. 3.7). Moreover,

this chapter includes the theoretical description of the mathematical method

based on the Heisenberg equations of motion technique (Sec. 3.3), used to

35



CHAPTER 3. DYNAMICS OF ANDREEV STATES IN SINGLE . . . 36

determine the time-evolution of the system.

3.1 Model Hamiltonian

The quantum dot (QD) coupled on one side to the metallic (N) and on the

other side to the superconducting (S) reservoirs (Fig. 3.1) can be described

by the second quantization Hamiltonian

Ĥ = ĤQD + ĤN + ĤN−QD + ĤS + ĤS−QD. (3.1)

The quantum dot part is given by

ĤQD=∑
σ

εdd̂
†
σd̂σ +U n̂↑n̂↓ (3.2)

where εd is its discrete energy level, d̂†
σ (d̂σ) is creation (annihilation) operator

of the quantum dot electron with spin σ = {↑, ↓}. The second part of (3.2) is

an interaction term describing the Coulomb repulsion U between the electrons

with the opposite spin, where n̂σ = d̂†
σd̂σ is a particle number operator.

The normal metallic lead is described as the free fermionic gas

ĤN = ∑
kσ

εkσ ĉ
†
kσ ĉkσ, (3.3)

where summation is over the energy εkσ of electrons with wave-vector k

and spin σ. In the system, the hybridization between the quantum dot and

external lead is expressed by

ĤN−QD = ∑
kσ

Vk (ĉ†kσd̂σ + h.c.) , (3.4)

where Vk denotes the coupling of itinerant electrons with quantum dot.

The superconducting effects are considered by the BCS-type Hamiltonian

ĤS = ∑
qσ

εqσ ĉ
†
qσ ĉqσ −∑

q

(∆scĉ
†
q↑ĉ

†
−q↓ + h.c.) , (3.5)

where ∆sc denotes the pairing energy gap. The hybridization between the

quantum dot and superconducting lead is described by

ĤS−QD = ∑
qσ

Vq (ĉ†qσd̂σ + h.c.) (3.6)
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Figure 3.1: Illustration of single quantum dot placed between the normal (N) and

the superconducting (S) reservoirs. The energy level of QD can be controlled by the

additional gate VG, U is the Coulomb repulsion potential and ΓN/S are couplings

to the external reservoirs [110].

with an appropriate coupling constant Vq. Assuming this gap ∆sc as the

largest energy scale in the system, we will focus on the processes in the

subgap regime. Under such conditions the fermionic degrees of freedom can

be integrated out, resulting in the low-energy physics described by [111,112]

ĤQD + ĤS + ĤS−QD ≈ ∑
σ

εdd̂
†
σd̂σ +U n̂↑n̂↓ +

ΓS
2

(d̂↓d̂↑ + h.c.) , (3.7)

where ΓS/2 plays a role of the effective pairing potential induced in quantum

dot [61]. For simplicity, we consider the energy-independent coupling ΓS =
2π∑q ∣Vq ∣2δ (ε − εq) in the wide-band limit approximation.

3.2 Selected experimental realizations

Presently available techniques for fabrication of nanostructures allow

to create various devices based on the quantum dots. As an example, we

present a few of such systems. The popular way to construct a nanojunction

based on a single quantum dot is STM (scanning tunneling microscope).

Using STM tip one can deposit either a single atom or a cluster of atoms

on a surface of arbitrary material. This approach allows to control the

coupling strength between the quantum dot and the surface by defining the
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distance between them. It gives the possibility to study the bound states

inside the superconducting energy gap by conductance spectroscopy [113].

Another example, Fig. 3.2a (discussed in Ref. [114]) presents multiterminal

heterostructure composed of the carbon nanotube (CNT) partially covered

by superconducting layer (S) of Pb. The carbon nanotube is connected

on both sides to electrodes made of Pd (N1, N2). In the system, SG1 and

SG2 are palladium controlling gates. The manufactured system presented in

Fig. 3.2a can work as the simple normal metal-quantum dot-superconductor

heterostructure and as the Cooper pair splitter [105], depending on the

controlling gate potentials. Another example of N-QD-S system is presented

Figure 3.2: The experimental realisations of single quantum dot system. Panel a)
presents the single quantum dot system based on the carbon nanotube [114]. Panel

b) is schematic visualization of the single quantum dot system made of InAs/InP

nanowire presented in panel c) [115].

in Fig. 3.2b,c [115]. The middle panel is a schematic visualization of the

manufactured system presented in the right side panel. In this case, the system

is made of the InAs/InP nanowire covered by the gold (N) and vanadium (S)

leads. Under the nanowire the plunger-gate (pg) and superconductor-barrier

gate (sg) are located.
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3.3 Equations of motion approach

For investigating the evolution of any observable Ô(t) we use the following

equation of motion

i
dÔ(t)
dt

= 1

h̵
[Ô(t), Ĥ] + i δ

δt
Ô(t). (3.8)

In particular, the time-dependent charge current flowing between QD and

metallic lead jNσ(t) can be found from the Heisenberg equation of motion

for the particle number operator n̂kσ(t) = ĉ†kσ(t)ĉkσ(t). The current flowing

in the superconducting reservoir jSσ(t) and occupancy of the quantum dot

nσ(t) = ⟨n̂σ(t)⟩, can be indirectly calculated from the charge conservation law
d
dtnσ(t) = jNσ(t) + jSσ(t).

We start from the momentum and spin dependent current jNkσ(t) defined

as the time derivative of the statistical average for the particle number operator

⟨n̂kσ(t)⟩
jNkσ(t) = −e

d

dt
⟨n̂kσ(t)⟩ = −

ie

h̵
⟨[Ĥ, n̂kσ(t)]⟩ . (3.9)

Substituting the commutator

[Ĥ, n̂kσ(t)] = −Vkĉ†kσ(t)d̂σ(t) + Vkd̂
†
σ(t)ĉkσ(t) (3.10)

into (3.9) we obtain

jNkσ(t) =
ie

h̵
⟨Vkĉ†kσ(t)d̂σ(t) − Vkd̂

†
σ(t)ĉkσ(t)⟩. (3.11)

Subtracting the conjugated numbers z − z∗ = 2i Im(z) gives us the current

formula for charge current

jNkσ(t) =
2e

h̵
Im (⟨Vkd̂†

σ(t)ĉkσ(t)⟩) . (3.12)

The total charge current contributed by all electrons is obtained by summation

over momenta k

jNσ(t) =
2e

h̵
Im(∑

k

Vk⟨d̂†
σ(t)ĉkσ(t)⟩) . (3.13)
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At this step, the current formula depends on the quantum statistical

averaging of operators ⟨d̂†
σ(t)ĉkσ(t)⟩, which is not trivial problem to solve.

One possible route to obtain this relies on expanding the operator ĉkσ(t) into

sum of the initial ĉkσ(0) and additional terms, emerging during evolution

of the system. The equation of motion for annihilation operator d
dt ĉkσ(t) =

i[Ĥ, ĉkσ(t)] (for h̵ = 1) yields

d

dt
ĉkσ(t) + iεkσ ĉkσ(t) = −iVkd̂σ(t). (3.14)

We can express (3.14) as a differential equation of the form

dy(x)
dx

+ f(x)x = y(x), (3.15)

which has a general solution

y(t) = y(0)e−∫
x
0 f(x′)dx′ + ∫

x

0
g(x′)e−∫

x
x′ f(x′′)dx′′ . (3.16)

Thus, the explicit formula for time-dependent operator ĉkσ(t) takes the form

ĉkσ(t) = ĉkσ(0)e−i ∫
t
0 εkσ(t′)dt′ − i∫

t

0
dt′Vke

−i ∫ tt′ εkσ(t′′)dt′′ d̂σ(t′). (3.17)

Substituting (3.17) into (3.13), we obtain the total current expressed by

following equation

jNσ(t) =
2e

h̵
∑
k

Im(Ṽk(t)⟨d̂†
σ(t)ĉkσ(0)⟩ − i∫

t

0
dt′Ṽ ∗

k (t′)Ṽk(t)⟨d̂†
σ(t)d̂σ(t′)⟩) ,

(3.18)

where Ṽk(t) = Vke−i ∫
t
0 εkσ(t′)dt′ denotes the time-dependent coupling to the

metallic lead and Ṽ ∗
kσ(t′)Ṽkσ(t) = ∣Vk∣2e−i ∫

t
t′ εkσ(t′′)dt′′ is a product of the time-

dependent couplings at different times. In the wide-band limit approximation,

assuming constant energy levels in time εkσ(t) = εkσ, the hybridization function

Ṽ ∗
kσ(t′)Ṽkσ(t) appearing in (3.18) simplifies to [116]

∑
k

∣Vk∣2e−i ∫
t
t′ εkσ(t′′)dt′′ = ∑

k

∣Vk∣2e−i ∫
t
t′ εkσdt

′′ = ΓN
2
δ(t − t′), (3.19)

where ΓN = 2π∑k ∣Vk∣2δ(ε − εk) is the coupling to metallic lead.



CHAPTER 3. DYNAMICS OF ANDREEV STATES IN SINGLE . . . 41

Finally, one obtains the charge current expressed in the general form

jNσ(t) = 2 Im [∑
k

Vke
−iεkσt⟨d̂†

σ(t)ĉkσ(0)⟩ −
iΓN

2
⟨n̂σ(t)⟩] . (3.20)

To calculate the current jNσ(t) we have to solve numerically a set of cou-

pled differential equations for the expectation values: ⟨n̂σ(t)⟩, ⟨d̂↓(t)d̂↑(t)⟩,
⟨d̂†
↑(t)ĉk↑(0)⟩, ⟨d̂

†
↓(t)ĉk↓(0)⟩, ⟨d̂↑(t)ĉk↓(0)⟩ and ⟨d̂↓(t)ĉk↑(0)⟩. Explicit form of

the individual functions is presented in Appendix A.1. Such method allows

to investigate the time-dependent properties of the order parameter func-

tion χ(t) = ⟨d̂↓(t)d̂↑(t)⟩, which characterizes evolution of the on-dot electron

pairing.

For numerical purposes we use the Runge-Kutta of 4th order, assuming

various initial conditions for occupancy of the quantum dot nσ(t = 0).

3.4 Transient effects and steady-state properties

To demonstrate dynamics of the Andreev bound states we first consider

their buildup after suddenly connecting the quantum dot to external reservoirs.

Processes accompanying the evolution from the initial conditions to the

equilibrium state, when the steady properties are established, can be regarded

as transient effects. For computational reasons it is convenient to assume

that initially, at t = 0, the quantum dot is disconnected from both external

reservoirs and it is connected to the system constituents at t = 0+. Fig. 3.3

presents numerical results obtained for currents jN↑(t), jS↑(t), occupancy of

quantum dot n↑(t) and the real part of the order parameter χ(t). Imaginary

par of χ(t) is negligibly small in comparison to ∣Reχ(t)∣. We observe the

evolution of the system (in absence of source-drain voltage) towards the

steady state dependent on various initial quantum dot occupancy. The initial

occupancy affects the transient currents and the charge accumulated in the

quantum dot over time, as can be seen in their plots. If initially, the quantum

dot is empty, we observe quantum oscillations due to the flow of Cooper
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pairs back and forth between the quantum dot and the superconductor. In

another case, when the quantum dot is initially occupied by a single electron,

we observe gradual filling of quantum dot by electrons from the normal

lead, because the Cooper pairs cannot flow onto the quantum dot. The

relaxation processes originate from the coupling of the quantum dot to a

continuum of electrons of the metallic lead. For the transient currents, the

envelope functions is described by e−ΓN t [117]. We also observe that the initial

occupancy of the quantum dot does not affect creation of an on-dot pairing.
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Figure 3.3: The transient evolution of currents jN↑(t), jS↑(t), occupancy n↑(t) and

the order parameter Reχ(t), imposed by a sudden coupling of the quantum dot

to both external leads at t = 0+ for various initial occupancy (n↑(0), n↓(0)). The
results are obtained for zero source-drain voltage and system parameters: εd = 0,

U = 0, ΓN = 0.2, ΓS = 1.

The oscillating character of evolution is reminiscent of the Rabi oscillations

of two-level quantum system. At time t = 0, the quantum dot is characterized
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by the single energy peak at εd. Then for the time t > 0, the quantum

dot energy level evolves into a pair of Andreev bound states at energies

EA = ±
√
ε2
d + (ΓS/2)2. Those quantum oscillations are caused by fluctuations

in the occupancy of these two-level system. In the transient evolution, the

activation of quantum oscillations strictly depends on the initial conditions

(for analytical reasoning see Ref. [117]). They are not observed if the initial

configuration [n↑(0), n↓(0)] is singly occupied (1, 0) or (0, 1), as shown in Fig.

3.3.

Empirical observation of the Andreev states formation can be done by the

differential conductance GN(V, t) = d
dV jN↑(t) of the charge current flowing

between the quantum dot and the metallic lead, when the chemical potential

of the normal lead µN is detuned from µS by an applied source-drain voltage

eV = µN − µS. We assume the superconductor to be grounded, µS =0. The

voltage is imposed at t = 0. Fig. 3.4 shows the differential conductance GN (in

Figure 3.4: Evolution of the differential conductance GN (in units of 2e2/h) with
respect to source-drain voltage V and time t, after a sudden coupling of the quantum

dot to both external leads at t = 0+. For computation we used: εd = 0, U = 0,

ΓN = 0.05, ΓS = 1.
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units of 2e2/h) with respect to the source-drain voltage V and time t. In this

particular uncorrelated case of quantum dot system, where εd = 0, we observe

formation of the Andreev bound states localized symmetrically with respect

to the chemical potential, at energies EA = ±ΓS/2. Emergence of the Andreev

peaks has an oscillating character with period 2π/EA, damped in time. Their

damping is governed by the envelope function e−ΓN t and originates form the

coupling of the quantum dot to the continuum of free electrons of the metallic

lead [117].

To calculate the conductance in the correlated quantum dot system by

Heisenberg’s equations of motion technique we adapt mean-field approxi-

mation, suitable for a weakly correlated system. Using the Hartree-Fock-

Bogoliubov (HFB) approximation the Coulomb repulsion term in (3.2) can

be written as

d̂†
↑d̂↑d̂

†
↓d̂↓ ≃ n↑(t)d̂†

↓d̂↓ + n↓(t)d̂
†
↑d̂↑ − n↑(t)n↓(t)

+ χ(t)d̂†
↑d̂

†
↓ + χ∗(t)d̂↓d̂↑ − ∣χ(t)∣2 . (3.21)

The Hartree-Fock term can be included in the renormalized quantum dot

energy level ε̃d ≡ εd + Un−σ(t) and the anomalous contribution rescales the

effective pairing potential Γ̃S ≡ ΓS − 2Uχ(t) of the induced order parameter

potential χ(t) = ⟨d̂↓(t)d̂↑(t)⟩.
Fig. 3.5 presents the results obtained for weakly correlated heterostructure.

Here, the top and bottom panels show the results for Coulomb repulsion

U = 0.25 and U = 1, respectively. Both panels refer to particle-hole symmetry

(εd = −U/2), when the quantum dot is half-filled in the steady state limit.

Like in the uncorrelated case, the differential conductance GN evolves towards

its steady-state limit, exhibiting emergence of the bound states around EA =
±
√

(εd +U/2)2 + (ΓS/2)2. Relaxation processes are governed by function

e−ΓN t and the quantum oscillations have the period 2π/EA.
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Figure 3.5: Evolution of the differential conductance GN (in units of 2e2/h) with
respect to voltage V and time t, after a sudden coupling of the quantum dot to both

external leads at t > 0 treating the electron correlation effects by the mean-field

approximation. In panel a) U = 0.25 and b) U = 1. The other model parameters

are: ΓN = 0.05, ΓS = 1, εd = −U/2 [110].

3.5 Influence of suddenly varied source-drain voltage

Transient evolution of the uncorrelated system has been characterized by

the time-dependent observables shown in Fig. 3.3 and conductance shown

in Fig. 3.4. To have a deeper insight into the time-dependent observables

after the perturbation, let us discuss separately the plots of jNσ(t), jSσ(t)
presented in Fig. 3.6. Until t = 30/ΓS, we display the transient evolution

caused by abrupt coupling of the quantum dot to the external leads of unbiased

junction. The damped quantum oscillations are controlled by the coupling

ΓN to the normal lead [117,118], what is visible in the analytic formulas for
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the observables:

jSσ(t) =
ΓS
2

sin (ΓSt) e−ΓN t, (3.22)

jNσ(t) =
ΓN
2

sin (ΓSt + ϕ0) e−ΓN t, (3.23)

where ϕ0 denotes the phase shift between the currents. When the system

reaches its equilibrium we apply source-drain voltage to the system at t =
30/ΓS. We assume step-like change of the chemical potential µN → µN +∆µN

at t = 30/ΓS. In Fig. 3.6, the evolution exhibits quantum beats appearing in

the current jNσ(t).
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Figure 3.6: The transient evolution of currents (in units of e/h), after a sudden

coupling of the quantum dot to both external leads at t = 0+ and their evolution

after the jump of chemical potential level µN → µN +∆µN at t ≥ 30. The other

model parameters: µN = 0, ΓN = 0.2, ΓS = 1, εd = 0, U = 0 [119].

At this point, we would like to recall the essential properties of the

quantum dot system without the presence of superconductor. It has been

shown that the abrupt change of the source-drain voltage has significant

influence on the current flowing through the quantum dot placed between
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normal leads [120–122]. After the sudden application of the source-drain

voltage, the time-dependent current structure shows the coherent oscillations

with the frequency ω = ∣µN − εd∣.
In our system, the proximitized quantum dot is characterized by a pair

of in-gap bound states with energies ±ΓS/2, therefore the current jNσ(t)
is a superposition of two contributing currents with the frequencies ω1/2 =
µN ± ΓS/2, respectively. In consequence, the current jNσ(t) is combination of

the high frequency component ω = µN and the low frequency beats with the

time period T = 2π/ΓS. Moreover, we notice that the current jSσ(t) oscillates

with only lower frequency. Difference between these two currents is caused by

the time-dependent occupancy of the quantum dot, obeying the local charge

conservation d
dtnσ(t) = jNσ(t) + jSσ(t).

Analysis of the experimentally measured time-dependent current can

indirectly give information about the coupling strength between the quantum

dot and the superconducting reservoir, by determining the period of current

oscillations ΓS = 2π/T .

3.6 Quench in orbital level position

Let us consider influence of the quench imposed on the quantum dot

energy level. In this scenario, we abruptly change the quantum dot energy

level εd → εd + ∆εd at time t = 30/ΓS (like previously, after the transient

processes are completed) and observe the system’s response with completely

different behaviour of evolution for all observables (Fig. 3.7). The post-quench

evolution exhibits the oscillatory structure of all observables. The oscillations

depend on the energy level of the quantum dot and the coupling to the

superconducting lead T = 2π/
√

Γ2
S + 4(∆εd)2 [117]. In absence of the source-

drain voltage (µN = µS), the oscillations gradually disappear over sufficiently

long time and the currents jSσ, jNσ vanish. In evolution after the sudden

shift of quantum dot energy level, the envelope function has exponential form
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Figure 3.7: The transient evolution of currents (in units of e/h), imposing a sudden

coupling of the quantum dot to both external leads at t = 0+ and their the post-

quench evolution after the jump of the quantum dot energy level εd → εd +∆εd at

t ≥ 30. The other model parameters: µN = 0, ΓN = 0.2, ΓS = 1, εd = 0, U = 0 [119].

∼ e−ΓN t̄ (where t̄ = t − 30/ΓS denotes the time measured from the quench of

εd).

Influence of electron correlations

We now consider the Coulomb repulsion U between two electrons and its

influence on the post-quench evolution induced by the shift of the quantum

dot energy level. In the system with the correlated quantum dot, the orbital

energy level εd = −U/2 corresponds to the particle-hole symmetry point and

it is convenient to take this value as the initial condition. Fig. 3.8 shows

the evolution of physical observables after the quantum dot energy level is

changed from εd = −U/2 to its final value εd indicated on the y-axis.
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Figure 3.8: The time-dependent quantum dot’s occupation n(t), current jS(t) and

the real part of ⟨d̂↓(t)d̂↑(t)⟩, after a sudden quench in quantum dot energy level

from εd(t ≤ 0) = −U/2 to εd(t > 0) = εd. The other model parameters: ΓN = 0.05,

ΓS = 4 and U = 1 [110].

In this case of strongly coupled quantum dot to the superconducting

lead (ΓS/U = 4), the evolution presents the damped oscillating behaviour

of observables, similarly like without correlations. The amplitude of the

oscillation increases with a greater difference between the quantum energy

level before and after the quench ∣εd(t ≤ 0) − εd(t > 0)∣. The more the energy

levels are shifted away from the levels before the change, the stronger we

disturb the system, making its response more intense. This is better noticeable

as we move away from the particle-hole symmetry point (indicated by the

dashed line). When the occupancy of the quantum dot is far from half-filling,

the Cooper pair can flow back and forth between the quantum dot and the

superconducting lead, what is visible by the well pronounced oscillations in
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the observables. Since QD spectrum consists of pairs of the Andreev bound

states at ±EA these dynamical processes are reminiscent of the two-level Rabi

oscillations. As in the uncorrelated case, the damping process occurs with a

relaxation rate τ ∼ 1/ΓN . What is relevant, the perturbation in the quantum

dot energy level affects the post-quench state of the system in the long time

limit. For example, the occupancies tend to stationary value n(t→∞) ≈ 0.57,

for the final QD energy εd/U = 0.5 and n(t → ∞) ≈ 1.23, for εd/U = −1,

respectively.

Another feature appearing in post-quench evolution is π-shift of the

oscillations upon crossing the half-filling level εd = −U/2, marked by the

dashed lines in Fig. 3.8. This phenomenon resembles the 0 − π transition

reported for Josephson junctions under stationary conditions [123,124]. The

oscillatory behaviour is also visible in the real part of the time-dependent

order parameter χ(t), which can be regarded as a quantitative measure of

the on-dot pairing. In a short time after the quench, the value of Reχ(t)
oscillates with significant amplitude.

In the case, when the quantum dot is weakly coupled to the supercon-

ducting lead, ΓS/U = 1, we observe significant modifications of the oscillatory

time-dependent quantities (see Fig. 3.9). In particular, the weaker the

coupling strength ΓS enlarges the period of the oscillations of all quanti-

ties. We observe that the final value of the quantum dot energy level after

the quench has an extensive effect on the frequency. For a larger value of

∣εd(t ≤ 0)−εd(t > 0)∣ the shift of frequency to higher values is visible. Moreover,

it is important to notice that the change of ΓS has no impact on amplitude

range of the superconducting current jS(t). Smaller value of ΓS is equivalent

to the lesser value of the on-dot pairing potential. The change of ΓS affects

the final values of the other quantities. For example, n(t→∞) ≈ 0.2 for the

quench to εd/U = 0.5 and n(t→∞) ≈ 1.55 for εd/U = −1, exceed the range of

the occupation number in Fig. 3.8.

In addition, to complete our investigation of the system evolution after
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Figure 3.9: The time-dependent quantum dot’s occupation n(t), current jS(t) and

the real part of ⟨d̂↓(t)d̂↑(t)⟩, after a quench in quantum dot’s energy level from

εd(t ≤ 0) = −U/2 to εd(t > 0) = εd. The other model parameters: ΓN = 0.05, ΓS = 1,

U = 1 [110].

shifting the quantum dot energy level we present the differential conductance

GN diagram in Fig. 3.10. In this plot, we demonstrate the evolution of

Andreev states and their steady state positions after the shift of the energy

level εd = U/2 → −U/2. We visualize the post-quench evolution in the wide

spectrum of the source-drain voltage. After the sudden jump of the quantum

dot energy level εd = U/2 → −U/2 we observe a similar response of the

system like in previous cases. In particular, the quantum oscillations of the

differential conductance are damped in time and the Andreev bound states

emerge with the same spectral weight located with respect to the chemical

potential µN = eV .



CHAPTER 3. DYNAMICS OF ANDREEV STATES IN SINGLE . . . 52

Figure 3.10: The post-quench evolution of the differential conductance GN (in

units of 2e2/h) with respect to voltage V and time t, after a sudden change of the

quantum dot’s energy level εd = U/2→ −U/2 at t = 0. The other model parameters:

ΓN = 0.05, ΓS = 2, U = 1 [110].

3.7 Response to sudden coupling ΓS

For further understanding of the dynamics of the perturbed quantum dot

system, we investigate another type of quench. In this section we look at

evolution after a rapid coupling of the quantum dot to the superconducting

lead. Let us remind the stationary solution for the system in the limit of

ΓN = 0 and ∆ → ∞, where the model parameters εd, U and ΓS determine

character of QD ground state. The quantum dot ground state can exist in

the singly occupied ∣σ⟩ or in the BCS-type u ∣0⟩ − v ∣↑↓⟩ configuration [125].

The border line between the doublet and singlet state occurs at

4ξ2
d + Γ2

S = U2, (3.24)

where ξd = εd + U/2. Crossing from one to another configuration is called

a quantum phase transition [61] and plays an essential role in the interplay

between the on-dot pairing and the correlation effects. Here, Fig. 3.11 shows
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Figure 3.11: The time-dependent quantum dot’s occupation n(t), current jS(t)
and the real part of ⟨d̂↓(t)d̂↑(t)⟩, after a quench in the coupling strength ΓS(t)
from zero to its final value ΓS . The other model parameters: εd = −U/2 − U/20,

ΓN = 0.05 [110].

the evolution of physical quantities after abrupt coupling of the quantum dot

to superconducting lead, 0→ ΓS, for the half-filled quantum dot (εd = −U/2)
and weak coupling to the metallic reservoir, ΓN = 0.05. As before, we observe

the oscillating behaviour of the physical quantities in time, which is the result

of the Cooper pairs leaking into the quantum dot and creating the Andreev

states. In the system, the quantum phase transition occurs at ΓS = U when

the quantum dot level εd = −U/2. In Fig. 3.11, by the white dashed line, we

marked the theoretical border between the singly occupied and BCS-type

ground state configurations. The quantum phase transition is clearly visible

in change of Reχ(t) in Fig. 3.11, where we observe development of the order
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parameter after coupling quantum dot to the superconducting lead. In the

doublet region (ΓS < U) the order parameter has negligible values. In the

same region for jS(t) (middle panel), we do not observe significant charge

flow due to the dominant Coulomb repulsion. The singlet region appears for

ΓS > U , where the system relaxes to the BCS-type ground state through a

sequence of damped quantum oscillations with significant amplitude right

after the quench. For stronger coupling ΓS we observe faster oscillations. The

boundary between doublet and singlet states is not sharp. We observe a

crossover rather than a transition between these configurations caused by the

coupling ΓN ≠ 0.

Quench in the coupling to the superconducting lead can be analysed in

the differential conductance plots. Fig. 3.12 presents the results obtained

for ΓS = 0→ 2. For this specific scenario, we consider the half-filled quantum

dot εd = −U/2 and set the Coulomb potential U = 1. Before the quench, the

Figure 3.12: The post-quench evolution of the differential conductance GN (in

units of 2e2/h) with respect to voltage V and time t, imposed by a quench in

hybridization strength ΓS = 0→ 2 at t = 0. The other model parameters: εd = −U/2,
ΓN = 0.05, U = 1 [110].
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correlated quantum dot is characterized by two quasiparticle peaks at energies

εd and εd +U . The rapid coupling to the superconducting lead induces the

proximity effect which entails the creation of new states at energies ±EA.
Additionally, the energies of new-created Andreev states, in the limit of ΓN = 0

are EA ∼
√

(εd +U/2)2 + (ΓS/2)2. In the limit of ΓN = 0 the border between

the singlet and the doublet configuration is well specified by (3.24). From the

cognitive point of view, we can ask what is the response of the system when the

coupling to the superconducting lead drives the system from one to another

configuration. In Fig. 3.13 we present two cases, the first when we observe the

transition from the doublet to singlet configuration by increasing the coupling

ΓS (upper panel) and the second situation when change of the value of ΓS

induces a conversion in the opposite direction (lower panel). Starting from

the initial conditions, at t > 0, the quantum dot is coupled to both reservoirs

and its energy level is detuned to the half-filled occupation εd = −U/2, where
the upper panel shows strong coupling to superconducting lead with ΓS > U
and lower panel a weak coupling case ΓS < U . Until the time t = 5/2ΓN , both

panels show the transient effects and formation of the doublet/singlet state

on the quantum dot. When the system reaches equilibrium, the quantum

oscillations of GN will no longer occur. We abruptly reverse these couplings

ΓS at t = 5/2ΓN . This shift of ΓS value caused transitions from the doublet-

to-singlet (panel a) and from the singlet-to-doublet (panel b), respectively.

Regardless of the type of transition, we observe the quantum oscillations with

period T = 2π/EA, where EA ∼
√

(εd +U/2)2 + (ΓS/2)2 are Andreev bound

states in the limit of ΓN = 0. Moreover, the post-quench evolution is not

completely identical to the transients of GN . Differences have origin in the

slightly varied initial configurations of the system before the quench.
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Figure 3.13: The evolution of the differential conductance GN (in units of 2e2/h)
with respect to voltage V and time t, obtained across the doublet-singlet transition

due to the quench of ΓS performed at t = 5
2ΓN

. The upper panel presents transition

from doublet to singlet: ΓS = 0.6 → 1.4. The lower panel present transition from

singlet to doublet: ΓS = 1.4 → 0.6. The other model parameters: εd = −U/2,
ΓN = 0.05, U = 1 [110].

3.8 Summary

In this chapter, we have analysed the transient effects originating from

linking the system components together. We have shown that the activation

of quantum oscillations in transient charge currents strongly depends on

the initial conditions. They are not observed if the quantum dot is initially

occupied by a single electron. Otherwise, when the quantum dot is initially

empty, the evolution to the steady state of the system exhibits quantum

oscillations with the period T = 2π/EA, where EA = ±
√

(εd +U/2)2 + (ΓS/2)2
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is energy of the Andreev bound states.

We noticed, that in the evolution of the system (uncorrelated quantum

dot) after the sudden change of source-drain voltage the beats in the current

jNσ(t) appear. The current jNσ(t) is a superposition of two contributing

currents with the frequencies ω1/2 = µN ± ΓS/2, respectively.
For the uncorrelated quantum dot, the evolution after the shift of orbital

level position exhibits the oscillatory structure of observables. The oscilla-

tions depend on the energy level of the quantum dot and the coupling to

the superconducting lead T = 2π/
√

Γ2
S + 4(∆εd)2. Investigating the system

including the correlations, we have shown the π-shift in the oscillations upon

crossing the half-filling level, which resembles the 0 − π transition found for

Josephson junctions in stationary conditions.

Finally, we also investigated the evolution of the system from its singlet

configuration to doublet state and vice versa by changing the coupling strength

ΓS. This dynamic change of configuration activates the quantum oscillations

with the period T = 2π/EA regardless of the direction of the transition, where

EA = ±
√

(εd +U/2)2 + (ΓS/2)2.

Independently of the initial state, the relaxation of the post-quench pro-

cesses are governed by function e−ΓN t.





Chapter 4

Periodically driven quantum dot

In this chapter, we consider another dynamical scenario for N-QD-S

heterostructure, where the quantum dot energy level is periodically varied by

external fields. We investigate the influence of external fields on the Andreev

bound states, the charge current averaged over a period of oscillations and the

differential conductance. The periodically driven quantum systems constitute

a broad field of physics, and we would like to explore the phenomena that

appear in our N-QD-S nanojunction under such conditions. The suitable

method to study systems described by periodic Hamiltonian H(t) =H(t+T ),
with period T = 2π/ω, is Floquet theory [126,127]. We will present the basics

of Floquet theory and its application to the considered quantum system.

Results presented in this chapter were obtained by combining the Floquet

theory with Green’s function method.

4.1 Floquet theory

Let us start by presenting essential ingredients of the Floquet approach.

For the time periodic Hamiltonian the solution of time-dependent Schrödinger

equation

ih̵
d

dt
∣ψ(t)⟩ = Ĥ(t)∣ψ(t)⟩ (4.1)

59
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takes the special form called Floquet state ∣ψn(t)⟩, where

∣ψn(t)⟩ = ∣un(t)⟩e−iεnt/h̵ (4.2)

is time-periodic mode ∣un(t)⟩ = ∣un(t+T )⟩ (called micromotion of the system)

and εn is the corresponding quasienergy. These Floquet states (4.2) are

eigenstates of the time-evolution operator over one driving period

Û(t0 + T, t0)∣ψn(t0)⟩ = e−iεnT /h̵∣ψn(t0)⟩. (4.3)

The eigenvalue e−iεnT /h̵ (the phase factor) is independent of t0, at which the

evolution over one time period starts. The time-dependent Floquet states

∣ψn(t)⟩ can be computed by acting with the time-evolution operator on the

Floquet state in specific time t0: ∣ψn(t)⟩ = U(t, t0)∣ψn(t0)⟩. The time-evolution

operator can be written in the form

Û(t2, t1) = ∑
n

e−iεn(t2−t1)/h̵∣un(t2)⟩⟨un(t1)∣, (4.4)

because for every Floquet state one can choose a complete orthonormal basis

at arbitrary time t. Then the evolution of a state ∣ψ(t)⟩ can be expressed as

∣ψ(t)⟩ = ∑
n

cne
−iεn(t−t0)/h̵∣un(t)⟩, (4.5)

where cn denote the time-independent coefficients, cn = ⟨un(t0)∣ψ(t0)⟩.
The dynamics of the quantum system over times longer than the single

driving period can be studied in a stroboscopic manner. In this approach the

evolution is studied in the steps of the driving period T . This stroboscopic

time evolution is simply expressed by

Û(t0 + T, t0) ≡ e−iT Ĥ
F
t0

/h̵ (4.6)

and depends of the Hamiltonian ĤF
t0

represented in the Floquet space

ĤF
t0 = ∑

n

εn∣un(t0)⟩⟨un(t0)∣. (4.7)
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It is important to notice that the quasienergies εn and the Floquet modes

un(t) are not uniquely defined. The shift of quasienergy εn by energy h̵ω

does not affect the phase factor e−iεnT /h̵. Due to this fact, the quasienergy

εn can be chosen arbitrarily and their shift by energy h̵ω can be performed

multiple times, then the quasienergy can be marked by additional index

εnm = εn +mh̵ω. (4.8)

Next, the corresponding Floquet mode takes a form ∣unm(t)⟩ = eimωt∣un(t)⟩.
At this step, the solution of Schrödinger equation has a general form

∣ψn(t)⟩ = e−iεnt/h̵∣un(t)⟩ = e−iεnmt/h̵∣unm(t)⟩. (4.9)

Substituting (4.9) into the time dependent Schrödinger equation (4.1) we

obtain

(Ĥ(t) − ih̵ d
dt

) ∣unm(t)⟩ = εnm∣unm(t)⟩, (4.10)

in an extended Hilbert space F = H⊗LT . The Floquet space F is a product

of the spatial space H for quantum systems and the space LT of square-

integrable functions that are periodic in time. In the extended space F , the
scalar product of states can be averaged over a time period as

⟨⟨u∣v⟩⟩ = 1

T ∫
T

0
dt⟨u(t)∣v(t)⟩, (4.11)

where double braket notation is used for elements of F , corresponding to state

at time t and its spatial coordinates in H. The left side of (4.10) is called

a quasienergy operator Q̂(t) = Ĥ(t) − ih̵ d
dt . To distinguish the quasienergy

operator in the Floquet space F and Hilbert space H, let us denote the

quasienergy operator by Q̄ if it acts on F . Then, the quasienergy equation

can be written as Q̄∣unm⟩⟩ = εnm∣unm⟩⟩ in F space.

In the Floquet space F the set of orthonormal basis states ∣αm⟩⟩ can be

constructed as a combination of the orthonormal basis states ∣α⟩ of H and

the set of time-periodic functions eimωt as ∣αm(t)⟩ = ∣α⟩eimωt. In this basis
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the quasienergy operator Q̄ takes block structure

⟨⟨α′m′∣Q̄∣αm⟩⟩ = 1

T ∫
T

0
dte−im

′ωt⟨α′∣Ĥ(t) − ih̵ d
dt

∣α⟩eimωt

= ⟨α′∣Ĥm′−m∣α⟩ + δm′mδα′αmh̵ω (4.12)

where Ĥm = 1
T ∫

T

0 dte−imωtĤ(t) = Ĥ†
−m is the Fourier transform of Ĥ(t). This

block structure of Q̄ is also dubbed Floquet matrix Hamiltonian HF
nm which

has the following form

HF
nm = 1

T ∫
T

0
dteinωtQ̄(t)e−imωt

= Ĥn−m −mh̵ωδnm1. (4.13)

It acquires the block structure

HF =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⋱ ⋮ ⋮ ⋮ ⋰
⋯ Ĥ0 + 1h̵ω Ĥ−1 Ĥ−2 ⋯
⋯ Ĥ1 Ĥ0 Ĥ−1 ⋯
⋯ Ĥ2 Ĥ1 Ĥ0 − 1h̵ω ⋯
⋰ ⋮ ⋮ ⋮ ⋱

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.14)

where the diagonal elements are shifted by h̵ω which are related with absorp-

tion or emission of "energy quanta" from the environment.

4.2 Solution for time-periodic Hamiltonian

The Green’s function formalism (Sec. A.3) and Floquet theory (Sec. 4.1)

can be combined and used to describe the quantum system driven by periodic

external fields. For example, the single quantum dot Hamiltonian presented

in (3.1) can be simply converted to the time-dependent form

Ĥ = ĤQD(t) + ĤN + ĤN−QD + ĤS + ĤS−QD, (4.15)

with an oscillating quantum dot energy level ĤQD(t) = ∑σ εd(t)d̂
†
σd̂σ, where

εd(t) = ε0
d +A cos(ωt) and ε0

d is a stationary quantum dot energy level.
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For the proximitized quantum dot it is convenient to introduce the matrix

Green’s function Gc
QD(t, t′) (Nambu representation)

Gc
QD(t, t′) =

⎛
⎜
⎝

−i⟨T̂C{d̂↑(t); d̂†
↑(t′)}⟩ − i⟨T̂C{d̂↑(t); d̂↓(t′)}⟩

−i⟨T̂C{d̂†
↓(t); d̂

†
↑(t′)}⟩ − i⟨T̂C{d̂†

↓(t); d̂↓(t′)}⟩

⎞
⎟
⎠
. (4.16)

whose elements come from the general definition for the contour ordered

Green’s function

Gc
A,B(t, t′) = −i⟨T̂C{A(t);B(t′)}⟩. (4.17)

From the equation of motion for Green’s function Gc

dσ ,d
†
σ′
(t, t′) we obtain

i∂tG
c

dσ ,d
†
σ′
(t, t′) = δc(t − t′)δσσ′ − i⟨T̂C{i∂td̂σ(t); d̂†

σ′(t′)}⟩ =

δc(t − t′)δσσ′ + εd(t)Gc

dσ ,d
†
σ′
(t, t′) +∑

q

VqG
c

cSqσ ,d
†
σ′
(t, t′)

+∑
k

VkG
c

cNkσ ,d
†
σ′
(t, t′), (4.18)

where the mixed Green’s functions

Gc

cSqσ ,d
†
σ′
(t, t′) = −i⟨T̂C{ĉSqσ(t); d̂†

σ′(t′)}⟩, (4.19)

Gc

cNkσ ,d
†
σ′
(t, t′) = −i⟨T̂C{ĉNkσ,(t); d̂†

σ′(t′)}⟩, (4.20)

describe the particle propagation between the superconducting/normal elec-

trode and the quantum dot, respectively. For uncorrelated quantum dot the

equation (4.18) simplifies to

(i∂t − εd(t))Gc

dσ ,d
†
σ′
(t, t′) = δc(t − t′)δσσ′ +∑

q

VqG
c

cSqσ ,d
†
σ′
(t, t′)

+∑
k

VkG
c

cNkσ ,d
†
σ′
(t, t′). (4.21)

The contour-ordered Green’s function can be rewritten as

Gc

dσ ,d
†
σ′
(t, t′) = δσσ′gcdσ ,d†σ′

(t, t′) +∑
q

Vq ∫
C
dτgc

dσ ,d
†
σ′
(t, τ)Gc

cSqσ ,d
†
σ′
(τ, t′)

+∑
k

Vk ∫
C
dτgc

dσ ,d
†
σ′
(t, τ)Gc

cNkσ ,d
†
σ′
(τ, t′), (4.22)
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where gc
dσ ,d

†
σ′
(t, t′) is bare Green’s function of isolated quantum dot. Determi-

nation of the mixed Green’s function is discussed in Appendix A.8. At this

step, let us consider the particle propagator Gc

d↑,d†↑
(t, t′). To solve (4.22) we

need the following functions

Gc

cNk↑,d
†
↑
(t, t′) = Vk ∫

C
dτgc

cNk↑,c
†
Nk↑

(t, τ)Gc

d↑,d†↑
(τ, t′), (4.23)

Gc

cSq↑,d†↑
(t, t′) = −Vq ∫

C
dτgc

c†S−q↑,c
†
Sq↓

(t, τ)Gc

d†↓ ,d
†
↑
(τ, t′)

+∫
C
dτgc

cSq↑,c†Sq↓
(t, τ)VqGc

d↑,d†↑
(τ, t′). (4.24)

Substituting (4.23) and (4.24) into (4.22), we obtain

Gc

d↑,d†↑
(t, t′) = gc

d↑,d†↑
(t, t′)

+ ∫
C
dτ ∫

C
dτ ′gc

d↑,d†↑
(t, τ)Σc

cN↑,c†N↑
(τ, τ ′)Gc

d↑,d†↑
(τ ′, t′)

+ ∫
C
dτ ∫

C
dτ ′gc

d↑,d†↑
(t, τ)Σc

c†S↑,c
†
S↓
(τ, τ ′)Gc

d†↓ ,d
†
↑
(τ ′, t′)

+ ∫
C
dτ ∫

C
dτgc

d↑,d†↑
(t, τ)Σc

cS↑,c†S↑
(τ, τ ′)Gc

d↑,d†↑
(τ ′, t′) (4.25)

where the contour-ordered self-energies are defined as

Σc

cN↑,c†N↑
(τ, τ ′) = ∑

k

V 2
k g

c

cNk↑,c
†
Nk↑

(τ, τ ′), (4.26)

Σc

c†S↑,c
†
S↓
(τ, τ ′) = ∑

q

V 2
q g

c

c†S−q↑,c
†
Sq↓

(τ, τ ′), (4.27)

Σc

cS↑,c†S↑
(τ, τ ′) = ∑

q

V 2
q g

c

cSq↑,c†Sq↑
(τ, τ ′). (4.28)

In the same manner, we can obtain the other element of the Green’s

function (4.16) in the Nambu representation

Gc

d†↓ ,d
†
↑
(t, t′) = ∫

C
dτ ∫

C
dτ ′gc

d†↓ ,d↓
(t, τ)Σc

c†N↑,cN↑
(τ, τ ′)Gc

d†↓ ,d
†
↑
(τ ′, t′)

+ ∫
C
dτ ∫

C
dτ ′gc

d†↓ ,d↓
(t, τ)Σc

c†S↑,c
†
S↓
(τ, τ ′)Gc

d†↓ ,d
†
↑
(τ ′, t′)

+ ∫
C
dτ ∫

C
dτ ′gc

d†↓ ,d↓
(t, τ)Σc

c†S↓,cS↓
(τ, τ ′)Gc

d↑,d†↑
(τ ′, t′). (4.29)
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The solution for diagonal elements of (4.16) is sufficient to find other related

functions. According to the Langreth’s theorem (A.57), the contour-ordered

casual functions can be expressed in the terms of retarded and advanced ones

Gr,a

d↑,d†↑
(t, t′) = gr,a

d↑,d†↑
(t, t′)

+ ∫
∞

−∞
dτ ∫

∞

−∞
dτ ′gr,a

d↑,d†↑
(t, τ)Σr,a

cN↑,c†N↑
(τ, τ ′)Gr,a

d↑,d†↑
(τ ′, t′)

+ ∫
∞

−∞
dτ ∫

∞

−∞
dτ ′gr,a

d↑,d†↑
(t, τ)Σr,a

c†S↑,c
†
S↓
(τ, τ ′)Gr,a

d†↓ ,d
†
↑
(τ ′, t′)

+ ∫
∞

−∞
dτ ∫

∞

−∞
dτ ′gr,a

d↑,d†↑
(t, τ)Σr,a

cS↑,c†S↑
(τ, τ ′)Gr,a

d↑,d†↑
(τ ′, t′), (4.30)

Gr,a

d†↓ ,d
†
↑
(t, t′) = ∫

∞

−∞
dτ ∫

∞

−∞
dτ ′gr,a

d†↓ ,d↓
(t, τ)Σr,a

c†N↑,cN↑
(τ, τ ′)Gr,a

d†↓ ,d
†
↑
(τ ′, t′)

+ ∫
∞

−∞
dτ ∫

∞

−∞
dτ ′gr,a

d†↓ ,d↓
(t, τ)Σr,a

c†S↑,c
†
S↓
(τ, τ ′)Gr,a

d†↓ ,d
†
↑
(τ ′, t′)

+ ∫
∞

−∞
dτ ∫

∞

−∞
dτ ′gr,a

d†↓ ,d↓
(t, τ)Σr,a

c†S↓,cS↓
(τ, τ ′)Gr,a

d↑,d†↑
(τ ′, t′). (4.31)

At this step, we can perform the Fourier transform of the Green’s function

fnm(ε) = ∫
∞

−∞
dt′

1

T ∫
T

0
dtei(ε+nω)t−i(ε+mω)t

′
f(t, t′), (4.32)

where the contour integral of the functions C(t, t′) = ∫C dτA(t, τ)B(τ, t′)
is equal to Cnm(ε) = ∑kAnk(ε)Bkm(ε) in Fourier space (the proof of this

property is included in Appendix A.5). Finally, we obtain the Green’s

functions expressed by the Fourier coefficients

Gr,a

d↑,d†↑ ;nm
(ε) = gr,a

d↑,d†↑ ;nm
(ε) +∑

k,l

gr,a
d↑,d†↑ ;nk

(ε)Σr,a

cN↑,c†N↑;kl
(ε)Gr,a

d↑,d†↑ ;lm
(ε)

+∑
k,l

gr,a
d↑,d†↑ ;nk

(ε)Σr,a

c†S↑,c
†
S↓;kl

(ε)Gr,a

d†↓ ,d
†
↑ ;lm

(ε)

+∑
k,l

gr,a
d↑,d†↑ ;nk

(ε)Σr,a

cS↑,c†S↑;kl
(ε)Gr,a

d↑,d†↑ ;lm
(ε), (4.33)

Gr,a

d†↓ ,d
†
↑ ;nm

(ε) = ∑
k,l

gr,a
d†↓ ,d↓;nk

(ε)Σr,a

c†N↑,cN↑;kl
(ε)Gr,a

d†↓ ,d
†
↑ ;lm

(ε)

+∑
k,l

gr,a
d†↓ ,d↓;nk

(ε)Σr,a

c†S↑,c
†
S↓;kl

(ε)Gr,a

d†↓ ,d
†
↑ ;lm

(ε)

+∑
k,l

gr,a
d†↓ ,d↓;nk

(ε)Σr,a

c†S↓,cS↓;kl
(ε)Gr,a

d↑,d†↑ ;lm
(ε). (4.34)
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At this step, we can recast (4.33) and (4.34) into the Dyson equation in

matrix form

Gr,a
QD,nm(ε) = gr,aQD,nm(ε) +∑

k,l

gr,aQD,nk(ε)Σ
r,a
kl (ε)G

r,a
QD,lm(ε), (4.35)

where Σr,a
nm(ε) = Σr,a

N,nm(ε) +Σr,a
S,nm(ε) is the total self-energy of the system.

The individual self-energies (4.39) are defined as follows

Σr,a
N,nm(ε) = ∓

⎡⎢⎢⎢⎢⎣

iΓN
2 0

0 iΓN
2

⎤⎥⎥⎥⎥⎦
δnm, (4.36)

Σr,a
S,nm(ε) = −

α(ε̃)ΓS/2√
∣(ε̃ ± i0+)2 +∆2

sc∣

⎡⎢⎢⎢⎢⎣

ε̃ −∆sc

−∆sc ε̃

⎤⎥⎥⎥⎥⎦
δnm, (4.37)

where α(ε̃) = Θ(∆sc − ∣ε̃∣) ± i sgn(ε̃)Θ(∣ε̃∣ −∆sc) and ε̃ = ε + nω. More specific

calculations are presented in Appendix A.9.

According to Ref. [128], the Dyson equation (4.35) can be solved when the

self-energies of the system are diagonal in Floquet space. Then the solution

of the matrix equation (4.35) becomes

[Gr,a
QD(ε)] = [I − gr,aQD(ε)Σr,a(ε)]−1 [gr,aQD(ε)], (4.38)

which can be explicitly shown as

[Gr,a
QD(ε)] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⋱ ⋮ ⋮ ⋮ ⋰
⋯ γ−1,−1 γ−1,0 γ−1,1 ⋯
⋯ γ0,−1 γ0,0 γ0,1 ⋯
⋯ γ1,−1 γ1,0 γ1,1 ⋯
⋰ ⋮ ⋮ ⋮ ⋱

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

−1

[gr,aQD(ε)], (4.39)

where γnm = δnmI − gr,aQD,nmΣr,a
mm and I denotes the identity matrix.

The bare Green’s function gr,aQD,nm of isolated quantum dot can be diago-

nalized with respect to the Floquet coordinates n,m by appropriate unitary

matrix Λnl [129]

∑
nm

Λln(gr,aQD)−1
nmΛml = (Dr,a

QD)−1
ll . (4.40)
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In this basis, the diagonal retarded and advanced Green’s functions are

expressed by

(Dr,a
QD)−1

ll = (ε + lω ± i0+)I − ε0
dσz, (4.41)

where σz is the Pauli matrix. Making back projection, the isolated bare

Green’s function can be written as follows

gr,aQD,nm(ε) = ∑
l

Λ†
nlD

r,a
QD,ll(ε)Λlm. (4.42)

Since we consider oscillating energy level εd(t), the matrix operator Λnl is

expressed by the Bessel functions of a first kind (see Eqs. (A.82)-(A.95))

Λnm =
⎡⎢⎢⎢⎢⎣

Jn−m (A
ω
) 0

0 Jn−m (−A
ω
)

⎤⎥⎥⎥⎥⎦
. (4.43)

Then the matrix representation of the bare Green’s function ((A.96)-(A.97))

simplifies to [66]

gr,aQD,nm(ε) = ∑
l

⎡⎢⎢⎢⎢⎢⎣

Jn−l(A/ω)Jm−l(A/ω)
ε±i0++lω−ε0

d
0

0 Jn−l(−A/ω)Jm−l(−A/ω)
ε±i0++lω+ε0

d

⎤⎥⎥⎥⎥⎥⎦
. (4.44)

In the case of time-periodic driving of the system, the effective quantum

dot spectrum is determined by

⟨ρd(ε)⟩ = −
1

π
Im [Gr

QD,00(ε + i0+)]11
, (4.45)

which is equivalent to averaging over a single period T [128]. In general, this

spectral representation function must be positive [130].

To calculate time-dependent charge current we use general formula intro-

duced in (3.11) for particle transport into the metallic lead [65,131,132]. The

charge current equation can be written in the form

jNσ(t) =
2e

h̵
∑
k

Vk Re [i⟨ĉkσ(t); d̂†
σ(t)⟩] =

2e

h̵
∑
k

Vk Re [G<
ckσ ,d

†
σ
(t, t)] , (4.46)
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where the lesser Green’s function can be expressed as a convolution of Green’s

function for quantum dot and bare Green’s function

G<
ckσ ,d

†
σ
(t, t′) = Vk ∫

C
dτ [Gr

dσ ,d
†
σ
(t, τ)g<

cNkσ ,c
†
Nkσ

(τ, t′) +G<
dσ ,d

†
σ
(t, τ)ga

cNkσ ,c
†
Nkσ

(τ, t′)] .

(4.47)

Substituting the lesser Green’s function to (4.46) we obtain the Landauer’s

formula

jNσ(t) =
2e

h̵ ∫C
dτ Re [Gr

dσ ,d
†
σ
(t, τ)Σ<

cNσ ,c
†
Nσ

(τ, t) +G<
dσ ,d

†
σ
(t, τ)Σa

cNσ ,c
†
Nσ

(τ, t)] .

(4.48)

Using the Nambu representation, the Andreev current (flowing through the

normal lead) can be expressed in the matrix form

jN↑(t) =
e

h̵ ∫C
dτ Re [Gr

QD(t, τ)Σ<
N(τ, t) +G<

QD(t, τ)Σa
N(τ, t)]

11−22
, (4.49)

where the diagonal elements 11 and 22 correspond to the particle and hole

terms, respectively. Transforming (4.46) into Fourier space, it is possible to

express the time-dependent current in Floquet space

jN↑(t) =
e

h̵
∑
n,m,p
∫

ω/2

−ω/2

dε

2π
Re{e−i(n−p)ωt[Gr

QD,nm(ε)Σ<
N,mp(ε)

+G<
QD,nm(ε)Σa

N,mp(ε)]}11−22. (4.50)

Assuming that the indices n, p are equal, we obtain the average current over

single period T

⟨jN↑⟩ =
e

h̵
∑
n,m
∫

ω/2

−ω/2

dε

2π
Re{[Gr

QD,nm(ε)Σ<
N,mn(ε) +G<

QD,nm(ε)Σa
N,mn(ε)]}11−22.

(4.51)

Here, in (4.50) and (4.51) the lesser Green’s function of a single quantum dot
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in Nambu-Floquet space is equal to

[G<
QD,nm(ε)]

µν
= ∑

kl

{[Gr
QD,nk]µ1[Σ<

kl(ε)]11[Ga
QD,lm]1ν

+ [Gr
QD,nk]µ1[Σ<

kl(ε)]12[Ga
QD,lm]2ν

+ [Gr
QD,nk]µ2[Σ<

kl(ε)]21[Ga
QD,lm]1ν

+ [Gr
QD,nk]µ2[Σ<

kl(ε)]22[Ga
QD,lm]2ν}, (4.52)

where Σ<(ε) = Σ<
N(ε)+Σ<

S(ε) is sum of the lesser self-energies of the reservoirs.

The lesser self-energy for single electrode is the result of the subtraction of

advanced and retarded functions

Σ<
N,nm(ε) = (Σa

N,nm(ε) −Σr
N,nm(ε))

⎛
⎝
fN(ε + nω) 0

0 1 − fN(−ε − nω)
⎞
⎠

(4.53)

Σ<
S,nm(ε) = (Σa

S,nm(ε) −Σr
S,nm(ε)) fS(ε + nω), (4.54)

multiplied by the Fermi-Dirac distribution function

fN/S(x) = 1/[e(x−µN/S)/kBT + 1]. (4.55)

4.3 Numerical results

The method applied in this chapter, based on the Green’s function and

Floquet approach, allows to calculate the time dependent observables and

observables averaged over the single period. In this method the system is

adiabatically switched on and the time-dependent functions describing the

system become cyclic with the same period as the drive. All results in this

chapter are obtained for the temperature limit T → 0. As an example of the

time-dependent currents we present Fig. 4.1. In this figure, we show the

charge current IN(t) = jN↑(t) for different values of oscillation amplitudes

in regime of the superconducting atomic limit ∆sc → ∞. For the system

described by Hamiltonian (4.15) with applied source-drain voltage V = 1ω, we
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observe oscillatory character of the plots in single period window of the drive.

At this stage, we would like to highlight the complex nature of these charts.

For a larger amplitude, a more wrinkled structure of the plot can be seen. The

reason for this phenomenon is that there are more eigenenergies in a transport

window. Localization and behaviour of those eigenenergies will be revealed

in the further part of this chapter. For the specific time window, the time-

dependent currents obey the symmetry relation IN(−V, t) = −IN(V, t + T /2).
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A = 2.3/ω

A = 3.8/ω

Figure 4.1: The time-dependent currents for the periodically driven εd(t) obtained

for: V = 1ω, ΓN = 0.1ω, ΓS = 1ω, U = 0. The results were obtained from the

numerical solution of (4.50).

One of the convenient ways to study the periodically driven system is to

compute the observables averaged over a period. Using the Landauer formula

in (4.51), we computed the time average current ⟨IN⟩ and differential conduc-

tance ⟨GN⟩ averaged over one driving period versus the source-drain voltage

V applied across the junction, considering the in-gap states by assuming

∆sc → ∞. In Fig. 4.2, we can notice that in the absence of source-drain

voltage the current ⟨IN⟩ is zero, because the incoming and outgoing charge

flows cancel each other. For larger source-drain voltage V , we observe an
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increasing value and plateau regions of ⟨IN⟩. Using standard definition of the

differential conductance ⟨GN⟩ = d⟨IN ⟩
dV , we reveal the energy states appearing

in the driven system. We notice that the conductance peaks perfectly coincide

with the slope parts of charge current plots, which exhibit the positions of

eigenenergies. The differential conductance ⟨GN⟩ shows that the rapid growth

of the averaged current occurs if the voltage V comes close to the eigenenergies

of the system.
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Figure 4.2: The averaged current ⟨IN ⟩ and differential conductance ⟨GN ⟩ with

respect to voltage V obtained for the periodically driven εd(t), using: ΓN = 0.1ω,

ΓS = 1ω, U = 0.

To gain a broader view of the quasiparticle eigenenergies, let us present

results for the spectral function ⟨ρd(ε)⟩ defined by (4.45). In the time-periodic

system described by Hamiltonian H(t) = H(t + T ) the spectral function is

equivalent to averaging over a period T . In Fig. 4.3 and Fig. 4.4 we present

the spectral function for N-QD-N and N-QD-S heterostructure, respectively.
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Figure 4.3: The averaged spectral function of QD versus the amplitude of driving

field. Results are obtained using: ΓN = 0.1ω, ΓS = 0, U = 0 assuming εd(t) =
A cos(ωt).
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Figure 4.4: The same as in Fig. 4.3 but for the N-QD-S heterostructure, assuming

ΓS = 1ω.
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The results for the normal junction will be a reference point. The case of

N-QD-N heterojunction in Fig. 4.3 shows the spectral function dependent on

energy ε and driving amplitude A, which include a series of equidistant states

at energies ε0
d +nω, where n is an integer number. Those states are called the

photo-assisted tunnelling states (PAT), harmonic states or Floquet states for

the driven system [65–67]. We observe the emergence and extinction of these

states and their greater number with larger amplitude of the drive. The zero

harmonic peak vanishes for ratio A/ω ≃ 2.405 which corresponds to the zero

value of Bessel function J0(A/ω). We see the finite broadening of the peaks

which comes from the coupling to the metallic reservoirs.

For N-QD-S heterostructure, such spectral function dependent on energy

level ε and driving amplitude A is presented in Fig. 4.4. In contrast to the

N-QD-N junction, in this particular case, we observe the splitting of the zero

and higher-order harmonics. In the stationary case (A = 0), the quasiparticle

peaks in the subgap spectrum coincide with two Andreev bound states at

energies ±
√

(ε0
d)2 + (ΓS/2)2 [61] broadened by ΓN . For small amplitudes,

the evolution of the quasiparticle energies shows that the branches of the

zero-harmonic mode split. Simultaneously new higher-order harmonic states

appear, shifted by energy nω. We observe that the zero-harmonic states

linearly branch out and they are headed to the horizontal lines corresponding

to energies nω. One pair of the zero-harmonic branch crosses each other

around A = 1.1ω on the line corresponding to the zero energy. The second pair

of the zero-harmonic state evolves to the horizontal lines for n = 1 and n = −1,

where they interlace with the higher-order harmonics. For larger amplitudes,

we observe overlapping and interlacing of the states between neighboring

harmonics. Together with the larger amplitude the distance between mixed

branches and their intensity slightly decrease.

Comparing the differential conductance ⟨GN⟩ in Fig. 4.2 with the quasi-

particle spectrum for corresponding amplitudes, we see that the additional

states in charge transport perfectly coincide with the positions of the harmonic



CHAPTER 4. PERIODICALLY DRIVEN QUANTUM DOT 74

states. The slightly smaller splitting of mixed branches along n = 0 comes

together with the lesser expectation value of the on-dot pairing potential

⟨d̂↓d̂↑⟩T = −∫
ω/2

−ω/2

dε

2π
[Gr

QD,00(ε)]12 (4.56)

averaged over a period T . Its dependence on the amplitude A is presented in

Fig. 4.5. We observe that this induced order parameter is correlated with

the amount of spectral weight of the zeroth-order harmonic. The proximity

induced order parameter vanishes for such amplitude where the zero-level

harmonic states lose their spectral weights.
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Figure 4.5: a) Expectation value of the proximity induced order parameter ⟨d̂↓d̂↑⟩
versus the amplitude A, obtained for several values of ΓS , as indicated. Using:

ε0
d = 0, ΓN/ω = 0.1. b) Zoom of the plot shown in panel a.

To investigate the influence of the driving frequency, in Fig. 4.6, we present

the time-averaged density of states versus ω/ΓS. The results are obtained for

the amplitude A = 2.2ΓS. This quasiparticle spectrum illustrates one pair of

the Andreev quasiparticles (zero mode) with the higher-order harmonic states

and their linear evolution along nω. The higher-order states are aligned along

ε0
d + nω lines and disappear for large ω. In the high frequency limit ω →∞,

the numerical results agree with the analytical solution of Magnus expansion

for the proximitized system Hamiltonian (discussed in the Sec. 4.4).
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Figure 4.6: The quantum dot’s spectral function of N-QD-S heterostructure versus

the driving frequency ω. Results are obtained for A=2.2ΓS , ΓN = 0.1ΓS , U = 0.

Influence of the pairing gap ∆sc

To investigate a more realistic situation, we would like to focus on a case

when the superconducting energy gap ∆sc takes a finite value. Usually, the

value of the energy gap is a few or fractions of meV . Fig. 4.7 presents the

quasiparticle spectral function with respect to the amplitude A, obtained

for ∆sc = 0.5ω. In this plot, we observe that the quasiparticle function does

not follow the main properties of the energy spectrum displayed in Fig. 4.4.

We can notice that the higher-order harmonics (∣n∣ ≠ 0) are pushed out of

the superconducting gap and their splitting is reduced in comparison to the

results in the limit ∆sc → ∞. This behaviour depends on the efficiency of

the pairing which gradually decreases with increasing amplitude, due to the

larger influence of the continuum of electron states above the superconductor

energy gap. Raising the QD energy level above the superconducting energy

gap causes a partial leakage of the spectral weight towards the in-gap regime.

A feature of this phenomenon is a continuous background which appears in

the spectral function, what is visible in Figs 4.7 and 4.8. This continuous
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background corresponds to incoherent subgap states.
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Figure 4.7: The quantum dot’s spectral function of N-QD-S heterostructure with

respect to the driving amplitude A. The results are obtained for ∆sc = 0.5ω,

ΓN = 0.1ω, ΓS = 1ω, U = 0.
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Figure 4.8: The quantum dot’s spectral function of N-QD-S heterostructure with

respect to the driving frequency ω, using: ∆sc = 0.5ΓS , A=2.2ΓS , ΓN = 0.1ΓS , U = 0.
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To illustrate the influence of driving frequency in the case of the finite

value of the superconducting energy gap, we present Fig. 4.8. This figure

displays the distribution of the spectral weight between the multiple harmonics,

presents their splitting, and shows the presence of the incoherent in-gap states.

Like in Fig. 4.6, we observe zero-harmonic and higher-order modes along

ε0
d ± nω, which are mixed with the continuous background. In the high-

frequency limit, the quasiparticle energies (zero-level) resemble the stationary

Andreev states, whereas the continuum electron spectrum is far outside the

energy gap. For such driven system, the superconducting energy gap is

manifested in a unique manner, its properties can not be treated like in a

static situation.

4.4 Floquet-Magnus expansion

In the high frequency limit, the Floquet Hamiltonian HF can be expanded

in powers of the perturbation, called the Floquet-Magnus expansion [127,133]

HF
t0 =

∞
∑
ν=1

H
F (ν)
t0

. (4.57)

The first part is the zero component of Fourier transform of Hamiltonian

H
F (1)
t0

= Ĥ0 (4.58)

and the second is defined as follows

H
F (2)
t0

= ∑
m≠0

1

mh̵ω
[ĤmĤ−m + eimωt0 [Ĥ0, Ĥm]] . (4.59)

Here, the Fourier transform is defined as previously Ĥm = 1
T ∫

T

0 dteimωtH(t).
This high frequency expansion can be adapted to the proximitized quantum

dot Hamiltonian introduced in (3.7) with the oscillating quantum dot energy

level

Ĥ(t) = ∑
σ

(ε0
d +A cos(ωt)) d̂†

σd̂σ +
ΓS
2

(d̂†
↓d̂

†
↑ + h.c.) . (4.60)
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The Fourier transform of Hamiltonian (4.60) can be performed in few mathe-

matical steps, presented below

Ĥm = 1

T ∫
T

0
eimωtH(t) =

∑
σ

1

T ∫
T

0
eimωt (∑

σ

(ε0
d +A cos(ωt)) d̂†

σd̂σ +
ΓS
2

(d̂†
↓d̂

†
↑ + h.c.)) =

∑
σ

1

T ∫
T

0
eimωtε0

dd̂
†
σd̂σ +∑

σ

1

T ∫
T

0
eimωtA

1

2
(e−iωt + eiωt) d̂†

σd̂σ

+∑
σ

1

T ∫
T

0
eimωt

ΓS
2
d̂†
↓d̂

†
↑ +∑

σ

1

T ∫
T

0
eimωt

ΓS
2
d̂↑d̂↓ =

δ0,m (∑
σ

ε0
dd̂

†
σd̂σ +

ΓS
2
d̂†
↓d̂

†
↑ +

ΓS
2
d̂↑d̂↓) +∑

σ

1

T ∫
T

0
eimωt

A

2
e−iωt(1−m)d̂†

σd̂σ

+∑
σ

1

T ∫
T

0
eimωt

A

2
eiωt(1+m)d̂†

σd̂σ. (4.61)

In the result, we obtain the Hamiltonian as follows

Ĥm = δ0,m (∑
σ

ε0
dd̂

†
σd̂σ +

ΓS
2
d̂†
↓d̂

†
↑ +

ΓS
2
d̂↑d̂↓) + (δ1,m + δ1,−m) A

2
∑
σ

d̂†
σd̂σ, (4.62)

where the diagonal elements are connected to the discrete quantum dot

energy level ε0
d and the superconducting order parameter defined by ΓS/2.

The off-diagonal elements are the result of the driving in the system. The

first element of the Floquet-Magnus expansion, which is the zero element of

Fourier transformed Hamiltonian, is equal to

H
F (1)
t0

= Ĥ0 = ∑
σ

ε0
dd̂

†
σd̂σ +

ΓS
2
d̂†
↓d̂

†
↑ +

ΓS
2
d̂↑d̂↓. (4.63)

The block form of the Floquet Hamiltonian acquires the symmetry property

Ĥ−1 = Ĥ1 = A
2 ∑σ d̂

†
σd̂σ. The second element of the expansion can be calculated
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as follows

H
F (2)
t0

= ∑
m≠0

1

mh̵ω
[ĤmĤ−m + eimωt0 [Ĥ0, Ĥm]] =

− 1

h̵ω
(Ĥ−1Ĥ1 + e−imωt0[Ĥ0, Ĥ−1]) +

1

h̵ω
(Ĥ−1Ĥ1 + eimωt0[Ĥ0, Ĥ1]) =

1

h̵ω
(Ĥ−1Ĥ1 + eimωt0[Ĥ0, Ĥ1] − Ĥ−1Ĥ1 − e−imωt0[Ĥ0, Ĥ−1]) =

1

h̵ω
([Ĥ1, Ĥ−1] + eimωt0[Ĥ0, Ĥ1] − e−imωt0[Ĥ0, Ĥ−1]) =

1

h̵ω
([Ĥ1, Ĥ−1] + eimωt0[Ĥ0, Ĥ1] − e−imωt0[Ĥ0, Ĥ1]) =

1

h̵ω
([Ĥ1, Ĥ−1] + (eimωt0 − e−imωt0) [Ĥ0, Ĥ1]) . (4.64)

This expansion requires to calculate two commutators of different Floquet

matrix Hamiltonian [Ĥ1, Ĥ−1] = 0, [Ĥ0, Ĥ1] = −AΓS
2 d̂

†
↓d̂

†
↑ +A

ΓS
2 d̂↑d̂↓. Substi-

tuting the solution of the calculated commutators into (4.64) the second term

of the expansion is

H
F (2)
t0

= 2i sin(ωt0)
h̵ω

(AΓS
2
d̂↑d̂↓ −A

ΓS
2
d̂†
↓d̂

†
↑) . (4.65)

In this case, the higher order terms vanish. The final expansion of the

Hamiltonian which is truncated to the second term HF
t0
=HF (1)

t0
+HF (2)

t0
, takes

form

HF
t0 = ∑

σ

ε0
dd̂

†
σd̂σ + (ΓS

2
− iAΓS

h̵ω
sin(ωt0))d†

↓d
†
↑ + (ΓS

2
+ iAΓS

h̵ω
sin(ωt0)) d̂↑d̂↓.

(4.66)

The expansion of the Hamiltonian in the high frequency regime rescales

the induced on-dot pairing potential. The high frequency expansion results

are consistent with the Green’s function calculations (for large frequencies)

presented in Fig. 4.6.

4.5 Summary

In this chapter we studied an effective spectrum of the driven quantum

dot placed between the superconducting and metallic reservoirs. The single
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quantum dot energy level was periodically stimulated by the external potential.

We have analysed the effective spectrum with respect to the amplitude A

and frequency ω of the drive. We found that the proximity induced electron

pairing leads to the splitting of each harmonic level. The maximum distance

between mixed states slightly decreases with larger amplitude of the drive.

In quasiparticle spectrum, distribution of the harmonics is controlled by the

amplitude to frequency ratio.

The charge transport averaged over a period of driven oscillations and

its differential conductance were also analysed. In the plots of differential

conductance, we detected the multi-harmonic quasiparticle energies, their

splitting and the distribution of the spectral weights.

Additionally, we studied the influence of the finite size of the superconduct-

ing energy gap on the quasiparticle spectrum. In a case, when the amplitude

of oscillations exceeds the energy gap the incoherent states appear in the

subgap regime. Those states correspond to short-time living quasiparticles

and emerge near such values of the amplitude to frequency ratio, where the

spectral weight of the zeroth harmonic vanishes.



Chapter 5

Dynamics of Andreev states in

double quantum dot system

This chapter presents description of the dynamical effects obtained for a

double quantum dot system (N-DQD-S), schematically presented in Fig. 5.1.

We consider geometry in which the quantum dots are placed in series between

the metallic and the superconducting leads. Theoretical analysis of such

system gives rise to the possible qubit development. The qubit based on the

double quantum dot and similar layouts has been studied by several scientific

groups [56–59]. Knowledge about dynamical properties of the system would

be important for sequential manipulation and operation on them.

In this section, we explore the time-dependent processes related to the

creation of bound states and other properties that describe the evolution of

the system. Specifically, we study transient effects and the evolution of the

system after step-like or continuous changes in its parameters. In particular,

we investigate the following quench protocols: transient effects (Sec. 5.3),

rapid change of source-drain voltage (Sec. 5.4), quench in energy level position

(Sec. 5.5), periodic driving (Sec. 5.6).

81
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5.1 Model Hamiltonian

The heterostructure, consisting of the two quantum dots QDi (i = 1,2)

placed in linear configuration between the normal (N) and superconducting

(S) leads, can be described by the following Hamiltonian

Ĥ = ĤS + ĤS−QD1 + ĤDQD + ĤN−QD2 + ĤN . (5.1)

The double quantum dot term is modelled by the single-level localized states

ĤDQD = ∑
iσ

εiσ ĉ
†
iσ ĉiσ +Uin̂i↑n̂i↓ +∑

σ

(V12ĉ
†
1σ ĉ2σ + h.c.) , (5.2)

where ĉ†iσ(ĉiσ) is the creation (annihilation) operator of electron at i-th quan-

tum dot, εiσ denote the energy levels, and V12 is the interdot coupling. We

also consider electron-electron Coulomb repulsion between electrons localized

on quantum dots Uin̂i↑n̂i↓.

Figure 5.1: Illustration of double quantum dot’s sytem placed between the normal

metallic and the superconducting reservoirs [134].

The quantum dots are hybridized with the external reservoirs via

ĤN−QD2 = ∑
kσ

(VNkĉ†Nkσ ĉ2σ + h.c.) (5.3)

and

ĤS−QD1 = ∑
qσ

(VSq ĉ†Sqσ ĉ1σ + h.c.) , (5.4)

where VNk (VSq) denotes the coupling to normal (superconducting) lead.

In absence of the metallic lead (ΓN = 0) and for the superconducting

atomic limit (∆sc = ∞) the Hilbert space of the proximitized DQD is spanned
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by 16 vectors. In the occupancy representation the matrix Hamiltonian has a

block structure, consisting of 6 subspaces [135]. Two 4-dimensional subspaces

contain states with odd number of electrons ∣QD2,QD1⟩ ⇒ ∣0, ↑⟩, ∣ ↑, 0⟩, ∣ ↑↓, ↑⟩,
∣ ↑, ↑↓⟩ and ∣0, ↓⟩, ∣ ↓,0⟩, ∣ ↑↓, ↓⟩, ∣ ↓, ↑↓⟩, respectively. The next two states

∣ ↑, ↑⟩, ∣ ↓, ↓⟩ are decoupled from other ones. The remaining 6-dimensional

subspace contains the states with even number of electrons, ∣0,0⟩, ∣0, ↑↓⟩,
∣ ↑↓,0⟩, ∣ ↑↓, ↑↓⟩, ∣ ↑, ↓⟩ and ∣ ↓, ↑⟩, respectively. Diagonalizing the effective

matrix Hamiltonian for Ui = 0, one obtains the following eigenvalues εi and

eigenfunctions ∣φi⟩:

i εi ∣φi⟩
1/2 ±E ai(∣0, ↑⟩ ∓ ∣ ↑↓, ↑⟩) + bi(±∣ ↑,0⟩ ± ∣ ↑, ↑↓⟩)
3/4 ±E ∓ ΓS/2 ai(∣0, ↑⟩ ± ∣ ↑↓, ↑⟩) + bi(∣ ↑,0⟩ ∓ ∣ ↑, ↑↓⟩)
5/6 ±E ai(∣0, ↓⟩ ∓ ∣ ↑↓, ↓⟩) + bi(∣ ↓,0⟩ ± ∣ ↓, ↑↓⟩)
7/8 ±E ∓ ΓS/2 ai(∣0, ↓⟩ ± ∣ ↑↓, ↓⟩) + bi(∣ ↓,0⟩ ∓ ∣ ↓, ↑↓⟩)
9 0 ∣ ↑, ↑⟩
10 0 ∣ ↓, ↓⟩

11 0

√
2√

4V 2
12+Γ2

S/4
(V12(∣0,0⟩ + ∣ ↑↓, ↑↓⟩)

−ΓS
4 (∣ ↑, ↓⟩ − ∣ ↓, ↑⟩))

12 0 1√
2
(∣ ↑, ↓⟩ − ∣ ↓, ↑⟩)

13/14 ±ΓS/2 1
2 (∣0,0⟩ − ∣ ↑↓, ↑↓⟩ ± ∣0, ↑↓⟩ ∓ ∣ ↑↓,0⟩)

15/16 ±
√

4V 2
12 + Γ2

S/4

ΓS

4
√

4V 2
12+Γ2

S/4
(∣0,0⟩ + ∣ ↑↓, ↑↓⟩)

±1
2(∣0, ↑↓⟩ + ∣ ↑↓,0⟩)+
V12√

4V 2
12+Γ2

S/4
(∣ ↑, ↓⟩ ∓ ∣ ↓, ↑⟩)

Table 5.1: Table of the eigenenergies and eigenfunctions of the uncorrelated

proximitized double quantum dot system obtained for ΓN = 0, ∆sc = ∞ [134].

where E = 1
2
(
√

4V 2
12 + Γ2

S/4 + ΓS/2), ai = 1√
2

V12√
V 2
12+E2

i

and bi = 1√
2

Ei√
V 2
12+E2

i

.
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The repulsive on-dot interactions Uin̂i↑n̂i↓ compete with the proximity-

induced electron pairing, leading to important changes of the bound states.

Here, we consider their influence on dynamical phenomena within the mean-

field approximation, using the Hartree-Fock-Bogoliubov decoupling scheme

n̂i↑n̂i↓ ≃ n̂i↑⟨n̂i↓⟩ + n̂i↓⟨n̂i↑⟩ + ĉ†i↑ĉ
†
i↓⟨ĉi↓ĉi↑⟩ + ĉi↓ĉi↑⟨ĉ

†
i↑ĉ

†
i↓⟩. (5.5)

The Coulomb interactions and the superconducting proximity effect can be

described by the effective mean-field Hamiltonian

Heff ≈ ∑
i,σ

ε̃iσ(t)ĉ†iσ ĉiσ −∑
i

(∆i(t)ĉ†i↑ĉ
†
i↓ + h.c.) +∑

σ

(V12ĉ
†
1σ ĉ2σ + h.c.)

+∑
kσ

(VNkĉ†Nkσ ĉ2σ + h.c.) +∑
kσ

ξNkσ ĉ
†
Nkσ ĉNkσ, (5.6)

where ε̃iσ(t) = εiσ(t) −Uiniσ(t), ∆1(t) = ΓS
2 −U1⟨ĉ1↓(t)ĉ1↑(t)⟩,

∆2(t) = U2⟨ĉ2↓(t)ĉ2↑(t)⟩. Such approximation would be reliable only in the

weak interaction case (U < ΓS).

5.2 Selected experimental realization

The double quantum dot heterostructure has been studied intensively

theoretically and experimentally by various groups [57,136–138]. These in-

vestigations established, that in this system the manipulation of spin and

its readout are experimentally accessible [56–58]. Such possibilities provide

opportunity to construct a qubit based on a double quantum dot, as pro-

posed by DiVincenzo [59] for both normal leads and in Ref. [139] for the

superconducting electrodes, respectively.

Recently, the double quantum dot system Fig.5.1 has been further studied

experimentally, revealing the Andreev blockade effect [64]. Mechanism of such

Andreev blockade relies on the triplet configuration of electrons in quantum

dots [60, 140, 141], which suppresses the Andreev reflection processes, thus

blocking the flow of current. This configuration offers many possibilities for
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investigating time-dependent properties and post-quench dynamics, which

will be addressed in this chapter.

Figure 5.2: Example of the experimental realisation of the double quantum dot

system, using InAs nanowire [64].

5.3 Transient effects

We start by investigating the transient effects of the double quantum dot

system, similarly as has been done for the junction with the single quantum

dot [Sec. 3.4]. All results for the double quantum dot system have been

obtained by the equation of motion technique (for details see Sec. 3.3). To

calculate the current flowing to the normal lead jNσ(t) we modify the formula

(3.20) to following form

jNσ(t) = 2 Im [∑
k

Vke
−iεkσt⟨d̂†

2σ(t)ĉkσ(0)⟩ −
iΓNσ

2
⟨n̂2σ(t)⟩] , (5.7)

which has been formally derived in Ref. [117]. For numerical purposes, we

had to solve the set of coupled differential equations, which are presented in

Appendix A.2.

Like in Sec. 3.4, let us present the result for the evolution from the

initial conditions to the equilibrium state. We assume that initially, at t ≤ 0,

the quantum dots are disconnected from both external reservoirs and next

they are rapidly connected to the electrodes at t = 0+. Fig. 5.3 presents

numerical results obtained for currents jN↑(t), jS↑(t), occupancy of quantum

dots ni↑(t) and the real part of the order parameter χi(t) = ⟨d̂i↓(t)d̂i↑(t)⟩. For
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zero source-drain voltage, we observe the evolution of the system towards

an equilibrium state for initially empty quantum dots. In this scenario, the

oscillations in currents and occupations are mainly caused by the flow of

Cooper pairs into and out of the system. Those oscillations are dumped in

time due to presence of a continuum of free electrons of the metallic lead.

The buildup of the order parameter for individual quantum dots is presented

in the plot of Reχi(t). Imaginary part of χi(t) is negligibly small (∼ 10−7).
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Figure 5.3: The transient evolution of currents jN↑(t), jS↑(t), occupancy ni↑(t)
and the order parameter Reχi(t), imposing a sudden coupling of the quantum dot

to both external leads at t = 0+ for initial occupancy (n↑(0), n↓(0)). The results

are obtained for zero source-drain voltage and system parameters: εdi = 0, V12 = 1,

ΓN = 0.2, ΓS = 1, U = 0.

We observe rapid development of χ1(t) in time and delayed with respect to it

formation of the order parameter in the second quantum dot. The character

of this buildup of the order parameters directly depends on the strength to
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the superconductor ΓS and the coupling between quantum dots V12.

Development of the bound states can by practically detected by the

differential conductance. Using the definition of the time-dependent differen-

tial conductance GNσ(Vsd, t) = d
dVsd

jNσ(t) we present the transient evolution

of the uncorrelated system in Fig. 5.4 and the correlated system in Fig.

5.5. These figures present the the differential conductance versus time and

the source-drain voltage Vsd lifting the chemical potential of metallic lead

(µN = Vsd, µS = 0) for various interdot couplings and the Coulomb potential.

The transient evolution of the system exhibits emergence of the Andreev bound

states induced by the proximity effect in the quantum dots. The Andreev

bound states appearing in GNσ(Vsd, t) can be interpreted as the excitation

energies between eigenstates with the even and odd number of electrons. In

the stationary limit (t→∞) the peaks occur at E = ±1
2
(
√

4V 2
12 + Γ2

S/4 ± ΓS/2)
(for the uncorrelated case and εiσ = 0). Their broadening is caused by the

relaxation processes on a continuous spectrum of the metallic lead.

In the correlated case (Fig. 5.5) we observe substantial reorganization

of the bound states. For larger U we observe smaller separation between

their position, see panels in the first and second column of Fig. 5.5. This

tendency proves, that the Coulomb repulsion suppresses the effects of the

interdot hybridization and the superconducting proximity effect. In the third

and fourth column of Fig. 5.5, the peaks merge, but presumably this is an

artificial consequence of the mean-field approximation which is hardly reliable

for the strongly correlated limit U > ΓS.
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Figure 5.4: The transient evolution of the differential conductance G = GNσ(Vsd, t)
(in units of 2e2/h) with respect to source-drain voltage Vsd = µN and time t,

obtained for V12 = 1,0.3,0.2,0.1, respectively. We used the model parameters:

εiσ = 0, ΓN = 0.1, ΓS = 1, U = 0 [142].

Figure 5.5: The transient evolution of the differential conductance G = GNσ(Vsd, t)
(in units of 2e2/h) with respect to source-drain voltage Vsd = µN and time t, obtained

in the weak V12 = 0.5 (upper row) and strong interdot coupling limit V12 = 2 (bottom

row) for several values of the Coulomb potential (as indicated) for: εiσ = −U/2,
ΓN = 0.1, ΓS = 1 [142].
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5.4 Dynamics induced by abrupt source-drain voltage

In analogy to the single quantum dot system (Sec. 3.5) we analyze dynam-

ics caused by a rapid change of the source-drain voltage. The components of

N-DQD-S system are initially disconnected (till t = 0) and they are coupled

at t = 0+, exhibiting the transient evolution presented in Fig. 5.6. We observe

Figure 5.6: The time-dependent currents (in units of e/h) and quantum dot’s

occupancy (a), after a sudden coupling of the quantum dots to both external leads

at t = 0+. The post-quench evolution (b) after applying the source-drain voltage

Vsd at t = 60. Results are obtained for: εiσ = 0, ΓN = 0.2, ΓS = 1, U = 0 [134].

the relaxation process imposed on top of the quantum oscillations of the

characteristics. The steady state is approximately achieved at t ≃ 60, after

a sequence of quantum oscillations, damped in time with the exponential

envelope function e−tΓN /2. Frequency of the quantum oscillations coincide with

quasiparticle energies of the in-gap bound states of N-DQD-S heterostructure.

In particular, for εiσ = 0, the period is equal to T = 4π/ΓS.
At t = 60 we perform the quench, applying the source-drain voltage.

Rapid change of the chemical potential of the metallic lead induces the

charge flow through the system. The oscillating currents jNσ(t) and jSσ(t),
are shown in Fig. 5.6b and Fig. 5.7 for different interdot coupling values.

Here, the superconducting lead is grounded and the source-drain voltage
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Vsd = µN − µS lifts the chemical potential µN . For the source-drain voltage

much larger than the interdot coupling ∣Vsd∣ ≫ V12, we notice emergence of

the quantum beats with the time period TB = π/V12 superimposed with higher

frequency oscillations. The appearance of these quantum beats originates

from a superposition of the sinusoidal waves of different frequencies. An

analogy of this phenomenon can be found in acoustics, where an interference

pattern results from the superposition of several sound waves of slightly

different frequencies. In the present case for εiσ = 0, ΓN = 0, U = 0, the charge

transport involves the Andreev scattering related to position of the in-gap

bound states, which are formed at energies E = ±1
2(

√
4V 2

12 + Γ2
S/4 ± ΓS/2).

It has been shown [120–122], that for the single quantum dot coupled to

the normal leads, the jump of the source-drain voltage induces coherent

oscillations in the current characteristics, with frequency ω = ∣Vsd − εd∣. For
the double quantum dot setup, we should replace the quantum dot energy

level by the four quasiparticle energies at which the Andreev scattering is

amplified. Taking into account the number of these quasiparticle energies, the

total current is a superposition of sinusoidal waves ∑4
i=1 aie

−λit sin(Ωit), with
frequencies Ω1/2 = Vsd ± ω1 and Ω3/4 = Vsd ± ω2, where ω1/2 = V12 ± ΓS/4. The
sinusoidal waves are damped with corresponding parameters λi and multiplied

by the coefficients ai which control the the contributions to total current from

these in-gap bound states.

In Ref. [143], the authors have shown that in the normal junction the

beating pattern depends on the ratio

r = ω1 + ω2

∣ω1 − ω2∣
, (5.8)

which can be applied to our case. This ratio can be expressed by the coupling

between the dots and hybridization to superconducting lead

r = 4V12

ΓS
. (5.9)

The numerical results of jNσ(t) obtained for Vsd = 20 (Fig. 5.6b) show that
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Figure 5.7: The post-quench currents jNσ(t) (in units of e/h), obtained for several

values of the interdot coupling V12 and source-drain voltage Vsd, using: εiσ = 0,

ΓN = 0.2, ΓS = 1, U = 0 [134].

the ratio is r = 8 and the following sequence of the beats can be detected:
π
4 ,7 ×

π
2 . If the ratio r is not an integer number, then the beating patterns

are significantly more complex. The plot of jNσ(t) current shown in Fig.

5.6b indicates, that for large Vsd = 20 the post-quench evolution is mainly

composed of the quantum oscillation with period TB = π/V12 superimposed

with the faster oscillations, whose frequency is equal to Vsd. In the steady

state limit, the current jNσ(t) is larger for Vsd = 2 than for Vsd = 1.5, because

of the broader transport window which involves all in-gap Andreev bound

states. Additionally, we notice that the current jSσ(t) differs from jNσ(t), and
their difference is more pronounced upon increasing Vsd. We can attribute

this behaviour to the fact that quantum dots between the external leads wash
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out small fluctuations of the current jSσ(t). It also imposes the period of

oscillations equal 4π/ΓS. A closer look on this beating structure presented in

Fig. 5.7, displays the time-dependent current jNσ(t) after the abrupt rise of

the source-drain voltage. Here, we clearly see the influence of the interdot

coupling V12 on the interference pattern by observing the oscillations with time

period TB = π/V12. In real measurements the period of beating oscillations

could serve as a tool to evaluate the interdot coupling V12. For example, if the

coupling to the superconducting lead ΓS ∼ 200µeV and V12 = 0.5ΓS, 1ΓS and

2ΓS the beating period would be TB ∼ 21, 10 and 5 picoseconds, respectively.

This time-scale is nowadays attainable experimentally.
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Figure 5.8: The same as in Fig. 5.7 but for the correlated half-filled quantum dots

U = 0.5.

Fig. 5.8 displays results obtained for the correlated case assuming both

quantum dots to be half-filled εiσ = −U/2. In this particular case, the evolution
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after the quench looks almost the same as in Fig. 5.7. We notice only the

slightly different shapes of the curves. Nevertheless, the oscillation period

remains unchanged. The different profiles of the time evolution between

uncorrelated and correlated cases can be explained by almost the same initial

conditions right before the jump of the source-drain voltage. In both cases,

the functions of quantum statistical averaging of operators ⟨. . . ⟩ have almost

the same values for half-filled scenario. In other cases than the half-filled

scheme, we can expect analogous behaviour of the oscillations if initially

(before the jump) the quantum statistical averaging of observables takes the

same values with and without correlations.

5.5 Quench in the quantum dot energy levels

In this section, we explore dynamics of the double quantum dot system

driven by the change of the quantum dot energy levels. We consider the

sequence of quenches imposed on the quantum dot energy levels εiσ. First

quench occurs at t1 = 60, when the energy level of both quantum dots are

raised up by the gate potential Vg: εiσ → εiσ + Vg. Second quench takes place,

when the system achieves a new stationary state (at time t2 = 120), then we

abruptly change the energy levels back to their initial values: εiσ + Vg → εiσ.

Let us first inspect the quantum dot occupancy of the stationary limit

t → ∞ (Fig. 5.9) of the quantum dots with respect to the initial energy

level ε1σ = ε2σ, for a few values of the interdot coupling V12. We notice that

quantum dot occupancies are almost identical n1σ ≃ n2σ. Here, we observe

step-like functions of the charge occupancy characterized by plateau regions.

Upon varying the energy level the charge evolves from the filled to nearly

empty quantum dots, through the plateau regions corresponding to niσ ≈ 1,

0.5, and 0, respectively. The width of the half-filling plateau region depends

on the interdot coupling and we observe its contraction with smaller V12.

Changeover between plateau regions occurs at εiσ ≈ ±V12.
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Figure 5.9: Charge occupancy of QDi in the stationary limit as a function of the

energy level ε2σ = ε1σ determined for several interdot couplings V12. The dashed line

refers to the correlated system, U = 1. Results are obtained for: Vsd = 0, ΓN = 0.1,

ΓS = 1 [134].

In Fig. 5.10, we present the current jNσ(t) obtained for the strong interdot

coupling V12 = 4 and identical energy levels εiσ = 0. We display the post-quench

evolution after the first and the second quench for several gate potentials

Vg = 3.0, 3.2, 5, and 6, respectively. We notice that the post-quench evolution

has the same general properties if the energy level position εiσ corresponds to

the same value of niσ(t = ∞) for arbitrary V12. We thus need only to consider

the case of any value of the interdot coupling and a set of various jumps of

εiσ.

In Fig. 5.11, we show n2σ(t), jNσ(t), jSσ(t) obtained for the interdot
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Figure 5.10: Evolution of jNσ(t) (in units of e/h), after step-like variation of the

quantum dots energy levels εiσ → εiσ +Vg at t = 60 and εiσ +Vg → εiσ at t = 120. We

assumed model parameters: εiσ = 0, V12 = 4, Vsd = 0, ΓN = 0.2, ΓS = 1, U = 0 [134].

coupling V12 = 4 and energy levels εiσ = 0, where the post-quench evolution

after the first and the second quench had been obtained for gate potentials

Vg = 3.2, 3.8, 4, and 5, respectively. Such values of Vg correspond to the

quantum dot’s occupancies equal to ∼ 0.48, ∼ 0.4, ∼ 0.25 and ∼ 0.015 (see

Fig. 5.9). In the first case, the jump from εiσ = 0 to εiσ + Vg = 3.2 (top rows

in Fig. 5.11), we notice that the stationary value n2σ(t ≃ 120) ≃ 0.48 and it

is nearly the same as the initial quantum dot occupancy n2σ(t = 60) = 0.5.

Therefore, n2σ(t) remains nearly unchanged exhibiting only small fluctuations.

Likewise, the currents jNσ and jSσ exhibit negligibly small oscillations in

their characteristics. After the second quench, the occupancy n2σ is almost

intact ∼ 0.5, but immediately after the quench the transient beating structure

appears. For the larger amplitude Vg (Vg = 3.8 and Vg = 4), the fluctuations

are more pronounced. We observe the oscillations with period T = π/V12 and

the beating structure with the period TB = 2π/ΓS. Rising the value of gate

voltage Vg up to Vg = 5 and above, the evolution after the quench differs from

the previous cases. After the first quench, n2σ (for Vg = 5) it shows almost

exponential decay, down to nearly zero value with the damped oscillations.
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Figure 5.11: Evolution of the quantum dot’s occupancy (a) and currents (b-c) (in

units of e/h), after step-like variation of the quantum dots energy levels εiσ → εiσ+Vg
at t = 60 and εiσ + Vg → εiσ at t = 120. We assumed model parameters: εiσ = 0,

V12 = 4, Vsd = 0, ΓN = 0.2, ΓS = 1, U = 0 [134].

In the evolution, after the second quench, the oscillations of quantities with

the period T = 2π/ΓS are visible without the beating structure. We conclude

that, after the second quench, the beating structure appears if εiσ corresponds

to the slopes of n2σ(t = ∞) with respect to ε2σ (Fig. 5.9) and it is absent if

εiσ coincides to the bottom plateau of these same curves. For V12 ≤ 1, the

evolution after the first quench is similar to the case with large V12, but after

the second quench the beating patterns are not visible, only the oscillations

with the period 4π/ΓS can be detected.

We have also performed calculations considering the Coulomb interactions

U = 1 and applying the same quench procedure, see Fig. 5.12. For Vg = 3.35,

4.0, 4.25 and 5.3 (which correspond to the tilted part of the curve calculated

for U = 1 in Fig. 5.9), the occupancies n2σ are the same as in the uncorrelated

case. In the post-quench evolution we obtain almost identical behaviour of all

quantities. Like in previous chapter (Sec. 5.4), the initial conditions before

the quench are almost the same for uncorrelated and correlated cases, which

is the reason why the post-quench evolution is almost identical. This specific

scenario presents the weak influence of the correlations on the post-quench
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Figure 5.12: The same as in Fig. 5.11 but for the correlated system U = 1, assuming

the initial energy levels εiσ = −U/2.

evolution. Notice that the results in Fig. 5.12 were obtained for U = ΓS on

the borderline of applicability of the mean-field approximation. For larger

Coulomb potential the calculations need to be done by more sophisticated

methods.

5.6 Periodic driving of orbital level positions in DQD

We extended our investigation of driven systems, discussing the double

quantum dot system under the drive of the energy levels εiσ(t) = A sin(ωt).
For simplicity, we assume that both quantum dots oscillate with the same

amplitude A and frequency ω. Left panel in Fig. 5.13 presents the time-

dependent current jSσ(t) obtained for ω = 0.1 and for several amplitudes A,

neglecting the correlation effects. The right panel in Fig. 5.13 presents the

time-dependent current jSσ(t) for various Coulomb potentials U . Top panel

of Fig. 5.13a shows the transient evolution of the unbiased system (Vsd = 0)

which is characterized by damped oscillations with the time period 4π/ΓS.
Similar behaviour of the time-dependent currents is visible in the next plots

presented in the left panel. We observe different profiles of the quantum

oscillations damped in time (up to t = 20) and the long-term fluctuations

caused by the periodic driving appearing upon increasing amplitude A. In the



CHAPTER 5. DYNAMICS OF ANDREEV STATES IN DOUBLE . . . 98

Figure 5.13: The time-dependent currents (in units of e/h) for the periodically

driven εiσ(t), where the oscillations are turned on at t = 0+. The panel a) presents

the results obtained for V12 = 4, U = 0 and several amplitudes A. The panel b)

presents the results obtained within the mean-field approximation for V12 = 3, A = 3

and several values of U . The dashed line shows the profile of the oscillations energy

levels (not in scale). The other model parameters: Vsd = 0, ω = 0.1, ΓN = 0.1,

ΓS = 1 [134].

case of strong interdot coupling, V12 = 4, we notice that the time-dependent

currents vanish in the asymptotic limit for amplitudes A ≤ 3.5 (see Fig. 5.13a).

For A ≥ 3.5, the amplitude A exceeds the energy of subgap quasiparticles

therefore the oscillation of the time-dependent currents can be observed. It

turns out that the current jSσ(t) remains oscillating through all time region,

including the asymptotic limit t → ∞. We observe that the period of this

oscillatory behaviour matches with the driving period.

In the right panel in Fig. 5.13, we present the numerical results for the

current jSσ(t) obtained for the Coulomb correlations U1 = U2 = U within the

mean-field approximation. For comparison, the upper curve in Fig. 5.13b

presents the results for uncorrelated case. The results are obtained for the

unbiased system Vsd = 0 with interdot coupling V12 = 3 and the driving

amplitude A = 3. We note that this case, V12 = A, corresponds to the situation

when the current jSσ(t) oscillates in the entire time window.
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Figure 5.14: The time-dependent currents (in units of e/h) for the periodically

driven εiσ(t), where the oscillations are turned on at t = 0+. The results are obtained

for the different periodic driving schemes with profiles marked by the dashed lines

(not in scale). The other model parameters: A = 2, ω = 0.1, V12 = 4, Vsd = 0,

ΓN = 0.2, ΓS = 1, U = 0 [134].

Fig. 5.13b displays the influence of electron correlations. With increasing

U , we observe the suppressed amplitude of the current. However, the details

of the oscillations remain still visible.

Studying the periodically perturbed double quantum dot heterostructure

we now consider different profiles of the drive. Fig. 5.14 presents the time-

dependent current jSσ(t) imposed by the periodically driven energy levels

εiσ(t) = εiσ(t+T ). In each plot, we included the corresponding driving profile

marked by dashed lines (the amplitude is not in scale). Moreover, we assumed

the same amplitudes and frequencies. For the step-like variations of the

quantum dot’s energy level, we observe the enhancement of the current after

each change of εiσ. Those oscillations are damped in time and their lifetime

is smaller than the period of the drive. For more smooth profiles of εiσ the

amplitude of the revival oscillations decreases and the current characteristics

are correlated with the current plot for sinusoidal changes of the quantum
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dot’s energy level.

In the periodically driven system, we can calculate the averaged quantities

over one driving period, e.g., current and differential conductance. This has

been done for one single quantum dot system in Sec. 4.3 using the Green’s

function method. The observable averaged over one driving period gives more

precise information about the role of the amplitude A and frequency ω of the

oscillating quantum dot’s energy level. Here, we use the Heisenberg equation

of motion method, inspecting the charge currents averaged over a single period

T = 2π/ω of the perturbation and we analyse the quasiparticle features visible

in the nonequilibrium transport properties of the investigated heterostructure.

We calculate the Andreev current average over one driving period ⟨jNσ(t)⟩t0 =
1
T ∫

t0+T
t0

jNσ(t)dt and its differential conductance GNσ(Vsd) = d
dVsd

⟨jNσ(t)⟩t0
with respect to the source-drain voltage Vsd and driving amplitude A or

frequency ω.

Till t ≤ 0 we assume both quantum dots to be empty and (at t > 0) impose

the driving on εiσ simultaneously with applying the voltage Vsd = µN − µS.
The time-dependent evolution of the currents is presented in Fig. 5.13, where

we observe the oscillations due to the driving force. In a long time evolution,

the current becomes nearly periodic in time, therefore we can calculate its

average value. It is important to notice that the period of the drive and the

period of the currents become the same in the long time limit. In Fig. 5.15 we

present the numerical results of the differential conductance GNσ(Vsd, ω) for

the set of the model parameters, where ΓN ≪ ΓS and εd = 0. The maps present

the averaged Andreev conductance obtained for two values of the interdot

coupling V12 and several amplitudes A, as indicated. Panels in Fig. 5.15

display the characteristic features of the driven quantum system originating

from the absorption/emission of the external field quanta. In general, we

notice the main quasiparticle peaks appearing at ±1
2
(
√

4V 2
12 + Γ2

S/4 ± ΓS/2)
and their higher harmonic peaks. Moreover, the avoided crossing behaviour

between the peaks of different harmonic levels can be noticed.
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Figure 5.15: The averaged over one driving period Andreev conductance GNσ (in

units of 2e2/h) as a function of frequency ω and the source-drain voltage Vsd. The

results obtained for several amplitudes A and interdot coupling V12 (as indicated).

The other model parameters: ΓN = 0.1, ΓS = 1, U = 0 [134].

Some properties of the photon-assisted tunnelling through the quantum

dots placed between the normal electrodes have been previously studied in

literature [144–146]. For such system, the main resonance peaks and harmonic

bands are modulated by the square of the Bessel functions of the first kind

J2
n(A/ω) (see Fig. 4.3). In the Josephson junction, where the single quantum

dot is embedded between two superconducting leads, the quasiparticle peaks

are proportional to the following Bessel function J2
n(2A/ω) [69, 147]. Here,

the argument is doubled due to the fact that the Cooper pairs are the charge

current carriers.

In our N-DQD-S heterostructure, we observe that the harmonic peaks

are weighted by the squared Bessel function J2
0 (2A/ω). For the constant
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Figure 5.16: GNσ (in units of 2e2/h) averaged over one driving period Andreev

conductance as a function of the amplitude A and the source-drain voltage Vsd.

The results are obtained for several frequencies ω and interdot coupling V12 (as

indicated), using: ΓN = 0.1, ΓS = 1, U = 0 [134].

amplitude A = 4 (see Fig. 5.15d), the quasiparticle peaks disappear at

frequencies ω for which the Bessel function is equal to zero, e.g. ω ∼ 3.3,

1.45, 0.92. They correspond to the first, second and third zero of J0(2A/ω),
respectively. Moreover, comparing Figs.5.15c and 5.15d, we see that the value

of ω for which the main quasiparticle peaks and higher harmonics disappear

is independent of the interdot coupling V12.

To investigate the influence of the amplitude on the quasiparticle spectrum,

we calculated the averaged Andreev conductance with respect to Vsd and A,

for a few values of the interdot coupling V12 and frequency ω (see Fig. 5.16).

In the stationary situation, for A = 0, there exist four peaks in the differential

conductance. Upon increasing the driving power, the main quasiparticle peaks
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loose part of the spectral weights (intensity) at expense of the higher order

replicas. With the growing amplitude, the larger number of replicas can be

detected at energies ω, ±ω, ±2ω. Simultaneously, their total spectral weight

undergoes substantial redistribution. Besides this tendency, for specific values

of A, the spectral weight of individual harmonics vanishes and then again

reappears.

Figure 5.17: The averaged Andreev conductance GNσ (in units of 2e2/h) as a

function of the interdot coupling V12 and the source-drain voltage Vsd. The results

are obtained for several amplitudes A (as indicated), using the model parameters:

ω = 1, ΓN = 0.1, ΓS = 1, U = 0 [134].

Fig. 5.17 presents the plots of averaged Andreev conductance against

the source-drain voltage Vsd and the interdot coupling V12, obtained for two

values of the driving amplitude A and frequency ω = 1. The left panel in

Fig. 5.17 presents the quasiparticle peaks appearing around ±nω. Upon

increasing the coupling V12 the peaks gradually split into the lower and upper

branches. The branches of conductance peaks never cross each other because

of the quantum mechanical interference [148]. In the case with the larger

driving power (right panel in Fig. 5.17), we also observe this avoided crossing

behaviour. Moreover, the harmonics consist of two nearby located peaks.

Finally, we investigate the influence of the electron correlation on the

differential conductance GNσ. Fig. 5.18 shows the results for GNσ as a

function of the source-drain voltage Vsd calculated for several values of the
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Coulomb repulsion force U and the following set of parameters: V12 = 2,

A = 2 and ω = 2.5. In comparison to the first plot presented in Fig. 5.18

(for uncorrelated case), we observe two doubled main quasiparticle peaks

localized at Vsd = ±E± ≡ ±1
2
(
√

4V 2
12 + Γ2

S/4 ± ΓS/2). We observe the first-order

harmonics at Vsd = ±E± ∓ h̵ω and the peaks from the second-order harmonics

localized at Vsd = ±E+ ∓ 2h̵ω. For larger electron correlation, the quasiparticle

peaks change their heights. Upon increasing U , we observe more asymmetric

distribution among the second-order harmonics as compared to the first-order

harmonics, which have nearly symmetric shape. Position of the quasiparticle

peaks are nearly insusceptible to the electron correlations.
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Figure 5.18: The averaged Andreev conductance G = GNσ (in units of 2e2/h) as a
function of the source-drain voltage Vsd. The results obtained within mean-field

approximation for several values of U (as indicated), using: V12 = 2, ω = 2.5,

ΓN = 0.1, ΓS = 1 [134].
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5.7 Summary

In this chapter, we discussed the transient effects and the post-quench

dynamics of the double quantum dot system. We presented that the transient

effects are characterized by damped quantum oscillations with the exponential

envelope function e−tΓN /2. The period of these quantum oscillation coincides

with energies of the in-gap states for the system.

The post-quench evolution induced by jump of the source-drain voltage has

shown that the quantum oscillations are the superposition of the sinusoidal

waves ∑4
i=1 aie

−λit sin(Ωit), with adequate frequencies Ω1/2 = Vsd ± ω1 and

Ω3/4 = Vsd ± ω2, where ω1/2 = V12 ± ΓS/4. For the large source-drain voltage

∣Vsd∣ ≫ V12, the beating pattern depends on the ratio r = 4V12/ΓS.
We also analysed evolution of the system after the sudden shift of the

quantum dot energy levels. We noticed, that the evolution of the system after

the quench mostly depends on the initial occupations niσ (right before the

quench) and the magnitude of gate potential Vg. For the energy shifts which

coincide with the plateau and slope regions presented in Fig. 5.9 (plot of the

charge vs. energy level of quantum dots) some universal properties of the

oscillations can be detected.

In the last part we presented the results for the system influenced by the

periodic driving of the quantum dot energy levels. The oscillations of the time-

dependent currents are induced when the amplitude of the drive is close or

exceeds the value of the coupling V12. We noticed that for stronger correlations

the amplitude of the oscillations decreases, but the characteristic shape of

currents remains unchanged. We also presented the conductance averaged

over one driving period. Such conductance is characterized by the main

quasiparticle peaks appearing at ±1
2
(
√

4V 2
12 + Γ2

S/4 ± ΓS/2) and emergence of

the higher harmonic peaks caused by the emission/absorption of the energy

quanta. The correlations affect the distribution of the quasiparticle peaks,

mainly by their height (spectral weight). Position of the quasiparticle peaks

weakly affected by the electron correlations.





Chapter 6

Machine learning simulations

In this chapter we discuss a computational method of a machine learning

(ML) [149, 150] applied in our study to investigation of the driven systems.

Considering the double quantum dot system, the numerical solution of the

Heisenberg equation of motion consumes a large amount of computational

power and time. Our numerical procedure has been parallelized which greatly

increased the effectiveness of our code. However, to obtain a single map of the

averaged conductance over one driving period using CPU 2x Xeon E5-2660

(2.2GHz 16 cores/ 32 threads) took almost one week of calculations. To avoid

such difficulties an auxiliary procedure based on a machine learning algorithm

has been developed.

In this section the concept, main principles and structure of the machine

learning algorithm will be introduced. For brevity we present here only the

most important details.

6.1 Fundamentals of artificial intelligence

In general, the machine learning is a numerical method of data analysis.

The purpose of the machine learning is to expose patterns and correlations

between the particular variables of the investigated case. The idea of the

machine learning algorithm has been presented in 1959 by Arthur Samuel [149],

107
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who was the pioneer in an artificial intelligence (AI) field. The machine

learning is a subfield of the artificial intelligence, which can be regarded as a

simulation of the human mind. The main purpose of the artificial intelligence

is to mimic humans actions, and program machines to behave like humans.

Those simulations can be applied to learn and solve some specific problems.

The artificial intelligence is based on an artificial neural network, which

is composed of the single nodes called perceptron (see Fig. 6.1). Moreover,

the idea of preceptron is based on the working principles of the neuron. In

general, the preceptron can have any number of inputs and outputs, which are

represented by numerical values. Every input is multiplied by a corresponding

weight 0

weight 1
output

input 0

input 1 activation 

function

bias

bias
weight

Figure 6.1: Idea of the perceptron.

weight. Then the result of the multiplication is passed to an activation

function and finally, in the output, the specific result is obtained. Sometimes,

the activation function requires additional bias value. It happens when the

sum of inputs does not fulfil the properties of the activation function. For

example: The perceptron returns 1 if the sum of inputs is positive number or

0 if the sum of inputs is negative number. The problem occurs if the original

input is zero. Then an addition of the extra bias value equal +1 solves the

problem. Mathematically, the concept of the perceptron can be pressented

by a simple sum ∑Ni=0wixi + b, where N denotes number of inputs, wi is the

weight corresponding to the specific input xi and b is the bias value.

A larger number of perceptrons can create the matrix form that is the

neural network, schematically presented in Fig. 6.2. The particular parts of

the neural network can be specified: input layer, hidden layer, output layer.
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The input layer consists of the perceptrons whose number usually corresponds

input
layer

hidden
layers

output
layer

Figure 6.2: Graph of the artificial network.

to the number of features or properties of the considered case. In the center

of the neural network, the hidden layers are located. The number of the

hidden layers and the number of nodes in the specific layer is an arbitrary

value. Often the hidden layers are called the level of abstraction because

their outputs do not represent any physical value. At the end of the neural

network, the output layer is located. The final layer returns the predicted

value of the formed model.

In the model, besides the number of layers and nodes, a crucial role plays

the activation function. Depending on the task, the appropriate activation

function must be applied. If we consider a classification problem then the

logic function will be the appropriate choice. For more complex cases the

more dynamic functions will be better. The most common functions having

good performance are: Sigmoid function - S(x) = (1 + e−x)−1, Hyperbolic

Tangent - tanh(x), Rectified Linear Unit (ReLU) f(x) = x+ = max(0, x).

6.2 Basics and functions of the learning protocols

To grasp the idea of the learning process, some particular information

needs to be presented. First of all, let us consider the case of the single

perceptron and its predictions.
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For random weights, the output of the perceptron and the expected

value are inconsistent. Adjustment of the perceptron weights is called the

learning process. To measure the discrepancy between predicted value and

the expected value we can use a cost function. The cost function C evaluates

the performance of the neuron that is measured by how far off the predictions

x are from the true value y. One of the most common function is a quadratic

cost C = ∑Ni=0(yi−xi)2/N , which is not an efficient function and could increase

the time of the learning process. For this cost function, the larger errors are

more pronounced due to the squaring. Another, more efficient cost function is

a cross entropy C = − 1
N ∑

N
i=0 [yi ln(xi) + (1 − yi) ln(1 − xi)]. The cross entropy

allows for a much faster learning process because the larger the difference, the

faster the perceptron can learn. The cost functions are indirectly dependent

on the perceptron weights.

A subsequent important aspect of the learning process is a gradient descent

(the delta rule). The gradient descent is an algorithm for finding the minimum

of the cost function C, schematically presented in Fig. 6.3. As we see in

Figure 6.3: Visualization of the gradient descent algorithm.

Fig. 6.3 there exists a value of weight w which for the cost function C(w)
has its minimum. The gradient descent algorithm is based on an iteration

process. The algorithm starts with a random set of perceptron weights and

calculates the error for each next step of the iteration, updating the model

parameters until the result is the minimum of the cost function. This process
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has following pseudocode structure

while: C(wi) ≠ min[C(w)] {

wi = wi − α
∂C(wi)
∂wi

},

where α denotes a learning rate. The learning rate define how quickly the

gradient descent algorithm moves towards the minimum of the cost function.

Inappropriate value of the learning rate negatively affects the gradient descent

algorithm, if α is too small the algorithm makes small steps that extend

calculation time. On the other hand, if α is too large the algorithm can

overshoot and do not find the solution. One can specify three types of the

gradient descent algorithm:

• Batch gradient descent - all of the training data is considered by an

algorithm to make a single step. The algorithm takes the average of the

gradients of all the training points and then uses that mean gradient to

update the perceptron weights. One step of gradient descent is called

one epoch.

• Mini-batch gradient descent - the algorithm takes small portion of the

training data called batch. The batch is used to update the perceptron

weights in each iteration.

• Stochastic gradient descent - updates the perceptron weights in each

iteration using only a randomly selected single batch from the training

data set.

In more complex cases, when the neural network is considered, the larger

number of perceptrons and their weights are needed to figure out the solution.

To adjust the values for the perceptron weights and minimize the cost function

across our entire network by the gradient descent algorithm we need to use

a backpropagation. The backpropagation algorithm is a generalization of

the gradient descent algorithm for the artificial neural network. Such an
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algorithm calculates the gradient of the error function with respect to the

neural network’s weights. The calculations proceed backwards through the

neural network. At first, the algorithm calculates the gradient of the loss

function for the final layer, then going back calculates the gradient of the

loss function using the weights of the subsequent layers up to the first layer.

The backpropagation algorithm is an algorithm for a supervised learning.

Supervised learning is one of the types of machine learning, it uses the labeled

data sets to model dependencies between the target predictions and the input

features.

The learning protocol is a combination of the particular procedures pre-

sented above, schematically visualized in Fig. 6.4. To train the neural network

data train

test

holdout

train 
model

test 
model

evaluate
model

Figure 6.4: Scheme of the learning protocol for the artificial neural network.

we require a prepared dataset, which will be divided into three subsets: train,

test, holdout. The train subset contains the data for the training process,

which teaches our neural network by using the gradient descent and backprop-

agation algorithms. Then the efficiency of the established neural network is

checked by data from the test subset. If the predictions of the model are not

convergent to the true values the training procedure will be performed again.

The final correctness of the neural network is verified by the holdout subset.
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6.3 Adaptation of artificial intelligence to the driven

double quantum dot system

In our specific case of N-DQD-S heterostructure, we train the neural

network using supervised learning and the mini-batch gradient descent. Our

data set is a compound of 76 conductance maps. The maps of the conductance

averaged over single driving period have different resolutions and in total give

971760 data points. To increase the number of points, every map has been

linearly interpolated, giving us 3887040 data points in total. As software

we choose Tensorflow, the open-source machine learning library having an

integrated programming interface Keras [151].

In the model of the densely connected neural network (see Fig. 6.5), we

have four parameters in the intake layer (V12, ω, Vsd, A) and the output layer

with the single neuron (G), where the hidden layers are composed of the

layers consisted of 2048, 1024, 512, and 256 neurons, respectively. The size

Figure 6.5: The densely connected artificial neural network.

of the neural network is caused by the nonlinearity in the system. Every

single neuron has the sigmoid function as the activation function. To avoid

overfitting of the model we defined a dropout of 1% neurons on every learning

step. In the training process, we established the batch size 1024 and the
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number of epochs equal 600, which gave us the fidelity coefficient R2 = 0.987.

Figure 6.6: a) The plot of the differential conductance predicted by the neural

network versus calculated values. b) The reconstruction of the conductance map in

Fig. 5.16a generated by the neural network [134].

Figure 6.7: The calculated conductance map (panel a) and generated by the neural

network (panel b) obtained for V12 = 1.7, ω = 2.5 [134].

Fig. 6.6a shows the discrepancies between the calculated and predicted

values of G for our model, which is deflation of the points from the red

line. Fig. 6.6b presents a reconstruction of the conductance map for specific

system parameters, which has been included in the train data subset. For

comparison, panels in Fig. 6.7 show the conductance maps obtained from

the direct calculation (panel a) and by the neural network (panel b). The
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map shown in panel a) in Fig. 6.7 has not been used for learning the neural

network. Those results have been published in [134].

In Fig. 6.7, we see the qualitative reconstruction of the calculated by

equation of motion method conductance map. With this approach, we are able

to simulate new conductance maps for a periodically driven double quantum

dot system and many different values of the controlling parameters. Recalling

that we can control: source-drain bias voltage Vsd, amplitude A and frequency

ω of driving field and the strength of interdot coupling V12. The analysis and

properties of these maps are discussed in Chapter 5.6. The machine learning

model of the double quantum dot system allows us to simulate the same

conductance map faster. We have managed to reduce the calculation time to

less than an hour, where calculations using the equation of motion method

required more than a week.
This neural network model is available at the following webpage:

www.dropbox.com/sh/0hzs9im3d3bf0jr/AADRr3kltw2mOdCCh8tedoIWa?dl=0

www.dropbox.com/sh/0hzs9im3d3bf0jr/AADRr3kltw2mOdCCh8tedoIWa?dl=0




Chapter 7

Summary and Outlook

This dissertation presented a study of the superconducting nanostructures and

their time-dependent properties. We have investigated the systems composed of

the single and double quantum dots embedded between the normal metallic and

superconducting leads. We have inspected response of such systems on various

dynamical perturbations, i.e.: transient effects (sudden coupling of the quantum

dots to the reservoirs), abrupt application of the source-drain voltage, quench in the

quantum dot energy level, sudden change of the coupling to the superconductive

electrode. Moreover, we have analysed the evolution of the system under the

periodic driving of the energy level of the quantum dots. Variety of the protocols

has resulted in a plethora of emergent physical phenomena. Here, we briefly recollect

the most important findings.

Single quantum dot
For the single quantum dot system, placed between the normal metal and

superconducting electrode, we observed the time-dependent emergence of the An-

dreev states. Formation of the bound states in the quantum dot at energies

EA = ±
√

(εd +U/2)2 + (ΓS/2)2 has an oscillating character, with period 2π/EA and

the relaxation processes are governed by envelope function e−ΓN t.

After the rapid switching the source-drain bias voltage in the uncorrelated

quantum dot system, we also observed the oscillations of the charge current. Those

oscillations resulted from the superposition of two contributing currents with the

117
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frequencies ω1/2 = µN ± ΓS/2. We noticed that the current to normal lead jNσ(t) is

consisted of the high frequency component ω = µ and the low frequency one with

the time period T = 2π/ΓS , whereas the current jSσ(t) revealed oscillations with

only the lower frequency.

In the post-quench evolution of uncorrelated system (imposed by variation of

the quantum dot energy), the oscillatory behaviour of the observables revealed

the period T = 2π/
√

Γ2
S + 4(∆εd)2. For the correlated quantum dot system, we

discovered the phenomenon resembling the 0 − π transition, sign-reversal of the

oscillating observables. Investigating the influence of the suddenly changed coupling

to the superconducting electrode, we observed the transition from the doublet to

singlet configurations.

For the uncorrelated system we found that the periodical driving field induced

the harmonic states in the quasiparticle spectrum. Such harmonic states emerged

from the Andreev states and showed up in the differential conductivity of N-QD-S

heterostructure. We also noticed that the harmonic states linearly depend on the

driving frequency and they split due to the superconducting proximity effect.

Double quantum dot
For the double quantum dot system placed in series between the normal

metal and superconducting electrode, we observed the time-dependent forma-

tion of the Andreev states appearing in the differential conductance at E =
±1

2 (
√

4V 2
12 + Γ2

S/4 ± ΓS/2) (for εiσ = 0).

In the post-quench evolution induced by the source-drain voltage, we noticed

emergence of the quantum beats with the time period TB = π/V12. The appearance

of the quantum beats is due to the superposition of waves of different frequen-

cies. The total current can be represented as a superposition of sinusoidal waves

∑4
i=1 aie

−λit sin(Ωit), with frequencies Ω1/2 = Vsd ± ω1 and Ω3/4 = Vsd ± ω2, where

ω1/2 = V12 ± ΓS/4. For the correlated case at the electron-hole symmetry point

εiσ = −U/2, we observed similar behaviour of the observables.

Subsequently, we investigated the quenches imposed on the quantum dot energy

levels εiσ. We established the protocol, consisting of the first (εiσ → εiσ + Vg) and
the second quench ( εiσ + Vg → εiσ) for εiσ = 0. After the first quench, for Vg < V12,
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we observed the damped oscillations in the characteristics of observables and almost

unchanged occupancies of both QDs. For Vg ∼ V12, we observed more pronounced

oscillations with the period T = 2π/ΓS and variation of the occupancy of quantum

dots. In the evolution, after the second quench, for Vg ∼ V12, the fluctuations were

more pronounced. We observed the oscillations with period T = π/V12 and the

beating structure with the period TB = 2π/ΓS . For Vg > V12, the evolution after

the second quench revealed the oscillations with the period T = 2π/ΓS without the

beating structure. The post-quench dynamics proved to be strictly dependent on

the ratio between Vg and V12. For the correlated case, at half-filling εiσ = −U/2, we
observed similar behaviour of the observables.

Additionally, for the double quantum dot system with the periodic driving, we

found appearance of the harmonic peaks weighted by the squared Bessel function

J2
0 (2A/ω). They originated from the Andreev bound states and evolved depend-

ing on the amplitude and the frequency of the driving field. These branches of

conductance peaks never cross each other. For investigating the emergence of the

harmonic peaks we constructed the machine learning model (discussed in Ch. 6).

Outlook
In the future studies, we would like to investigate Majorana modes in systems

with the periodic driving. In our opinion, the Majorana modes should have a

impact on the conductance map of the system with the single or double quantum

dot. In multi-terminal systems with the side-attached Majorana wire [152, 153],

the dynamics induced by the different types of quench protocols would be worth

addressing as well. Additionally, it would be interesting to explore the influence of

strong electron correlations on the post-quench dynamics of states in the double

quantum dot.

Furthermore, it would be worthwhile to investigate the dynamics of quantum

dot arrays connected to superconducting reservoirs, and analyse their evolution

induced by different types of perturbations. Another issue for investigation could be

the time-dependent entanglement between quasiparticles in heterostructures with

the topological superconductors.





Appendix A

A.1 Differential equations of motion for N-QD-S

Solving the Heisenberg equation of motion for N-QD-S Hamiltonian we get the

closed set of equations:

dtf1 ≡ dt⟨nd↑(t)⟩ = 2Im [∑
k

Vke
−iεNktfk1 − i

ΓN
2
f1 −∆scf3] , (A.1)

dtf2 ≡ dt⟨nd↓(t)⟩ = 2Im [∑
k

Vke
−iεNktfk2 − i

ΓN
2
f2 −∆scf3] , (A.2)

dtf3 ≡ dt⟨d↓(t)d↑(t)⟩ = −i (εd↑(t) + εd↓(t) − iΓN) f3 − i∆sc(1 − f1 − f2)

−i∑
k

Vke
−iεNktfk4 + i∑

k

Vke
−iεNktfk3, (A.3)

dtfk1 ≡ dt⟨d†
↑(t)ck↑(0)⟩ = [iεd↑(t) −

ΓN
2

] fk1 + i∆scfk4

+iVkeiεNktn̄(εk), (A.4)

dtfk2 ≡ dt⟨d†
↓(t)ck↓(0)⟩ = [iεd↓(t) −

ΓN
2

] fk2 − i∆scfk3

+iVkeiεNktn̄(εk), (A.5)

dtfk3 ≡ dt⟨d↑(t)ck↓(0)⟩ = [−iεd↑(t) −
ΓN
2

] fk3 − i∆scfk2, (A.6)

dtfk4 ≡ dt⟨d↓(t)ck↑(0)⟩ = [−iεd↓(t) −
ΓN
2

] fk4 + i∆scfk1, (A.7)

where n̄(εk) = [1 + exp ((εk − µN)/kBT )]−1 is the Fermi distribution function of the

normal lead electrons and dt ≡ d
dt .
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A.2 Differential equations of motion for N-DQD-S

The closed set of the differential equations corresponding to the N-DQD-S

system Hamiltonian:

dtf1 ≡ dt⟨n1↑(t)⟩ = 2Im [V12f7 −∆scf5] , (A.8)

dtf2 ≡ dt⟨n1↓(t)⟩ = 2Im [V12f8 −∆scf5] , (A.9)

dtf3 ≡ dt⟨n2↑(t)⟩ = 2Im [∑
k

Vke
−iεktfk5 − i

ΓN
2
f3 − V12f7] , (A.10)

dtf4 ≡ dt⟨n2↓(t)⟩ = 2Im [∑
k

Vke
−iεktfk6 − i

ΓN
2
f4 − V12f8] , (A.11)

dtf5 ≡ dt⟨d1↓(t)d1↑(t)⟩ = −i [ε1↑(t) + ε2↓(t)] f5 + iV12 [f9 − f10]

−i∆sc [1 − f1 − f2] , (A.12)

dtf6 ≡ dt⟨d2↓(t)d2↑(t)⟩ = −i [ε2↑(t) + ε2↓(t) − iΓN ] f6 + iV12 [f9 − f10]

+i∑
k

Vke
−iεkt [fk7 − fk8] , (A.13)

dtf7 ≡ dt⟨d†
1↑(t)d2↑(t)⟩ = i [ε1↑(t) − ε2↑(t) +

i

2
ΓN] f7 + iV12 (f3 − f1) + i∆scf10

−i∑
k

Vke
−iεktfk1, (A.14)

dtf8 ≡ dt⟨d†
1↓(t)d2↓(t)⟩ = i [ε1↓(t) − ε2↓(t) +

i

2
ΓN] f8 + iV12 (f4 − f2) − i∆scf9

−i∑
k

Vke
−iεktfk2, (A.15)

dtf9 ≡ dt⟨d1↑(t)d2↓(t)⟩ = −i [ε1↑(t) + ε2↓(t) −
i

2
ΓN] f9 + iV12 [f5 + f6] − i∆scf8

−i∑
k

Vke
−iεktfk3, (A.16)

dtf10 ≡ dt⟨d1↓(t)d2↑(t)⟩ = −i [ε1↓(t) + ε2↑(t) −
i

2
ΓN] f10 − iV12 [f5 + f6] + i∆scf7

−i∑
k

Vke
−iεktfk4, (A.17)



APPENDIX A. 123

dtfk1 ≡ dt⟨d†
1↑(t)ck↑(0)⟩ = iε1↑(t)fk1 + iV12fk5 + i∆scfk4, (A.18)

dtfk2 ≡ dt⟨d†
1↓(t)ck↓(0)⟩ = iε1↓(t)fk2 + iV12fk6 − i∆scfk3, (A.19)

dtfk3 ≡ dt⟨d1↑(t)ck↓(0)⟩ = −iε1↑(t)fk3 − iV12fk7 − i∆scfk2, (A.20)

dtfk4 ≡ dt⟨d1↓(t)ck↑(0)⟩ = −iε1↓(t)fk4 − iV12fk8 + i∆scfk1, (A.21)

dtfk5 ≡ dt⟨d†
2↑(t)ck↑(0)⟩ = i [ε2↑(t) +

i

2
ΓN] fk5 + iV12fk1 (A.22)

+iVkeiεktn̄(εk), (A.23)

dtfk6 ≡ dt⟨d†
2↓(t)ck↓(0)⟩ = i [ε2↓(t) +

i

2
ΓN] fk6 + iV12fk2 (A.24)

+iVkeiεktn̄(εk), (A.25)

dtfk7 ≡ dt⟨d2↑(t)ck↓(0)⟩ = −i [ε2↑(t) −
i

2
ΓN] fk7 − iV12fk3, (A.26)

dtfk8 ≡ dt⟨d2↓(t)ck↑(0)⟩ = −i [ε2↓(t) −
i

2
ΓN] fk8 − iV12fk4. (A.27)

Such systems of differential equations can be solved by iterative methods. In

our investigation, we applied Runge-Kutta 4th order method. However, other and

faster numerical methods, e.g. Dormand–Prince, can be implemented.

A.3 Non-equilibrium Green’s function formalism

In quantum physics the many-body system can be governed by time dependent

Hamiltonian Ĥ(t). The idea of adiabatic switching relies on assumption that in

the past t = −∞ the system was in initial state defined by the many-body density

matrix ρ(−∞) and from that point evolves according to the Heisenberg equation of

motion d
dtρ(t) = −

i
h̵[Ĥ(t), ρ(t)]. For h̵ = 1 the formal solution is represented by the

initial state and the evolution operators ρ(t) = Û(t,−∞)ρ(−∞)Û †(t,−∞), where
the operators are defined as follows

Û(t, t′) = Te−i ∫
t
t′ Ĥ(τ)dτ = lim

N→∞
e−iĤ(t)δte−iĤ(t−δt)δt . . . e−iĤ(t′+δt)δt (A.28)

and δt = (t − t′)/N denotes the infinitesimal time step. The expectation value of

observable Ô for the system at specific time t is defined as

⟨Ô(t)⟩ ≡ Tr{Ôρ(t)}
Tr{ρ(t)}

= Tr{Û(−∞, t)ÔÛ(t,−∞)ρ(−∞)}
Tr{ρ(t)}

, (A.29)
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where the trace is performed over the Hilbert space of many-body Hamiltonian

[154–156]. The numerator of the fraction includes the time evolution operator

describing the system evolution from t = −∞ to time t and backward to t = −∞.

The zero temperature expectation value of the operator Ô in equilibrium is

defined as ⟨GS∣Ô∣GS⟩ = ⟨0∣Û(−∞, t)ÔÛ(t,−∞)∣0⟩, where ∣GS⟩ = Û(t,−∞)∣0⟩ is a

ground state of the interacting system and ∣0⟩ denotes a vacuum [157]. The evolution

operators describe the evolution of the non-interacting vacuum state ∣0⟩ toward the

ground state ∣GS⟩ through the adiabatic activation of interactions. It is claimed

that the adiabatic evolution of the system along the entire contour and back to

the starting point results in an additional phase factor ⟨0∣Û(+∞,−∞) = ⟨0∣eiL. To
compensate the phase factor in the definition of the expectation value for operator

we can divide by this term ⟨GS∣Ô∣GS⟩ = ⟨0∣Û(+∞, t)ÔÛ(t,−∞)∣0⟩/eiL, then the

evolution describes only the forward path without backward segment.

This approach does not work in nonequilibrium situations. For the case, when

the system was driven out of equilibrium, the final state depends on the switching

protocol and the entire evolution of the system. The final state does not have to be

the same as the initial state. To avoid the needed of knowing state of the system at

t = +∞, we can use the Schwinger approach [158]. The evolution of (A.29) can be

extended from t to t = ∞ and backward by substituting Û(t,+∞)Û(+∞, t) = 1 and

written as

⟨Ô(t)⟩ = Tr{Û(−∞,+∞)Û(+∞, t)ÔÛ(t,−∞)ρ(−∞)}
Tr{ρ(−∞)}

, (A.30)

which is the evolution along the closed time contour C. In temperature limit T → 0,

those two branches of the time evolution are depicted by the Keldysh contour in

Fig. A.1.
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Figure A.1: The Keldysh contour C including the forward C+ and the backward C−
branches.

In the Keldysh formalism, where the time evolution of observables is governed

by the contour, the path-ordered Green’s function is defined as a quantum statistical

averaging of the fermion operators

Gcij(t, t′) = −i⟨T̂C{ĉi(t); ĉ
†
j(t

′)}⟩, (A.31)

where ĉ†j(t
′) is creation operator for electron in state j and time t′, ĉi(t) is annihila-

tion operator for electron in state i and time t. The single particle Green’s function

describes its propagation through time and space. Here T̂C is a time ordering

operator which governs the operator’s positions on the Keldysh contour [154]. The

contour-ordered Green’s function can be divided on four different types, depending

on the forward or reverse branches:

Gcij(t, t′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Gcij(t, t′) = −i⟨T̂C{ĉi(t); ĉ
†
j(t

′)}⟩ t, t′ ∈ C+ "casual",

G>
ij(t, t′) = −i⟨ĉi(t); ĉ

†
j(t

′)⟩ t ∈ C−, t′ ∈ C+ "greater",

G<
ij(t, t′) = +i⟨ĉ

†
j(t

′); ĉi(t)⟩ t ∈ C+, t′ ∈ C− "lesser",

Gc̃ij(t, t′) = −i⟨T̃c{ĉi(t); ĉ
†
j(t

′)}⟩ t, t′ ∈ C− "antitime-ordered".
(A.32)

The "casual" Green’s function is also called "time-ordered" Green’s function. For

the fermionic operators the time-ordering operator T̂C fulfils the following conditions

T̂C{ĉi(t); ĉ†j(t
′)} =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ĉi(t)ĉ†j(t
′) if t > t′

−ĉ†j(t
′)ĉi(t) if t′ > t.

(A.33)
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Fermionic operators obey the anticommutation relations:

{ĉi, ĉj} = 0, (A.34)

{ĉ†i , ĉ
†
j} = 0, (A.35)

{ĉi, ĉ†j} = δij , (A.36)

where anti-commutator is defined as {A,B} = AB +BA and δij is the Kronecker

delta.

Having defined the contour-ordered functions, we can write down fundamental

objects of the Keldysh technique: the retarded (r), advanced (a) and Keldysh (k)

Green’s functions

Grij(t, t′) = −iθ(t − t′)⟨{ĉi(t); ĉ
†
j(t

′)}⟩

= θ(t − t′) [G>
ij(t, t′) −G<

ij(t, t′)] , (A.37)

Gaij(t, t′) = iθ(t′ − t)⟨{ĉi(t); ĉ
†
j(t

′)}⟩

= θ(t′ − t) [G<
ij(t, t′) −G>

ij(t, t′)] , (A.38)

Gkij(t, t′) = G>
ij(t, t′) +G<

ij(t, t′), (A.39)

where θ(x) is a Heaviside step function. These relations are only valid when t ≠ t′.
Since by definition of the greater and lesser Green’s function in (A.32) [G<]† = −G>,

one notices that

[Gr]† = Ga, (A.40)

[Gk]† = −Gk. (A.41)

For non-zero temperatures T > 0, the Green’s function becomes more complex.

In order to obtain information about the particle and its space-time position as

a function of temperature, we need to introduce the Matsubara Green’s function

[159, 160]. Thermal averaging ⟨Ô⟩ = Tr (e−βĤ) = Tr (e+i(−iβ)Ĥ) = Tr (e+iτĤ) is

equivalent to evolution along imaginary axis from 0 to −iβ, see Fig. A.2. Therefore,

the Matsubara’s approach is called the imaginary time approach with

t→ iτ. (A.42)
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Figure A.2: The Keldysh or Konstantinov-Perel’s contour in the complex time plane

with forward C+, backward C− and imaginary branches.

Recalling that, for general operators A and B, the Green’s function is homogeneous

with respect to time, i.e. it depends only on a difference of the imaginary times:

GAB(τ1, τ2) = GAB(τ1 − τ2) ≡ GAB(τ), (A.43)

and that the function GAB(τ) is periodic (anti-periodic) function for bosonic

(fermionic) Green’s functions

GAB(τ −mβ) = − 1

Z
Tr (e−βĤ T̂CA (τ −mβ)B) (A.44)

with a general argument τ being in range

mβ < τ < (m + 1)β, (A.45)

where m denotes an arbitrary integer, we can show its other properties. If τ −mβ > 0

the Green’s function fulfills

GAB(τ −mβ) = − 1

Z
Tr (e−βĤBA (τ − (m + 1)β)) , (A.46)

and if τ < 0 the operators obey BA(τ) = −ηT̂CA(τ)B, where η is an integer number.

Since τ − (m + 1)β < 0 the Green’s function follows

GAB(τ −mβ) = −ηGAB(τ − (m + 1)β). (A.47)

In particular case, when m = −1, we see that

GAB(τ) = −ηGAB(τ + β) (A.48)
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and the Matsubara functions are periodic (anti-periodic) for bosonic (fermionic)

choice of the time ordering. Since both functions are periodic with period 2β the

Matsubara Green’s function can be expanded in the Fourier series as follows

GMAB(τ) = 1

β

∞
∑

m=−∞
e−iωmτGMAB(ωm) (A.49)

with frequencies distinct for bosonic and fermionic propagators

ωm =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2mπ
β for bosons,

(2m+1)π
β for fermions.

(A.50)

A.4 Langreth rules

In the uncorrelated case the contour ordered Green’s function satisfies the Dyson

equation of the general form

Gc(t, t′) = gc(t, t′) + ∫
C
dτ ∫

C
dτ ′gc(t, τ)Σc(τ, τ ′)Gc(τ ′, t′), (A.51)

where gc(t, t′) is bare Green’s function and Σc(τ, τ ′) a self-energy term. In this

equation the time convolution between the functions occurs via

C(t, t′) = ∫
C
dτA(t, τ)B(τ, t′), (A.52)

with the integrations over the extra time argument τ on the Keldysh contour. We

can assume that t is on the first part of the contour and t′ belongs to the second

half. The time convolution between the functions deforms the Keldysh contour. For

future investigation let us analyse a "lesser" function

C<(t, t′) = ∫
C1

dτA(t, τ)B<(τ, t′) + ∫
C2

dτA<(t, τ)B(τ, t′). (A.53)

Lesser function C<(t, t′) can be split into two integrals with two different branches

C1 and C2, which means that we deform the Keldysh contour by adding two

extra branches. In the first term, the sign < for function B occurs because in the

integration over contour C1 argument τ is always lesser than t′ (similar for the

second term). The first part of (A.53) can be slit into two parts

∫
C1

dτA(t, τ)B<(τ, t′) = ∫
t

−∞
dτA>(t, τ)B<(τ, t′) + ∫

−∞

t
dτA<(t, τ)B<(τ, t′)

≡ ∫
∞

−∞
dτAr(t, τ)B<(τ, t′) (A.54)
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due to definition of the retarded Green’s function (A.37). The second term on the

right hand side of (A.53) can be analysed in the similar manner and in the result

B function is "advanced" function

∫
C2

dτA<(t, τ)B(τ, t′) = ∫
C2

dτA<(t, τ)Ba(τ, t′). (A.55)

Combining (A.54) and (A.55) we can rewrite (A.53) in form of the first Langreth’s

rule:

C<(t, t′) = ∫
∞

−∞
dτ [Ar(t, τ)B<(τ, t′) +A<(t, τ)Ba(τ, t′)] . (A.56)

The "retarded" or "advanced" component of a contour ordered C(t, t′) (A.52)

function is

Cr,a(t, t′) = ∫
∞

−∞
dτAr,a(t, τ)Br,a(τ, t′). (A.57)

The proof for "retarded" function is as follows:

Cr(t, t′) = θ(t − t′) (C>(t, t′) −C<(t, t′))

= θ(t − t′)∫
∞

−∞
dτ[Ar(t, τ)(B>(τ, t′) −B<(τ, t′))

+ (A>(t, τ) −A<(t, τ))Ba(τ, t′)]

= θ(t − t′)[∫
t

−∞
dτ(A>(t, τ) −A<(t, τ))(B>(τ, t′) −B<(τ, t′))

+ ∫
t′

−∞
dτ(A>(t, τ) −A<(t, τ))(B>(τ, t′) −B<(τ, t′))]

= ∫
t

t′
dτAr(t, τ)Br(τ, t′). (A.58)

For the time convolution of more than two functions C(t, t′) = ∫C ABC the "lesser"

or "greater" function type of C(t, t′) posses the form

C>< = ∫
t
[ArBrC>< +ArB><Ca +A><BaCa] , (A.59)

where the integration is over real time axis. The lesser function C< reduces to

C< = ∫
t
ArB<Ca, (A.60)

when a steady state is turned on by adiabatic evolution from t = −∞ to t.
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A.5 Convolution in Fourier space

With the Keldysh contour function C(t, t′) can be rewritten in the form of

product of other functions C(t, t′) = ∫
∞
−∞ dτA(t, τ)B(τ, t′). Below, the proof of the

time convolution between two-times function in Fourier space is presented:

C(t, t′) = ∫
∞

−∞
dτA(t, τ)B(τ, t′) = ∫

∞

−∞
dτ ∑

k,m1

∫
ω/2

−ω/2
dε1e

−i(ε1+kω)t+i(ε1+m1ω)τAkm1(ε1)×

∑
l,m2

∫
ω/2

−ω/2
dε1e

−i(ε2+lω)τ+i(ε2+m2ω)t′Blm2(ε2) =

⎛
⎝ ∏i=1,2

∑
ni,mj

∫
ω/2

−ω/2
dεi

⎞
⎠
e−i(ε1+kω)t+i(ε1+m1ω)τe−i(ε2+lω)τ+i(ε2+m2ω)t′Akm1(ε1)Blm2(ε2) =

⎛
⎝ ∏i=1,2

∑
ni,mj

∫
ω/2

−ω/2
dεi

⎞
⎠
e−i(ε1+kω)t+i(ε2+m2ω)t′δ(ε1 − ε2 +m1ω − lω)Akm1(ε1)Blm2(ε2).

(A.61)

Then we can make the following substitution:

∣ε ∈ ⟨−ω/2;ω/2) ⇒ δ(ε1 − ε2 + (m1 − l)ω) = δ(ε1 − ε1)δm1,l∣
obtaining:

C(t, t′) = ∑
k,l,m2

∫
ω/2

−ω/2
dεe−i(ε+kω)t+i(ε+m2ω)t′Akm1(ε)Blm2(ε). (A.62)

In the next step, we change the summation index as follows

∣k → n, l → k,m2 →m1∣ to obtain

C(t, t′) = ∑
n,m,k

∫
ω/2

−ω/2
dεe−i(ε+nω)t+i(ε+mω)t

′
Ank(ε)Bkm(ε). (A.63)

After the Fourier transformation, C(t, t′) becomes Cnm(ε) equal to the convolution

of two functions in Fourier space:

Cnm(ε) = ∑
k

Ank(ε)Bkm(ε). (A.64)

A.6 Bare Green’s function in Floquet space

By definition, the bare Green’s function for quantum dot has following form

gc
dσ ,d

†
σ′
(t, t′) = −i⟨T̂C{dσ(t), d†

σ′(t
′)}⟩. (A.65)
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Solution of the equation of motion for the bare Green’s function gc
dσ ,d

†
σ′
(t, t′) of the

single quantum dot described by Hamiltonian H(t) = ∑σ εd(t)d
†
σdσ requires the

time derivative of operator dσ(t)

∂tdσ(t) = i[H(t), dσ(t)] = iei ∫
t
0 dt

′H(t′)[H(t), dσ]e−i ∫
t
0 dt

′H(t′) (A.66)

= iei ∫
t
0 dt

′H(t′)[H(t), dσ]e−i ∫
t
0 dt

′H(t′) (A.67)

= i∑
σ′
εdσ′(t)ei ∫

t
0 dt

′H(t′)[d†
σ′(t)dσ′(t), dσ(t)]e

−i ∫ t0 dt′H(t′) (A.68)

= −iεdσ′(t)ei ∫
t
0 dt

′H(t′)dσe
−i ∫ t0 dt′H(t′) = −iεd(t)dσ(t). (A.69)

In result, we obtain

i∂tg
c

dσ ,d
†
σ′
(t, t′) = δc(t − t′)δσσ′ − i⟨T̂C{i∂tdσ(t), d†

σ′(t
′)⟩ = (A.70)

δc(t − t′)δσσ′ − iεd(t)⟨T̂C{dσ(t), d†
σ′(t

′)⟩ = (A.71)

δc(t − t′)δσσ′ + εd(t)gcdσ ,d†σ′
(t, t′), (A.72)

which can be recast to form:

(i∂t − εd(t))gcdσ ,d†σ′
(t, t′) = δc(t − t′)δσ,σ′ , (A.73)

where εd(t) = ε0
d +A cos(ωt) is time dependent discrete energy level of quantum dot,

ε0
d is the stationary quantum dot energy level and A amplitude of the perturbation.

Writing the discrete time dependent quantum dot energy level εd(t) = ∑k εkdσe
−iωkt

in Fourier space and applying the Langreth’s rule (A.57) we obtain the retarded

and advanced equation of motion form of the Green’s function

(i∂t ± i0+ −∑
k

εkdσe
−iωkt)gr,a

dσ ,d
†
σ′
(t, t′) = δc(t − t′)δσ,σ′ . (A.74)

Here, our aim is to obtain time-independent equations. For this purpose, we apply

the Fourier transform to both sides of the equation

(i∂t ± i0+ −∑
k

εkdσe
−iωkt) ∑

n,m
∫

ω/2

−ω/2
dεe−i(ε+nω)t+i(ε+mω)t

′
gr,a
dσ ,d

†
σ′ ,nm

(ε) =

∑
n,m
∫

ω/2

−ω/2
dεe−i(ε+nω)t+i(ε+mω)t

′
δnm. (A.75)
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Rewriting the equation in the form

(i∂t ± i0+) ∑
n,m
∫

ω/2

−ω/2
dεe−i(ε+nω)t+i(ε+mω)t

′
gr,a
dσ ,d

†
σ′ ,nm

(ε)−

∑
n,m,k

∫
ω/2

−ω/2
dεe−i(ε+nω)t+i(ε+mω)t

′
e−iωktεkdσg

r,a

dσ ,d
†
σ′ ,nm

(ε) =

∑
n,m
∫

ω/2

−ω/2
dεe−i(ε+nω)t+i(ε+mω)t

′
δnm, (A.76)

and substituting the following calculated derivative i∂te−i(ε+nω)t = (ε+nω)e−i(ε+nω)t

we obtain:

∑
n,m
∫

ω/2

−ω/2
dε (ε ± i0+ + nω) e−i(ε+nω)t+i(ε+mω)t

′
gr,a
dσ ,d

†
σ′ ,nm

(ε)−

∑
n,m,k

∫
ω/2

−ω/2
dεe−i[ε+(n+k)ω]t+i(ε+mω)t

′
εkdσg

r,a

dσ ,d
†
σ′ ,nm

(ε) =

∑
n,m
∫

ω/2

−ω/2
dεe−i(ε+nω)t+i(ε+mω)t

′
δnm. (A.77)

We introduce the extra summation over the additional index k

∑
n,m,k

∫
ω/2

−ω/2
dε (ε ± i0+ + kω) e−i(ε+kω)t+i(ε+mω)t

′
δn,kg

r,a

dσ ,d
†
σ′ ,km

(ε)− (A.78)

∑
n,m,k,k

∫
ω/2

−ω/2
dεe−i[ε+(k+k)ω]t+i(ε+mω)t

′
δn,kε

k
dσg

r,a

dσ ,d
†
σ′ ,km

(ε) =

∑
n,m
∫

ω/2

−ω/2
dεe−i(ε+nω)t+i(ε+mω)t

′
δnm, (A.79)

and replace the index k by k = n − k to finally get

∑
n,m,k

∫
ω/2

−ω/2
dε (ε ± i0+ + kω) e−i(ε+kω)t+i(ε+mω)t

′
δn,kg

r,a

dσ ,d
†
σ′ ,km

(ε)−

∑
n,m,k

∫
ω/2

−ω/2
dεe−i(ε+kω)t+i(ε+mω)t

′
εn−kdσ gr,a

dσ ,d
†
σ′ ,km

(ε) =

∑
n,m
∫

ω/2

−ω/2
dεe−i(ε+nω)t+i(ε+mω)t

′
δnm. (A.80)
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In the next step we can skip the Fourier integration on both sides and write the

result in the form of time-independent equation

∑
k

[(ε ± i0+ + nω)δnk − εn−kdσ ] gr,a
dσ ,d

†
σ′ ,km

(ε) = 1

⇒

gr,a−1

dσ ,d
†
σ′ ,nm

(ε) = (ε ± i0+ + nω)δnm − εn−mdσ , (A.81)

which is the bare Green’s function in the Fourier space.

A.7 Diagonalization of bare Green’s function

In the preceding part, we obtained the energy-dependent Green’s function in

Fourier space (A.81). Here we introduce Λ function [129], defined as follows

Λσ,nm = ⟨⟨σn∣uσ,m⟩⟩ = ⟨σ∣ 1
T
∫

T

0
dtei(n−m)ωt∣uσ(t)⟩ = ⟨σ∣ 1

T
∫

T

0
dtei(n−m)ωteiε

0
dt∣σ(t)⟩ =

1

T
∫

T

0
dtei(n−m)ωteiε

0
dt⟨σ∣U(t,0)∣σ⟩ = 1

T
∫

T

0
dtei(n−m)ωteiε

0
dte−i ∫

t
0 dτεdσ(τ) =

1

T
∫

T

0
dtei(n−m)ωte−i ∫

t
0 dτ(εdσ(τ)−ε0d), (A.82)

where ⟨⟨σn∣ acts on a state in the Floquet space ∣uσ,m⟩⟩. The operator Λ fulfils the

following property

∑
k

Λσ,nkΛ
†
σ,km = ∑

k

1

T
∫

T

0
dtei(n−k)ωte−i ∫

t
0 dτ(εdσ(τ)−ε0d) 1

T
∫

T

0
dte−i(k−m)ωtei ∫

t
0 dτ(εdσ(τ)−ε0d) =

∑
k
∫

π

−π

dx

2π
ei(n−k)xe−

i
ω ∫

x
0 dz(εdσ(z/ω)−ε0d)∫

π

−π

dy

2π
e−i(m−k)ye−

i
ω ∫

0
y dz(εdσ(z/ω)−ε0d) =

∫
π

−π

dx

2π
∫

π

−π

dy

2π
∑
k

ei(nx−my)−ik(x−y)e−
i
ω ∫

x
0 dz(εdσ(z/ω)−ε0d)e−

i
ω ∫

0
y dz(εdσ(z/ω)−ε0d) =

∫
π

−π

dx

2π
∫

π

−π

dy

2π
∑
k

ei(nx−my)−ik(x−y)e−
i
ω ∫

x
y dz(εdσ(z/ω)−ε0d) =

∫
π

−π

dx

2π
∫

π

−π

dy

2π
δ(x − y)ei(nx−my)e−

i
ω ∫

x
y dz(εdσ(z/ω)−ε0d) =

∫
π

−π

dx

2π
ei(n−m)x = δnm. (A.83)

Here, we used the mathematical property of the Dirac delta f(x) = ∫ δ(x−y)f(y)dy.
The product of two Λ operators gives the Kronecker delta ∑k Λσ,nkΛ†

σ,km = δnm. To
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obtain the diagonal kind of the bare Green’s function Dr,a−1

dσ ,d
†
σ ,nn

(ε) we act on both

sides of the inverse Green’s function gr,a−1

dσ ,d
†
σ ,kl

(ε) by Λ operator

Dr,a−1

dσ ,d
†
σ ,nn

(ε) = ∑
kl

Λ†
σ,nkg

r,a−1

dσ ,d
†
σ ,kl

(ε)Λσ,ln =

∑
kl

Λ†
σ,nk[(ε ± i0

+ + kω)δkl − εdσ,k−l]Λσ,ln =

∑
kl

Λ†
σ,nk(ε ± i0

+)δklΛσ,ln +∑
kl

Λ†
σ,nkkωδklΛσ,ln −∑

kl

Λ†
σ,nkεdσ,k−lΛσ,ln =

∑
k

Λ†
σ,nk(ε ± i0

+)Λσ,kn +∑
k

Λ†
σ,nkkωΛσ,kn −∑

kl

Λ†
σ,nkεdσ,k−lΛσ,ln =

ε ± i0+ + (nω + εdσ)δnn − εdσ,n−n − εdσ,k−lδklδln =

ε ± i0+ + nω − εdσ,k−lδkl = ε ± i0+ + nω − εdσ,0, (A.84)

where we used the following relation

∑
k

Λσ,nkkωΛ†
σ,km = (nω + ε0

d) − εdσ,m−n. (A.85)

To prove (A.85), we need to rewrite the limits of integration in (A.85) in the

following manner

∑
k

Λσ,nkkωΛ†
σ,km = ∫

π

−π

dx

2π
∫

π

−π

dy

2π
∑
k

ei(nx−my)−ik(x−y)kωe−
i
ω ∫

x
y dz(εdσ(z/ω)−ε0d) =

∫
π

−π

dx

2π
∫

π

−π
dyei(nx−my)kωe−

i
ω ∫

x
y dz(εdσ(z/ω)−ε0d). (A.86)

Using the definition of the Dirac delta and its differential

δ(x − y) = 1

2π
∑
k

e−ik(x−y)

i∂xδ(x − y) = i(−i)kδ(x − y) = kδ(x − y), (A.87)

we perform some analytical calculations, to obtain

∑
k

Λσ,nkkωΛ†
σ,km = ∫

π

−π

dx

2π
∫

π

−π
dyei(nx−my)iω[∂xδ(x − y)]e−

i
ω ∫

x
y dz(εdσ(z/ω)−ε0d) =

ei(nx−my)iωδ(x − y)e−
i
ω ∫

x
y dz(εdσ(z/ω)−ε0d)∣π−π+

∫
π

−π

dx

2π
∫

π

−π
dyei(nx−my)δ(x − y)[nω − εdσ(z/ω) + ε0

d]e
− i
ω ∫

x
y dz(εdσ(z/ω)−ε0d) =

∫
π

−π

dx

2π
ei(n−m)x[nω − εdσ(z/ω) + ε0

d] = ∫
π

−π

dx

2π
ei(n−m)x[nω + ε0

d]−

∫
π

−π

dx

2π
ei(n−m)xεdσ(z/ω) = (nω + ε0

d) − εdσ,m−n. (A.88)
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In result, the inverse diagonal bare Green’s function is given by

Dr,a−1

dσ ,d
†
σ ,nn

(ε) = ε ± i0+ + nω − εdσ,0, (A.89)

where nω − εdσ,0 is the eigenvalue of Hamiltonian ĤF in state ∣uσ,n⟩⟩. Then the

inverse diagonal Green’s function can be written as

Dr,a−1

dσ ,d
†
σ ,nn

(ε) = ε ± i0+ − ⟨⟨uσ,n∣ĤF ∣uσ,n⟩⟩. (A.90)

In a similar way, we can obtain the bare Green’s function expressed by Λ operators

and determine the diagonal part of the Green’s function in the Floquet space

gr,a
dσ ,d

†
σ ,nm

(ε) = ∑
k

Λ†
σ,nkD

r,a

dσ ,d
†
σ ,kk

(ε)Λσ,km. (A.91)

For the oscillating energy level εd(t) = ε0
d +A cos(ωt) the operator Λσ,nm takes the

form

Λσ,nm = 1

T
∫

T

0
dtei(n−m)ωte−i ∫

t
0 dτ(ε0d+A cos(ωτ)−ε0d) =

1

T
∫

T

0
dtei(n−m)ωte−i ∫

t
0 dτ(ε0d+A cos(ωτ)−ε0d) = 1

T
∫

T

0
dtei(n−m)ωte−i ∫

t
0 dτA cos(ωτ) =

1

T
∫

T

0
dtei(n−m)ωte−i

A
ω

sin(ωt), (A.92)

where we used the Bessel function property [161]

e−ia sin(ωt) =
∞
∑
k=−∞

e−ikωtJk(a) (A.93)

Λσ,nm = 1

T
∫

T

0
dtei(n−m)ωt

∞
∑
k=−∞

e−ikωtJk (
A

ω
) =

1

T
∫

T

0
dt

∞
∑
k=−∞

ei(n−m−k)ωtJk (
A

ω
) = 1

T
∫

T

0
dt

∞
∑
k=−∞

δk,n−me
i(k−k)ωtJk (

A

ω
) =

1

T
∫

T

0
dt

∞
∑
k=−∞

δk,n−mJk (
A

ω
) = Jn−m (A

ω
) . (A.94)

to express the operator Λ by the Bessel function dependent on the Fourier coefficients,

the driving amplitude, and the frequency of the perturbation

Λσ,nm = Jn−m (A
ω
) . (A.95)
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Now we are able to transform the bare Green’s function as follows

gr,a
dσ ,d

†
σ ,nm

(ε) = ∑
k

Λ†
σ,nkD

r,a

dσ ,d
†
σ ,kk

(ε)Λσ,km =

∑
k

Jn−k (
A

ω
)Dr,a

dσ ,d
†
σ ,kk

(ε)Jk−m (A
ω
) =

∑
k

Jn−k (Aω )Jk−m (A
ω
)

ε ± i0+ + kω − ε0
d

, (A.96)

and get the final formula

gr,a
dσ ,d

†
σ ,nm

(ε) = ∑
k

Jn−k (Aω )Jk−m (A
ω
)

ε ± i0+ + kω − ε0
d

. (A.97)

A.8 Mixed Green’s functions

Quantum dot - metal interface
The contour-ordered Green’s functions which describe the quantum dot coupled to

the metallic lead are defined by

Gc
ckσ ,d

†
σ′
(t, t′) = −i⟨T̂C{ckσ(t), d†

σ′(t
′)}⟩, (A.98)

Gc
c†
kσ
,d†
σ′
(t, t′) = −i⟨T̂C{c†kσ(t), d

†
σ′(t

′)}⟩. (A.99)

To determine these Green’s functions we must solve the following differential

equations

i∂tG
c

cNkσ ,d
†
σ′
(t, t′) = −i⟨T̂C{∂tcNkσ(t), d†

σ′(t
′)}⟩, (A.100)

i∂tG
c

c†
Nkσ

,d†
σ′
(t, t′) = −i⟨T̂C{∂tc†Nkσ(t), d

†
σ′(t

′)}⟩. (A.101)

To obtain the solution of such functions we need to calculate the equation of motions

for the operators cNkσ(t) and c†Nkσ(t) with the corresponding Hamiltonian H(t)
defined in (3.1)

i∂tcNkσ(t) = i[H(t), cNkσ(t)] = εNkσ(t)cNkσ(t) + Vkdσ(t), (A.102)

i∂tc
†
Nkσ(t) = i[H(t), c†Nkσ(t)] = −εNkσ(t)c

†
Nkσ(t) − Vkd

†
σ(t), (A.103)
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which give us

(i∂t − εNkσ(t))Gcckσ ,d†σ′
(t, t′) = VkGcdσ ,d†σ′

(t, t′), (A.104)

(i∂t + εNkσ(t))Gcc†
kσ
,d†
σ′
(t, t′) = −VkGcd†σ ,d†σ′

(t, t′). (A.105)

On the left side of (A.104) and (A.105) there appear the bare Green’s functions

of the normal lead electrons defined by

gc
cNkσ ,c

†
Nkσ′

(t, t′) = −i⟨T̂C{cNkσ(t), c†Nkσ′(t
′)}⟩, (A.106)

gc
c†
Nkσ

,cNkσ′
(t, t′) = −i⟨T̂C{c†Nkσ(t), cNkσ′(t

′)}⟩. (A.107)

For the normal metallic lead Hamiltonian ĤN = ∑kσ εNkσc
†
NkσcNkσ the bare Green’s

function obeys

(i∂t − εNkσ(t))gccNkσ ,c†Nkσ′
(t, t′) = δc(t − t′)δσσ′ , (A.108)

(i∂t + εNkσ(t))gcc†
Nkσ

,cNkσ′
(t, t′) = δc(t − t′)δσσ′ . (A.109)

Substituting (A.108) and (A.109) to Eqs.(A.104),(A.105), respectively, we obtain

Gc
cNkσ ,d

†
σ′
(t, t′) = Vk ∫

C
dτgc

cNkσ ,c
†
Nkσ

(t, τ)Gc
dσ ,d

†
σ
(τ, t′), (A.110)

Gc
c†
Nkσ

,d†
σ′
(t, t′) = −Vk ∫

C
dτgc

c†
Nkσ

,cNkσ
(t, τ)Gc

d†
σ′ ,d

†
σ
(τ, t′). (A.111)

Quantum dot - superconductor interface
Below, we present the equation of motion for the contour-ordered Green’s functions

for the quantum dot coupled to the superconducting lead, described by Hamiltonian

ĤS = ∑qσ εSqσc
†
SqσcSqσ −∑q ∆sc (c†S−q↑c

†
Sq↓ + h.c.)

(i∂t − εSq)GccSq↑,d†↑
(t, t′) = −∆scG

c

c†S−q↓,d
†
↑
(t, t′) + VqGcd↑,d†↑

(t, t′), (A.112)
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(i∂t + εSq)Gcc†S−q↓,d†↑
(t, t′) = −∆scG

c

cSq↑,d†↑
(t, t′) − VqGcd†↓ ,d†↑

(t, t′). (A.113)

This set of entangled functions comes from the solution of the equation of motion

for operators

i∂tcSqσ(t) = εSqcSqσ(t) + δ↓σ∆scc
†
S−q↑(t) − δ↑σ∆scc

†
S−q↓(t) + Vqdσ(t), (A.114)

i∂tc
†
S−qσ(t) = −εSqc

†
S−qσ(t) − δ↓σ∆sccSq↑(t) + δ↑σ∆sccSq↓(t) − Vqd†

σ(t). (A.115)

To solve functions presented in (A.112) and (A.113) we need a solution of the

following bare Green’s functions

i∂tg
c

cSq↑,c†Sq↑
(t, t′) = δc(t − t′) − i⟨T̂C{i∂cSqσ(t), c†Sqσ′(t

′)}⟩ (A.116)

i∂tg
c

cSq↑,c†Sq↑
(t, t′) = δc(t − t′) − i⟨T̂C{i∂cSqσ(t), c†Sqσ′(t

′)}⟩, (A.117)

which give

(i∂t − εSq)gccSq↑,c†Sq↑
(t, t′) = δc(t − t′) −∆scg

c

c†S−q↓,c
†
Sq↑

(t, t′), (A.118)

(i∂t + εSq)gcc†S−q↓,c†Sq↑
(t, t′) = −∆scg

c

cSq↑,c†Sq↑
(t, t′). (A.119)

Similarly, we can obtain a set of two equation for gc
cSq↓,c†Sq↓

(t, t′). In such way, we

can obtain other required bare Green’s functions

((i∂t)2 −E2
Sq) gcc†S−q↑,c†Sq↓

(t, t′) = ∆scδc(t − t′), (A.120)

((i∂t)2 −E2
Sq) gcc†S−q↓,c†Sq↑

(t, t′) = −∆scδc(t − t′), (A.121)

where E2
Sq = ε2

Sq +∆2
sc.

Expressions for the bare Green’s functions, (A.112) and (A.113) can be trans-

formed as follow

Gc
cSq↑,d†↑

(t, t′) = −Vq ∫
C
dτgc

c†S−q↑,c
†
Sq↓

(t, τ)Gc
d†↓ ,d

†
↑
(τ, t′)

+∫
C
dτgc

cSq↑,c†Sq↓
(t, τ)VqGcd↑,d†↑

(τ, t′), (A.122)
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Gc
c†Sq↓,d

†
↑
(t, t′) = −Vq ∫

C
dτgc

c†S−q↑,c
†
Sq↓

(t, τ)Gc
d↑,d†↑

(τ, t′)

−Vq ∫
C
dτgc

c†Sq↓,cSq↑
(t, τ)Gc

d†↓ ,d
†
↑
(τ, t′). (A.123)

A.9 Contour ordered self energies

This appendix presents calculations of the self energies for electrodes. To solve

the Green’s function presented in (4.39) we need the self-energy functions in the

Fourier representation.

We start from the self-energy of the normal metallic electrode

Σc

cNσ ,c
†
Nσ

(τ, τ ′) = ∑
k

V 2
k g

c

cNkσ ,c
†
Nkσ

(τ, τ ′), (A.124)

which can be Fourier transformed in (4.32) into the following form

Σr,a

cNσ ,c
†
Nσ ,nm

(ε) = ∑
k

V 2
k g

r,a

cNkσ ,c
†
Nkσ

,nm
(ε) = ∑

k

V 2
k

δnm
ε ± i0+ + nω − ξk

, (A.125)

where ξk = εNkσ − εF and εF is the Fermi level of the lead. By changing the

summation over the momentum vector into integration we obtain

Σr,a

cNσ ,c
†
Nσ ,nm

(ε) = ∫
∞

−∞
dξk

V 2
k ρkδnm

ε ± i0+ + nω − ξk ± iη
, (A.126)

where ρk is density of states of the electron in the metallic lead. Using the

relationship for η → 0

lim
η→0

1

ε ± i0+ + nω − ξk ± iη
= p.v. ∓ iπδ(ε ± i0+ + nω − ξk), (A.127)

where p.v. is the principal value, we get in the large bandwidth limit

Σr,a

cNσ ,c
†
Nσ ,nm

(ε) = ∓iπδnm∫
∞

−∞
dξkV

2
k ρkδ(ε ± i0

+ + nω − ξk). (A.128)

Assuming constant coupling for every momentum vector k: Vk = VN and ρk = ρ, we
obtain

Σr,a

cNσ ,c
†
Nσ ,nm

(ε) = ∓iπV 2
Nρδnm. (A.129)

In the wide-band limit approximation, we obtain the constant coupling defined by

Γ = 2πρV 2, which finally gives us

Σr,a

cNσ ,c
†
Nσ ,nm

(ε) = ∓ iΓN
2
δnm. (A.130)
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To find the self energies of the superconducting electrode, we start from

Σc

c†S↑,c
†
S↓
(τ, τ ′) = ∑

q

V 2
q g

c

c†S−q↑,c
†
Sq↓

(τ, τ ′), (A.131)

where the bare Green’s function has the form

((i∂t)2 −E2
Sq) gcc†S−q↑,c†Sq↓

(t, t′) = ∆scδc(t − t′). (A.132)

From the double Fourier transform of (A.131) we obtain

Σr,a

c†S↑,c
†
S↓,nm

(ε) = ∑
q

V 2
q g

r,a

c†S−q↑,c
†
Sq↓,nm

(ε), (A.133)

with

gr,a
c†S−q↑,c

†
Sq↓,nm

(ε) = ∆scδnm
(ε ± i0+ + nω)2 − ξ2

q −∆2
sc

. (A.134)

By changing the summation over the momentum vector into integration, we obtain

Σr,a

c†S↑,c
†
S↓,nm

(ε) = ∫
∞

−∞
dξqV

2
q

ρq∆scδnm

(ε ± i0+ + nω)2 − ξ2
q −∆2

sc

=

= 2∆scρV
2
S ∫

∞

0
dξq

δnm
(ε ± i0+ + nω)2 − ξ2

q −∆2
sc

= V 2
S πρ∆

δnm [Θ(∆sc − ∣ε + nω∣) ∓ isign(ε + nω)Θ(∣ε + nω∣ −∆sc)]√
∣(ε ± i0+ + nω)2 −∆2

sc∣
.

(A.135)

In the wide-band limit approximation we obtain the off-diagonal self-energy

Σr,a

c†S↑,c
†
S↓,nm

(ε) = ΓS∆sc

2

δnm [Θ(∆sc − ∣ε + nω∣) ∓ isign(ε + nω)Θ(∣ε + nω∣ −∆sc)]√
∣(ε ± i0+ + nω)2 −∆2

sc∣
.

(A.136)

In similar way, we can obtain the diagonal self-energy of (4.41). We use the Fourier

transformation of gc
cSq↓,c†Sq↓

(t, t′)

Σr,a

cS↓,c†S↓,nm
(ε) = ∑

q

V 2
q g

r,a

cSq↓,c†Sq↓,nm
(ε), (A.137)

with

gr,a
cSq↓,c†Sq↓,nm

(ε) = (ε + nω)δnm
(ε ± i0+ + nω)2 − ξ2

q −∆2
sc

. (A.138)
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Again changing the summation over the momentum vector into integration, we get

Σr,a

cS↓,c†S↓,nm
(ε) = ∫

∞

−∞
dξqV

2
q

ρq(ε + nω)δnm
(ε ± i0+ + nω)2 − ξ2

q −∆2
sc

=

= 2ρV 2
S ∫

∞

0
dξq

(ε + nω)δnm
(ε ± i0+ + nω)2 − ξ2

q −∆2
sc

= −V 2
S πρ(ε + nω)

δnm [Θ(∆sc − ∣ε + nω∣) ∓ isign(ε + nω)Θ(∣ε + nω∣ −∆sc)]√
∣(ε ± i0+ + nω)2 −∆2

sc∣
.

(A.139)

In the wide-band limit approximation the diagonal part of self-energy takes the

following form

Σr,a

cS↓,c†S↓,nm
(ε) = −ΓS(ε + nω)

2

δnm [Θ(∆sc − ∣ε + nω∣) ∓ isign(ε + nω)Θ(∣ε + nω∣ −∆sc)]√
∣(ε ± i0+ + nω)2 −∆2

sc∣
.

(A.140)
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mesoscopic systems : proceedings of the 14th Taniguchi symposium, Shima,

Japan, November 10-14, 1991 / H. Fukuyama, T. Ando. Springer series in

solid-state sciences ; 109. Springer-Verlag, Berlin ; New York, 1992.

[100] Liang Fu and C. L. Kane. Superconducting proximity effect and Majorana

fermions at the surface of a topological insulator. Phys. Rev. Lett., 100:096407,

Mar 2008.

[101] Tobias Meng, Serge Florens, and Pascal Simon. Self-consistent description

of Andreev bound states in Josephson quantum dot devices. Phys. Rev. B,

79:224521, Jun 2009.

[102] A. I. Buzdin. Proximity effects in superconductor-ferromagnet heterostruc-

tures. Rev. Mod. Phys., 77:935–976, Sep 2005.

[103] Piotr Magierski, Bu ğra Tüzemen, and Gabriel Wlazłowski. Spin-polarized

droplets in the unitary Fermi gas. Phys. Rev. A, 100:033613, Sep 2019.

[104] G. A. Bobkov, I. V. Bobkova, and A. M. Bobkov. Long-range interaction

of magnetic moments in a coupled system of superconductor-ferromagnet-

superconductor josephson junctions with anomalous ground-state phase shift.

Phys. Rev. B, 105:024513, Jan 2022.

[105] L. Hofstetter, S. Csonka, J. Nygård, and C. Schönenberger. Cooper pair

splitter realized in a two-quantum-dot Y-junction. Nature, 461:1476, Oct

2009.

[106] Piotr Trocha and Kacper Wrześniewski. Cross-correlations in a quantum dot

cooper pair splitter with ferromagnetic leads. Journal of Physics: Condensed

Matter, 30(30):305303, jul 2018.

[107] Bogdan R. Bułka. Coherent current correlations in a double-dot cooper pair

splitter. Phys. Rev. B, 104:155410, Oct 2021.



BIBLIOGRAPHY 156

[108] Fredrik Brange, Kacper Prech, and Christian Flindt. Dynamic Cooper Pair

Splitter. Phys. Rev. Lett., 127:237701, Dec 2021.

[109] T. Dirks, Taylor L. Hughes, Siddhartha Lal, Bruno Uchoa, Yung fu Chen,

Cesar E Chialvo, Paul M. Goldbart, and Nadya Mason. Transport through

Andreev bound states in a graphene quantum dot. Nature Physics, 7:386–390,

2011.

[110] K. Wrześniewski, B. Baran, R. Taranko, T. Domański, and I. Weymann.

Quench dynamics of a correlated quantum dot sandwiched between normal-

metal and superconducting leads. Phys. Rev. B, 103:155420, Apr 2021.

[111] J Bauer, A Oguri, and A C Hewson. Spectral properties of locally correlated

electrons in a Bardeen-Cooper-Schrieffer superconductor. Journal of Physics:

Condensed Matter, 19(48):486211, nov 2007.

[112] G. Michałek, B. R. Bułka, T. Domański, and K. I. Wysokiński. Statistical

correlations of currents flowing through a proximized quantum dot. Phys.

Rev. B, 101:235402, Jun 2020.

[113] Benjamin W. Heinrich, Jose I. Pascual, and Katharina J. Franke. Single

magnetic adsorbates on s-wave superconductors. Progress in Surface Science,

93(1):1–19, 2018.

[114] J. Gramich, A. Baumgartner, and C. Schönenberger. Andreev bound states

probed in three-terminal quantum dots. Phys. Rev. B, 96:195418, Nov 2017.

[115] Eduardo J H Lee, Xiaocheng Jiang, Manuel Houzet, Ramón Aguado,

Charles M. Lieber, and Silvano de Franceschi. Spin-resolved Andreev levels

and parity crossings in hybrid superconductor-semiconductor nanostructures.

Nature nanotechnology, 9 1:79–84, 2014.

[116] Antti-Pekka Jauho, Ned S. Wingreen, and Yigal Meir. Time-dependent

transport in interacting and noninteracting resonant-tunneling systems. Phys.

Rev. B, 50:5528–5544, Aug 1994.

[117] R. Taranko and T. Domański. Buildup and transient oscillations of Andreev

quasiparticles. Phys. Rev. B, 98:075420, Aug 2018.



BIBLIOGRAPHY 157

[118] R. Taranko, T. Kwapiński, and T. Domański. Transient dynamics of a

quantum dot embedded between two superconducting leads and a metallic

reservoir. Phys. Rev. B, 99:165419, Apr 2019.

[119] T. Domański B. Baran, R. Taranko. Postquench dynamics of quantum dot

proximitized to superconducting lead. Acta Phys. Polon. A, 138, 2020.

[120] Fabrício M. Souza. Spin-dependent ringing and beats in a quantum dot

system. Phys. Rev. B, 76:205315, Nov 2007.

[121] E. Perfetto, G. Stefanucci, and M. Cini. Spin-flip scattering in time-dependent

transport through a quantum dot: Enhanced spin-current and inverse tunnel-

ing magnetoresistance. Phys. Rev. B, 78:155301, Oct 2008.

[122] E. Taranko, M. Wiertel, and R. Taranko. Transient electron transport

properties of multiple quantum dots systems. J. Appl. Phys., 111(2):023711,

2012.

[123] A. Kadlecová, M. Žonda, V. Pokorný, and T. Novotný. Practical guide to

quantum phase transitions in quantum-dot-based tunable Josephson junctions.

Phys. Rev. Applied, 11:044094, Apr 2019.

[124] V. Meden. The Anderson–Josephson quantum dot—a theory perspective. J.

Phys.: Condens. Matter, 31(16):163001, feb 2019.

[125] J. Bauer, A. Oguri, and A. C. Hewson. Spectral properties of locally correlated

electrons in a Bardeen-Cooper-Schrieffer superconductor. J. Phys.: Condens.

Matter, 19(48):486211, 2007.

[126] Jon H. Shirley. Solution of the Schrödinger equation with a Hamiltonian

periodic in time. Phys. Rev., 138:B979–B987, May 1965.

[127] André Eckardt and Egidijus Anisimovas. High-frequency approximation for

periodically driven quantum systems from a Floquet-space perspective. New

Journal of Physics, 17(9):093039, sep 2015.

[128] Tobias Brandes. Truncation method for Green’s functions in time-dependent

fields. Phys. Rev. B, 56:1213–1224, Jul 1997.



BIBLIOGRAPHY 158

[129] Naoto Tsuji, Takashi Oka, and Hideo Aoki. Correlated electron systems

periodically driven out of equilibrium: Floquet + DMFT formalism. Phys.

Rev. B, 78:235124, Dec 2008.

[130] Götz S. Uhrig, Mona H. Kalthoff, and James K. Freericks. Positivity of

the spectral densities of retarded Floquet green functions. Phys. Rev. Lett.,

122:130604, Apr 2019.

[131] A.-P. Jauho, N. S. Wingreen, and Y. Meir. Time-dependent transport in

interacting and noninteracting resonant-tunneling systems. Phys. Rev. B,

50:5528, Aug 1994.

[132] Jian Wang, Baigeng Wang, Wei Ren, and Hong Guo. Conservation of spin

current: Model including self-consistent spin-spin interaction. Phys. Rev. B,

74:155307, Oct 2006.

[133] Marin Bukov, Luca D’Alessio, and Anatoli Polkovnikov. Universal high-

frequency behavior of periodically driven systems: from dynamical stabiliza-

tion to Floquet engineering. Advances in Physics, 64(2):139–226, 2015.

[134] T. Domański B. Baran, R. Taranko. Subgap dynamics of double quantum

dot coupled between superconducting and normal leads. Scientific Reports,

11, 05 2021.

[135] Z. Scherübl, A. Pályi, and S. Csonka. Transport signatures of an Andreev

molecule in a quantum dot-superconductor-quantum dot setup. Beilstein J.

Nanotechnol., 10:363, Feb 2019.

[136] Wilfred G. van der Wiel, Toshimasa Fujisawa, Seigo Tarucha, and Leo P.

Kouwenhoven. A double quantum dot as an artificial two-level system.

Japanese Journal of Applied Physics, 40(Part 1, No. 3B):2100–2104, Mar

2001.

[137] Oleg N. Jouravlev and Yuli V. Nazarov. Electron transport in a double

quantum dot governed by a nuclear magnetic field. Phys. Rev. Lett., 96:176804,

May 2006.



BIBLIOGRAPHY 159

[138] Hao Zheng, Junyi Zhang, and Richard Berndt. A minimal double quantum

dot. Scientific Reports, 7(1):10764, Sep 2017.

[139] Zhaoen Su, Alexandre B. Tacla, Moïra Hocevar, Diana Car, Sébastien R.

Plissard, Erik P. A. M. Bakkers, Andrew J. Daley, David Pekker, and Sergey M.

Frolov. Andreev molecules in semiconductor nanowire double quantum dots.

Nature Communications, 8(1):585, Sep 2017.

[140] Patrik Recher, Eugene V. Sukhorukov, and Daniel Loss. Andreev tunneling,

coulomb blockade, and resonant transport of nonlocal spin-entangled electrons.

Phys. Rev. B, 63:165314, Apr 2001.

[141] David Pekker, Po Zhang, and Sergey M. Frolov. Theory of Andreev Blockade

in a Double Quantum Dot with a Superconducting Lead. SciPost Phys.,

11:81, 2021.

[142] R. Taranko, K. Wrześniewski, B. Baran, I. Weymann, and T. Domański.

Transient effects in a double quantum dot sandwiched laterally between

superconducting and metallic leads. Phys. Rev. B, 103:165430, Apr 2021.

[143] E. Taranko, M. Wiertel, and R. Taranko. Transient electron transport

properties of multiple quantum dots systems. J. App. Phys., 111(2):023711,

2012.

[144] Antti-Pekka Jauho, Ned S. Wingreen, and Yigal Meir. Time-dependent

transport in interacting and noninteracting resonant-tunneling systems. Phys.

Rev. B, 50:5528–5544, Aug 1994.

[145] T. Kwapiński, R. Taranko, and E. Taranko. Photon-assisted electron transport

through a three-terminal quantum dot system with nonresonant tunneling

channels. Phys. Rev. B, 72:125312, Sep 2005.

[146] Gloria Platero and Ramón Aguado. Photon-assisted transport in semicon-

ductor nanostructures. Physics Reports, 395(1):1 – 157, 2004.

[147] O. Peters, N. Bogdanoff, S. Acero Gonzalez, L. Melischek, J.R. Simon,

G. Reecht, C.B. Winkelmann, F. von Oppen, and K.J. Franke. Resonant



BIBLIOGRAPHY 160

Andreev reflections probed by photon-assisted tunnelling at the atomic scale.

Nature Physics, 16(12):1222–1226, Jul 2020.

[148] R. Mélin and B. Douçot. Inversion in a four-terminal superconducting device

on the quartet line. ii. quantum dot and Floquet theory. Phys. Rev. B,

102:245436, Dec 2020.

[149] A. L. Samuel. Some studies in machine learning using the game of checkers.

IBM Journal of Research and Development, 3(3):210–229, 1959.

[150] Tom M Mitchell. Machine Learning. New York : McGraw-Hill, 1997.

[151] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,

Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael

Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore,

Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden,

Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensorflow: A system for

large-scale machine learning, 2016.

[152] Maciej M. Maśka, Anna Gorczyca-Goraj, Jakub Tworzydło, and Tadeusz

Domański. Majorana quasiparticles of an inhomogeneous Rashba chain. Phys.

Rev. B, 95:045429, Jan 2017.

[153] J. Barański, M. Barańska, T. Zienkiewicz, R. Taranko, and T. Domański.

Dynamical leakage of majorana mode into side-attached quantum dot. Phys.

Rev. B, 103:235416, Jun 2021.

[154] L. V. Keldysh. Diagram technique for nonequilibrium processes. Jetp,

20(5):1080, 1964.

[155] AP Jauho. Introduction to the Keldysh nonequilibrium green function tech-

nique. Lecture notes, (5):17, 2006, 2006.

[156] A. Kamenev. Introduction to the Keldysh formalism. Capri’s school lecture

notes, 2009.



BIBLIOGRAPHY 161

[157] A. A. Abrikosov, L. P. Gorkov, I. E. Dzyaloshinski, Richard A. Silverman,

and George H. Weiss. Methods of quantum field theory in statistical physics.

Physics Today, 17(4):78–80, 1964.

[158] Julian Schwinger. Brownian motion of a quantum oscillator. Journal of

Mathematical Physics, 2(3):407–432, 1961.

[159] Gianluca Stefanucci and Robert van Leeuwen. Nonequilibrium Many-Body

Theory of Quantum Systems: A Modern Introduction. Cambridge University

Press, 2013.

[160] Alec F. White and Garnet Kin-Lic Chan. Time-dependent coupled cluster

theory on the Keldysh contour for nonequilibrium systems. Journal of

Chemical Theory and Computation, 15(11):6137–6153, 2019. PMID: 31600075.

[161] B. Verdonk H. Waadeland A. Cuyt, V. Petersen and W. Jones. Handbook of

Continued Fractions for Special Functions. Springer, 2008.


	Motivation
	Introduction to superconductivity
	Electron bound states of bulk materials
	Bardeen-Cooper-Schrieffer theory
	The proximity effect and Andreev reflection

	Dynamics of Andreev states in single quantum dot system 
	Model Hamiltonian
	Selected experimental realizations
	Equations of motion approach
	Transient effects and steady-state properties
	Influence of suddenly varied source-drain voltage
	Quench in orbital level position
	Response to sudden coupling S 
	Summary

	Periodically driven quantum dot 
	Floquet theory 
	Solution for time-periodic Hamiltonian
	Numerical results 
	Floquet-Magnus expansion
	Summary

	Dynamics of Andreev states in double quantum dot system
	Model Hamiltonian
	Selected experimental realization
	Transient effects 
	Dynamics induced by abrupt source-drain voltage
	Quench in the quantum dot energy levels
	Periodic driving of orbital level positions in DQD
	Summary

	Machine learning simulations
	Fundamentals of artificial intelligence
	Basics and functions of the learning protocols
	Adaptation of artificial intelligence to the driven double quantum dot system

	Summary and Outlook
	Appendix
	Differential equations of motion for N-QD-S
	Differential equations of motion for N-DQD-S
	Non-equilibrium Green's function formalism 
	Langreth rules
	Convolution in Fourier space
	Bare Green's function in Floquet space
	Diagonalization of bare Green's function 
	Mixed Green's functions
	Contour ordered self energies

	List of published articles

