Module name	Genetics - an extensive course
Module code	B-B.018E
ISCED code	0511: Biology
Study cycle	l ^o
Semester	summer
Responsible for this module	Prof. dr hab. Monika Janczarek
	Department of Genetics and Microbiology
	e-mail: mon.jan@poczta.umcs.lublin.pl
Language of instruction	English
Website	
Prerequisites	Microbiology course
ECTS	8.0
ECTS points hour equivalents	Contact hours (work with an academic teacher)
	Lectures – 30 hours;
	Laboratory – 60 hours
	Conversations and personal consultation with academic teachers - 20 hours
	Total number of hours with an academic teacher 110
	Number of ECTS points with an academic teacher 4
	Non-contact hours (students' own work) 110
	hours
	studying of literature - 15 hours
	Total number of non-contact hours 110
	Number of ECTS points for non-contact hours 4
	Total number of ECTS points for the module = 8
Learning outcomes verification methods	lecture -written exam
	lahoratory classes - written tests
Course full description	The module covers the knowledge in the area of
Course full description	fundamental genetic definitions structure topology
	and replication of DNA, organization of prokaryotic and
	eukarvotic genomes, analysis and interpretation of
	inheritance results of linked and non-linked genes,
	inheritance of dominant and recessive autosomal and
	sex-linked diseases (Mendelian genetics), genetic
	control of transcription (function of promoters in
	initiation of transcription, transcription termination),
	organization and expression of prokaryotic genes and
	eukaryotic genes, mutations and mutagens,
	transposons, DNA repair systems, genetic

recombination.
Genetic terms and processes analysed include:
1. Structure, organization and function of prokaryotic
and eukarvotic genomes.
2.Genetic polymorphism.
3. Mechanisms of replication and transcription and
regulation of these processes.
4.Gene expression and regulation on transcriptional and
postranscriptional levels.
5.Sex determination. Heredity of sex-linked and
unlinked traits.
6.Mechanisms of horizontal gene transfer; bacterial
plasmids, conjugation, transduction, and
transformation.
7.Mutations and mutagenesis.
8. Mobilizable elements and their role in genome
instability; DNA repair systems; techniques of molecular
diagnostics.
Lecture includes the following issues:
1. genetic terms (dominance, codominance,
incomplete dominance, pleiotropy, gene, open reading
frame, multiple alleles, lethal alleles, genotype,
phenotype, cumulative traits, epistasis);
2. structure, organization and function of prokaryotic
and eukaryotic genomes; division of genetic material in
prokaryotic and eukaryotic cells; genetic polymorphism;
3. chromosomes - a structure and function in cells;
heredity of sex-linked and unlinked traits; sex
determination in various organisms;
4. pedigree analysis; trait inneritance in humans;
genetic syndromes in numans; construction of
Chromosomal maps;
5. physicochemical properties and topology of
DNA, genetic and physical mapping,
terminus: primesome, replication origin and
proteins involved in replication:
7 functional organization of prokaryotic and
eukarvotic genes: genetic code: transcription and
translation: gene expression and regulation of these
processes on transcriptional and postranscriptional
levels: structure and function of promoters and
terminators:
8. mutations and mutagenesis: mobile DNA:
genetic polymorphism; techniques of molecular
diagnosis
9. mechanisms of horizontal gene transfer:
bacterial plasmids, conjugation, transduction, and
transformation; restriction and modification and CRiSP
systems.
 10. mobilizable elements and their role in genome

	instability; DNA repair systems: techniques of molecular
	diagnostics.
	Laboratory classes include the following issues:
	1. Mendelian genetics and probability;
	2. Non-Mendelian genetics;
	3. DNA structure, function and replication;
	4. Division of genetic materials in prokaryotic and
	eukaryotic cells; meiosis, ploidy and gamete formation;
	5. Sex determination; heredity of sex-linked and
	unlinked traits;
	6. Organization of genomes in Prokaryota and
	Eukaryota; elements of cytogenetics;
	7. Chromosomes – structure and function,
	karyotypes and mitosis; cell division disturbances;
	linkage, crossing over and gene mapping;
	8. Human pedigree analysis; chromosomal
	mutations; chromosomal syndromes;
	9. Mechanisms of horizontal gene transfer; bacterial
	plasmids;
	10. Conjugation and transformation; application of
	plasmids in genetic studies;
	11. Barriers of horizontal gene transfer; restriction and
	modification systems and CRISPR;
	12. Mutations and mutagenesis, analysis of mutants in
	the context of gene function; genetic polymorphism;
	13. Techniques of molecular diagnosis with the use of
	PCR reactions and PCR-RFLP;
	14. Molecular mechanisms of regulation of bacterial
	appropries solution on the basis of factose tryptoprian
Bibliography	
bibliography	1. T.A. Brown, Genomes 2, 2002
	2. J.E. Krebs, E.S. Goldstein, S.T. Kilpatrick, Lewin.
	Genes XI, 2014
	3. Hartwell, Hood, Goldberg, Reynolds, Silver, Veres.
	Genetics: From Genes to Genomes, 2012
	4. Bacterial disease mechanisms. An introduction to
	cellular microbiology. M. Wilson, R. McNab, B.
	Henderson. Cambridge University Press, Cambridge,
	2002
Learning outcomes	KNOWLEDGE
	W1. Understanding of basic processes occurring in
	organisms on both molecular and cellular levels
	(K W01)
	W2 Understanding of rules of bacterial and eukariotic
	cell heredity and functioning (K_W/01)
	w3. Know possibility of practical use of genetic
	achievements in medicine and animal and plant
	W4. Use basic genetic techniques in studies of cellular

	processes in organisms and identification and characterization of genes (K_W11) SKILLS U1. Operate basic laboratory apparatus and equipment used in genetic studies (K_U01)
	U2. Perform basic laboratory experiments for analysis of genetic material of Procaryotes and Eucaryotes (K_U02, K_U04)
	U3. Draw correct conclusions from conducted experiments and observations (K_U07)
	 U4. Use biological and genetic terminology in scientific discussions (K_U13) SOCIAL COMPETENCES
	K1. Applying the obtained knowledge to solving various genetic problems by utilizing critical thinking, and data analyzing (K_K01)
	K2. Having knowledge of practical use of genetics achievements in diagnosis of human disorders (K_K01)
	K3. Having knowledge of ethical problems related with manipulation of genetic material (K_K01)
	K4. Having knowledge of needs of systematic enlargement of scientiic achivement (K_K01, K_K02)
	K5. Having knowledge of phenotypic effects of genome variability and instability (K_K01, K_K02)
Practice	
Teaching methods	Lecture: multimedia presentation, lecture Laboratory classes: conducting of experiments and assays, tasks, observation, multimedia presentation