Module name	Developmental biology
Module code	B-BM.074Eng
ISCED code	0511: Biology (zostaje bez zmiany)
Study cycle	p
Semester	winter
Responsible for this module	Imię i Nazwisko dr hab. Monika Hułas-Stasiak Department: Functional Anatomy and Cytobiology email: monika.hulas-stasiak@poczta.umcs.lublin.pl
Language of instruction	English
Website	
Prerequisites	Knowledge of zoology, anatomy and physiology of a high school program 2
ECTS points hour equivalents	Contact hours (work with an academic teacher) – 30 - lectures: 15 - labs: 15
	Non-contact hours (students' own work): 25
	- preparation for the exam: 15
	- preparation for labs: 10
	Total number of ECTS points for the module - 2
Learning outcomes verification methods	Laboratory: written partial tests
	oral presentation /activity during classes
	Lecture: final test
	participation in lectures
Course full description	 Types and importance of animal reproduction (asexual and sexual reproduction). Sexual reproduction. Sexual selection. The female and male reproductive system. Gametogenesis (oogenesis, spermatogenesis). Hormonal regulation of the reproductive system

	1e. the structure of Graafian follicle: secondary oocyte,
	zona pellucida, granulosa layer (estogen production),
	basement membrane, theca layer (externa, interna-
	steroidogenic cells (androgen production), corona
	radiata, cumulus oophorus, antrum. Two
	gonadotrophins and two cells theory.
	1f. Atresia (follicular atresia, atretic follicles, apoptosis,
	fragmentation and lysis of oocyte, detachment of
	granulosa layer from basement membrane, loss of
	granulosa cell junctions
	Massive loss of oocyte during prenatal and postnatal
	female life. Recruitment, selection and dominance
	1g. Ovulation (spontaneous, induced)
	1h. corpus luteum (CL) formation, structure, function,
	and luteolysis
	1B. Fallopian tube (uterine tube) – structure (simple
	columnar and ciliated epithelium, mucosal layer,
	muscularis layer and serosa), function, origin
	(mesonephros, mesonephric duct (Wolffian),
	paramesonephric duct (Müllerian)
	1C. Uterus – structure (morphological and histological, 3
	layers- endometrium, myometrium and perimetrium,
	uterine glands, functonalis and basalis layers of
	endometrium)
	1D. Menstrual cycle (proliferative phase, ovulation,
	luteal phase, menstruation), key hormones: FSH, LH,
	estrogens, progesterone (hormonal regulation of
	reproductive system- hypothalamus-pituitary-gonadal
	axis)
	1E. Vagina (structure – stratified squamous epithelium,
	function), external genitalia (-only mention)
	1F. Estrus cycle (proestrus, estrus, metestrus, diestrus,
	anestrus, the pattern of vaginal smears) – differences
	between menstrual and estrus cycle
	1G. polyestrous, seasonally polyestrous (longer/shorter
	day breeders, diestrus, monoestrus animals, delayed
	fertilization and implantation.
	2. Male reproductive system
	2A. Testis (structure and function)
	2b. Testis descent, cryptorchidism
	2c. Testis lobules, seminiferous tubules
	2d. The structure of seminiferous tubule (basement
	membrane, germ cells (spermatogonium,
	spermatocytes I, II, spermatids, spermatozoa, Sertoli
	cells)
	2e. spermatogenesis (meiosis, spermatogonia Ad, Ap
	and B, spermatocytes I,II, spermatids, spermatozoa)
	2f. spermiogenesis (spermatid – mature spermatozoa
	transformation) and spermatozoon structure (head,
	acrosomal cap, neck, middle piece, tail -flagellum)
	2g. differences between oogenesis and
	spermatogenesis
	2h. Sertoli and interstitial (Leydig) cells function
	2i. testis differentiation (in fetus, SRY gen on Y
	chromosome- sex determination, TDF-testis
	determining factor, MIF- Müllerian inhibiting factor or
	anti-Müllerian hormone, Wolffian duct)
	2j. Pathway of spermatozoa
	- Straight tubules
	- Rete testis
L	

- Efferent ductules
- Epididymis (structure- stereocilia, sperm
maturation)
- Vas deferens (structure, function)
- Ejaculatory duct
- Urethra
2k. Accessory organs (structure and function)
Seminal vesicles
Prostate gland
Bulbourethral glands
Penis
2. Hormonal regulation of the male reproductive system
3. Capacitation (Spermatozoa undergo the
physiological changes to have the ability to fertilize an
ovum).
4. Fertilization (acrosomal reaction, cortical reaction,
polysperm block, fusion of male and female pronuclei -
zygote)
5. Types of ova (alecithal, oligolecithal, mesolecithal,
polylecithal, isolecithal and telolecithal, what is the
yolk?)
6. Eggs or zygote polarity (animal, vegetal poles)
7. Cleavage (types, characteristic features, furrows:
vertical, horizontal)
8. Blastula (structure, types: coeloblastula,
discoblastula, stereoblastula, periblastula, blastocyst)
9. Gastrulation (definition, germ layers: ectoderm,
mesoderm, endoderm, types of cell movement -
invagination, involution, ingression, delamination,
epiboly)
10. ecto, meso and endoderm differentiation into tissue
11. Zygotic induction or cytoplasmic inheritance as
determinant of animal germ line
12. Embryonic induction (totipotent, pluripotent,
multipotent stem cells, cell differentiation – gene
activation and inhibition –acetylation, metylation)
13. Amphibian development
- external or internal fertilization
- frog egg organisation (animal, vegetal poles, cortex
cytoplasm- dark, light and internal cytoplasm- grey, grey
crescent
- cleavage (holoblastic- complete cleavage,
micromeres, macromeres)
- structure of blastula (blastocoel, blastoderm)
- gastrulation (blastopore, germ layers: ectoderm,
mesoderm (grey crescent), endoderm), fate map of a
frog embryo, way of gastrulation, gastrulation in detail
(bottle cells, prechordal plate, chordamesoderm cells,
notochord, ectoderm, endoderm, archenteron)
- neurulation (neurula, ectoderm differentiation into:
neural tube (in future brain and spinal cord), neural
crest and epidermis)
- mesoderm differentiation (paraxial mesoderm-somites,
intermediate mesoderm- nephrotomes (gonads and
urinary system), lateral mesoderm- splanchnic and
somatic or vesceral and parietal mesoderm
- organogenesis (primitive organs: notochord, neural
tube, gut)
- derivatives of germ layers
14. Bird development

	 chicken reproductive system anatomy of an egg (polylecithal, telolecithal egg) cleavage (meroblstic, discoidal, area pellucida, area opaca, blastodisc, blastoderm, epiblast, hipoblast, blastocoel, subgerminal space, Koller's sickle region) gastrulation (primitive streak, primitive knot=Hensen's node, gastrulation in detail, germ cell layers, intraembrionic mesoderm, extraembrionic mesoderm) ectoderm, mesoderm, endoderm differentiation (see amphibian development) extraembrionic tissue (chorion, amnion, allantois, and yolk sac, function) blood circulation in chicken embryo (three systems: vitelline- yolk sac, allantois and chicken circulation) 15. Mammals development cleavage – the unique nature of mammalian cleavage embryo compaction and cavitation (outer and inner cells) blastula=blastocyst (embryoblast and trophoblast, blastocoel) implantation (definition, phases) placenta (trophoblast differentiation: syncytiotrophoblast, cytotrophoblast; placental formation, trophoblastic lacunae, primary, secondary and tertiary chorionic villi) placenta structure and functions umbilical cord classification of placental types gastrulation (germ disc, epiblast, hipoblast, primitive streak – see chicken development, amnioblast, amniotic cavity) germ layer (ectoderm, mesoderm, endoderm differentiation – see amphibian development) extraembryonic tissue, (chorion, amnion, allantois, and yolk sac, differences between chicken and human)
Bibliography	 Sadler TW (2006) Langman's Medical Embryology, 10th edition. Wolters Kluwer/Lippincott Williams and Wilkins Company Gilbert SF (2010) Developmental biology, 9th edition. Sinauer Associates.
Learning outcomes	 KNOWLEDGE Student: 1. Understands the importance of sexual reproduction for biodiversity and evolutionary variability of organisms 2. Knows and understands the various stages of animal development - gametogenesis, fertilization, embryogenesis, organogenesis 3. Knows the mechanisms of reproduction, embryonic and fetal animal development
	 SKILLS 1. Has an ability to use the light microscope 2. Exhibits understanding of recommended academic textbooks 3. Has an ability to prepare an oral presentation on specific developmental biology issues 4. Uses biological terminology in scientific discussions 5. Can make a proper selection of data sources, conduct a critical analysis, evaluation and synthesis of

	information to solve problems and perform specific tasks
	SOCIAL COMPETENCES 1. Adopts an active attitude towards acquisition, extension, and updating the acquired knowledge 2. Is ready to perform occupational roles responsibly, e.g. to comply with the principles of professional ethics and require such compliance from other team members
Practice	
Teaching methods	 -Hybrid teaching -stationary teaching - on-line teaching (Teams platform, Virtual Campus) 1. microscopic observations, 2. demonstration of anatomical models, organs, amphibian eggs and placenta 3. didactic discussion 4. explanation 5. multimedia presentation, 6. worksheets