Module name	Basics of bioinformatics
Module code	B-BT.026
ISCED code	0511: Biology
Study cycle	I ^o
Semester	Winter
Responsible for this module	Dr Przemysław Grela, Department of Molecular Biology,
	przemek@hektor.umcs.lublin.pl
	Dr Michał Kalita, Department of Genetics and
	Microbiology, michal.kalita@umcs.pl
Language of instruction	English
Website	
Prerequisites	Basic knowledge of genetics and biochemistry
ECTS	2
ECTS points hour equivalents	Contact hours (work with an academic teacher) – 20 - computer labs: 20
	·
	Non-contact hours (students' own work) – 30
	- preparation for the exam: 10
	- preparation for labs: 5 - preparation of reports from laboratory exercises: 10
	- literature study: 5
	- Interactive Study. 3
	Total number of ECTS points for the module - 2
Learning outcomes verification methods	Continuous evaluation of the computer classes, reports
6	from computer laboratories, written examination
Course full description	List of topics discussed in the classes:
·	Introduction to nucleotide sequence and protein
	databases. Retrieving DNA/protein sequences from
	databases. Pairwise and multiple sequence
	alignment. Finding patterns in DNA/protein sequences.
	Computational methods for study of biological
	sequence data in comparative biology and evolution.
	Basics of protein structure and methods of
	structure determination will be presented as well as
	the software for visualizing 3D structures of
	proteins. Methods for secondary and tertiary protein
	structure prediction will be discussed as well as
	methods for modeling small/molecule-protein
Dilli:	interactions and protein-protein interactions.
Bibliography	1. Baxevanis, A.D., Ouellette, B.F.F. Bioinformatics: A
	Practical Guide to the Analysis of Genes and
	Proteins. (2004) Wiley-Interscience
	2. Higgs P.G., Attwood T.K. Bioinformatics and
	Molecular Evolution (2005) Wiley-Blackwell Jin Young Essential Bioinformatics (2006) Cambridge
	3. Jin Xiong, Essential Bioinformatics (2006) Cambridge University Press
Learning outcomes	KNOWLEDGE
Learning outcomes	W1: Student knows and understands professional terms
	and terminology used in bioinformatics
	W2: Student knows and understands the theory and
	statistical background of commonly available
	Statistical background of confinionly available

	bioinformatics tools W3: Student knows and understands the advantages and disadvantages of different techniques used in bioinformatics SKILLS U1: Student is able to use well-established and widely used bioinformatics tools and platforms U2: Student is able to navigate through internet-based biological databases U3: Student is able to manipulate DNA and protein sequences using stand-alone PC programs and online tools SOCIAL COMPETENCIES K1: Student recognizes the need for, and an ability to engage in lifelong learning. K2: Student understands social, legal, and privacy implications of electronic storage and sharing of biological information
Practice	-
Teaching methods	Discussion, computer exercises, multimedia presentations.