Module name	Plant physiology – a basic course
Module code	B-BT.012
ISCED code	0511: Biology
Study cycle	I ^o
Semester	summer
Responsible for this module	Małgorzata Wójcik
	Department of Plant Physiology and Biophysics
	email: mwojcik@umcs.pl
Language of instruction	English
Website	-
Prerequisites	-
ECTS	5
ECTS points hour equivalents	Contact hours (work with an academic teacher) – 60
	- lectures: 30
	- labs: 30
	Non-contact hours (students' own work) – 70
	- preparation for the exam: 20
	- preparation for partial tests: 20
	- preparation for labs: 5
	- preparation of reports from laboratory exercises: 10
	- literature study: 15
	Total number of ECTS points for the module - 5
Learning outcomes verification methods	Lecture:
	- written examination (W1, W2, U3, K2)
	Laboratories:
	- Intermediate short tests (W1, W2, U3, K2)
	- reports on experiments and observations during
	laboratory exercises (W3, U1, U2, K1)
Course full description	During the lecture the student will learn about the basic
	processes responsible for the functioning of the plant
	organism as a whole, their mechanisms, regulation and
	dependence of these processes on environmental
	factors. He will learn about the possibilities and
	examples of modifying physiological processes in plants
	of such manipulations
	Pasic issues related to water management: water
	- basic issues related to water management. water
	- Mineral nutrition: the role of macro- and
	microelements, element untake and short- and long-
	distance transport, mechanism of nitrogen fixation and
	assimilative reduction of nitrates, examples of symbiosis
	in the uptake of mineral substances by plants.
	- Photosynthesis: photosynthetic pigments. light and
	dark phases reactions, assimilation of CO2 in C3 and C4.
	CAM plants.
	- Donors and acceptors of assimilates. transport of
	assimilates in the plant.
	- Respiration: stages of aerobic respiration and their

course, mechanism of oxidative and substrate
phosphorylation.
- Plant growth and development: growth phases.
growth location, development stages, seed dormancy.
germination, vegetative and generative development
flewering induction, release the technological in
nowering induction, role of phytochrome in
physiological processes.
- Plant hormones, activators and inhibitors, their roles.
- Plant movements, types, mechanisms, examples.
- Plant biologically active substances, role in the
adaptation of plants to the environment and practical
importance for a man.
During laboratory exercises, the student will perform
experiments and observations on his own to better
understand physiological processes taking place in
plants. The evercises are performed according to the
instructions presented in the scripts and under the
instructions presented in the scripts and under the
supervision of the teacher.
The student will perform six laboratory exercises
selected from the list of exercises below, at least one
exercise from each of five sections.
Section I. Water management
- Diffusion and osmosis. Traube's artificial cells.
- Osmotic relations of a plant cell: influence of chemical
and physical factors on cell membrane permeability;
plasmolysis, deplasmolysis.
- Water uptake, transport and transpiration:
measurement of water uptake by potometric method;
demonstration of transpiration by cobalt method;
observation of Amarylis and Gramineae type stomata -
determination of the stomata size
Section II. Mineral nutrition
- Chemical analysis of the plant (mineral components):
determination of dry matter and percentage water
content in leaves and coods: chemical analysis of ach
Diant chomical analysis (organic compounds):
- Flant chemical analysis (organic compounds).
detection of sugars and proteins in plant material.
Section III. Photosynthesis
- Photosynthesis conditions and factors: influence of
light intensity and colour on the intensity of
photosynthesis, light- and shade plants.
- Properties of photosynthetic pigments, detection of
assimilative starch.
- The role of the central metal atom in the porphyrin
ring of the chlorophyll molecule, obtaining pheophytin
and determining its concentration, obtaining Cu-
porphyrin and determination of its properties.
Section IV. Respiration
- Quantitative determination of the intensity of
respiration of germinated seeds using Pettenkofer's
method; oxygen uptake during respiration of

	germinated seeds.
	Section V. Growth and development, plant movements
	- Plant growth and development: determining the
	growth zone of the root and shoot; determination of the
	elongation in the growth zone of the root and shoot,
	determination of the elongation speed of the colleoptil
	using a microscope: determining the germination
	canacity of seeds
	- Plant movements: phototrophism of the colontile
	(Darwin's test): phototrophism and geotrophism of
	choot and root: oppning of stomata
Pibliography	Biochamistry & Molecular Biolegy of Diants by P. P.
ыыновгарну	- Biochemistry & Wolecular Biology of Plants by B.B.
	Diant Divisiology by L. Tois, C. Zoigor (eds.)
	- Plant Physiology by L. Taiz, E. Zeiger (eds)
Learning outcomes	KNOWLEDGE
	W1: The student knows and understands the
	physiological processes taking place at the level of the
	cell, organ and the whole plant, and recognizes the
	influence of environmental factors on the functioning of
	plant organisms.
	W2: Student knows and understands professional terms
	and terminology used in natural sciences and uses them
	together with mathematical and statistical methods to
	describe and interpret physiological processes.
	W3: Student knows and understands the relationship of
	plant physiology with other natural sciences, and gives
	examples of modification of physiological processes
	with the use of biotechnological tools.
	SKILLS
	U1: The student is able to apply basic research tools and
	techniques and conduct laboratory experiments and
	observations, and then interprets the results obtained
	to formulate appropriate conclusions.
	U2: The student is able to plan and organize work on
	his/her own and in a team and cooperate with others in
	order to perform specific tasks effectively.
	U3: The student is able to use the academic textbooks
	and other sources of information for independent
	learning of specific parts of material.
	SOCIAL COMPETENCE
	K1: The student is ready to critically assess the actions
	of his own and other members of the group and to take
	responsibility for the consequences of those actions.
	K2: Student is ready to improve his competences and
	actively acquire and update his knowledge.
Practice	-
Teaching methods	Lecture: information lecture, multimedia presentation, film, discussion, case study

Labs: experiment, direct observation, measurement,
discussion