Module name	Molecular biology II
Module code	B-MI.049
ISCED code	0511: Biology
Study cycle	l°
Semester	summer semester
Responsible for this module	prof. Marek Tchórzewski (maro@hektor.umcs.lublin.pl),
	Tel. +48 815375956
Language of instruction	English
Website	-
Prerequisites	Completed course of biochemistry, genetics
ECTS	7
ECTS points hour equivalents	Contact hours (work with an academic teacher): 30 hrs of
	lectures and 60 hrs of laboratory
	Total number of hours with an academic teacher: 100
	Number of ECTS points with an academic teacher: 4.0
	Non-contact hours (students' own work) 75
	Total number of non-contact hours 75
	Number of ECTS points for non-contact hours: 3.0
Education for the second of Contract	Total number of ECTS points for the module 7.0
Educational outcomes verification	written exam, continuous assessment of labs
Description	The module covers the knowledge in the area of
Description	the assential concents of molecular hieldry
	The student learns the techniques used to analyse DNA
	RNA and proteins
Reading list	1 I F Krehs F S Goldstein S T Kilnatrick
	Lewin's Genes XI
	2. L. A. Allison. Fundamental molecular biology
	3. T.A. Brown, Genomes 3
	4. Research articles from scientific journals
	recommended by the teacher
Educational outcomes	KNOWLEDGE
	 Student has the knowledge about peptides,
	protein structure and function.
	2. Student can describe regulation of expression of
	genetic information on the translational level and
	function of nano-machines such as ribosomes and
	protein factors involved in that process on the
	molecular level.
	3. Student characterizes the role and function of
	receptors and extracellular signal transduction
	A Student is able to explain molecular basics of such
	4. Student is able to explain molecular basics of such
	cycle
	SKILLS
	1. Student in cooperation with the group
	prearranges and perform analysis using

	 eukaryotic cell, especially isolation and characterization of intracellular structures. 2. Student can isolate proteins and nucleic acids from eukaryotic cell and is able to run protein and nucleic acid gel electrophoresis and to interpret obtained results.
	ATTITUDES
	 Student appreciates the importance of understanding biological processes on molecular level and the need to continuously expand biological knowledge.
	2. Student is conscious of hazards and responsibility
	for its own and work place safety during experimental work, using instruments, chemicals and biological materials.
Practice	not concerns

Information about classes in the cycle

Website	-
Educational outcomes verification	written exam, continuous assessment of labs
methods	
Comments	The classes are carried out in room 19A,
Reading list	as described above
Educational outcomes	KNOWLEDGE as described above
	SKILLS as described above
	ATTITUDES as described above
A list of topics	Lecture
	Principles in protein structure and function; protein
	folding and tertiary structure acquisition; post-
	translational modification of proteins; determination of
	protein structure. From RNA to protein – translation,
	decoding of the genetic information of the transational
	level; aminoacyl tRNA synthetases; ribosome structure;
	decoding a genetic information by translational
	apparatus; antibiotics affecting translation - function
	and structure and molecular aspects of translational
	inhibitors. Protein cross-talk in cells; general principles
	of cell communication; signaling through G-protein-
	linked cell-surface receptors: signaling through enzyme-
	linked cell-surface recentors: programmed cell death
	(anontosis)
	Laboratory
	Isolation methods of basic molecules: DNA/RNA; PCR
	amplification of DNA; restriction enzyme digestion of
	plasmid DNA; bacterial transformation with genetic
	constructs; DNA sequence analysis; electrophoretic
	techniques of nuclei acids; isolation of protein from
	bacterial and eukaryotic cell, analysis of proteins

	including protein concentration and electrophoretic techniques; basics of cell culture handling, transfection of cell lines; basic microscopy techniques in cell observation and visualization.
Teaching methods	Laboratory experiments; panel discussion; lecture
Assessment methods	written exam, continuous assessment of laboratory
	skills