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Abstract

Conservation laws in the modelling

of collective phenomena

Over the last decades, traffic congestion, car accidents and pollution became
daily issues. To understand and overcome road traffic problems, scientists from
different research fields are creating advanced mathematical models. Mathe-
matical models help to understand road traffic phenomena, develop optimal
road network with efficient movement of traffic and minimal traffic congestion.
This thesis is devoted to macroscopic traffic flow modelling, which describes
traffic flow by variables averaged over multiple vehicles: density, velocity and
flow. Macroscopic models naturally lead to conservation laws, which are hy-
perbolic partial differential equations. In recent years, this class of equations
is more widely considered, but few theoretical results are available. This is
caused by two main difficulties. The former is the non-linear hyperbolic nature
of equations, which leads to consider weak solutions, instabilities and diffusiv-
ity of numerical schemes. The latter is the non-uniqueness of weak solutions
and the need to introduce exotic functionals to select a unique physically rea-
sonable solution.

In the first chapter, we introduce basic ideas of traffic modelling. First, we
present the main classification of mathematical models with special attention
to the level of details. Then we list the differences between the dynamics of
traffic flow and that of flowing particles. Next, we show the minimal require-
ments to construct a physically reasonable macroscopic traffic flow model. We

define three macroscopic variables to describe traffic flow, namely (average)



density p, (average) speed v and (average) flow f. We derive the basic relation
between them and formulate scalar conservation law. The chapter ends with
a short presentation of the models under consideration, followed by the results
obtained during my doctoral studies.

The second chapter is devoted to a detailed discussion of basic macro-
scopic traffic flow models. The first presented model is the model proposed by
Lighthill, Witham [7] and Richards [10] (LWR). It describes the dynamics of
traffic via a scalar conservation law under the hypothesis that v = v(p). We
define a rarefaction wave, a shock wave and a contact discontinuity for the
LWR model, and define the Riemann solver RSywg. In the end, we give a
list of drawbacks of the LWR. model.

The next considered model is the Aw, Rascle [1] and Zhang [11] model(ARZ).
The ARZ model consists of two conservation laws, expressing the conservation
of the number of vehicles and the conservation of the generalized momentum.
We give the basic properties of the system, such as eigenvalues, eigenvectors
and the corresponding Lagrangian markers. Next, we construct the Riemann
solver RSarz using elementary waves. Finally, we give definitions of weak
and entropy solutions for the ARZ model corresponding to RSaARrz.

In the last part of this chapter, we describe models with phase transition
(PT). The PT model treats differently traffic with low and high densities, on
the basis of empirical studies. For this reason, we consider PT model described
by the LWR model on the set {2 corresponding to the low densities and a 2 x 2
system of conservation laws on the set {2, corresponding to the high densities.
We present two PT models, denoted by PT¢ and PTP, and introduced in
13, 6]. Then we recall from our paper [5] the generalization of these models
for cases with a metastable phase (2 N Q. # @) and without a metastable
phase (¢ N Qe = 0). Next, we introduce a notion of admissible solution for

the Riemann problems and then Riemann solvers RSg and RSs accordingly.
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The chapter ends with propositions regarding consistency and L,

-continuity
for the Riemann solvers RSgr and RSs.

In the third chapter, we describe the LWR model with a local point con-
straint on the flow. More precisely, we consider a situation in which the max-
imum flow of cars is limited at a fixed point along the road. Thanks to such
considerations, we can model traffic flow through toll gates or construction
sites. We define the Riemann solver CRStwr and list its main properties.
Then we define the entropy solution of the Cauchy problem and recall the
corresponding existence result.

The fourth chapter is devoted ARZ model with local point constraint on
the flow and our results obtained in [8]. In our work we prove the existence
of the weak solutions, corresponding to a non-conservative Riemann solver, in
the class of functions with bounded variation. The goal is obtained by show-
ing the convergence of a sequence of approximate solutions constructed via
the Wave Front Tracking method. More precisely, we introduce grid, approx-
imate Riemann solver CRSi gy by splitting a rarefaction wave and construct
approximate Cauchy problems. Thanks to the decreasing in time functional
Y. we show that the total variation of the approximated solution is uniformly
bounded. By Helly’s theorem we obtain convergence of approximated solu-
tions and then we show that the limit function is indeed a weak solution to the
Cauchy problem for the ARZ model with local point constraint on the flow.

In the fifth chapter, we describe the models PT® and PT? with the lo-
cal point constraint on the flow and present our results obtained in [5, 2].
More precisely, we introduce Riemann Solvers CRSg and CRSg, both with a

metastable phase and without a metastable phase. Then we examine their con-
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Joc-continuity and invariant domains. The remainder of the chapter

sistency, L
is devoted to the existence result of a weak solution in the class of function

with bounded variation for the PT? model with a metastable phase. The goal



is obtained by showing the convergence of a sequence of approximate solu-
tions constructed via Wave Front Tracking method. Similarly to the results
from the previous chapter, we define grid and approximate Riemann solver
CRSY". Then we introduce the decreasing in time function T and show that
the approximate solution has bounded variation, the number of waves and
interactions is finite in finite time. We apply Helly’s theorem and then show
that the limit function is an entropy solution of the Cauchy problem for the
PT® model with the metastable phase.

The sixth chapter is devoted to the results obtained in conference proceed-
ings [9, 4]. We consider there two macroscopic models on road networks. The
former is the LWR model with moving constraint on the flow. The concept of
moving constraint on the flow allows us to model situations in which a truck
(or other slower vehicle) reduces the flow at its position. From a mathemati-
cal point of view, the constraint is given by the ordinary differential equation
depending on the trajectory of the truck. We give a detailed description of
the model for a unidirectional road, introduce a Riemann solver BRS1wgr and
generalize it for the case of road networks. The latter considered model is the
PT model introduced in the second chapter. We generalize it to the case of
road networks by introducing an appropriate Riemann solver.

At last, for the sake of clarity and to ease of comprehension, we defer to

the appendix technical proofs.
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