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1. Introduction

It is a matter of general agreement that the Lp(µ) spaces (1 ≤ p ≤ ∞ and µ a measure)
and the C(K) spaces (K compact Hausdorff) are among the most important Banach
spaces. A central part of Banach space theory is devoted to the investigation of the
special properties of these spaces and some closely related spaces. This part of Banach
space theory is often called the theory of the classical Banach spaces. It is our feeling that
in order to get a well rounded theory of the classical Banach spaces, in the framework of
the isometric theory, it is worthwhile to take as the main objects of the investigation the
class of Banach spaces X for which X∗ = Lp(µ) for some 1 ≤ p ≤ ∞ and some measure
µ. Let us examine briefly the relation of this latter class of spaces to those mentioned
in the first sentence. Since for 1 < p < ∞ the Lp(µ) spaces are reflexive it is clear
that X∗ = Lp(µ) if and only if X = Lq(µ) ( p−1 + q−1 = 1). Grothendieck proved the
non obvious fact that if X∗ = L∞(µ) then X = L1(µ). Well-known results of F. Riesz
and Kakutani show that if X = C(K) then X∗ = L1(µ) for a suitable µ. There are,
however, Banach spaces X which are not isometric to C(K) spaces while their duals are
L1(µ) spaces. These are thus the only spaces which should be included in the geometric
theory of the classical Banach spaces and which are not “classical” in the strict sense.

A. J. Lazar, J. Lindenstrauss, Banach spaces whose duals are L1-spaces and their rep-
resenting matrices, Acta Math. 126 (1971), 165-194.

A real Banach space X for which X∗ = L1(µ) for some measure µ is named an L1-
predual or a Lindenstrauss space. In particular, if X∗ = `1, then it is called an `1-predual.

In the last four years, the main subject of my mathematical interest was studying
the geometrical and topological properties of separable Lindenstrauss spaces. Intense
collaboration with my scientific partners from Italy, Emanuele Casini from Università
dell’Insubria in Como and Enrico Miglierina from Università Cattolica del Sacro Cuore in
Milan, and later also with Libor Veselý from Università di Milano, and Roxana Popescu
from University of Pittsburgh (PA, USA), resulted in a series of new and interesting re-
sults. In particular, considerations on some classical issues of metric fixed point theory
led us to a surprising discovery in a different, till now separately studied theory of poly-
hedral spaces. Namely, it turned out that some classical characterizations of polyhedral
Lindenstrauss spaces are false, whereas some others have incorrect proofs. We took care
of ordering, rebuilding and developing this theory, focusing primarily on the indication of
geometric equivalences of polyhedral properties for `1-preduals.
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The results obtained by us form now a complete theory, and its subsequent stages of
rising I will discuss in the autoreferat.

2. Hyperplanes in c and preduals of `1

Let X be a real Banach space. By BX and SX we denote the closed unit ball and
the unit sphere in X, respectively. X∗ stands for the dual space of X. If A ⊂ X, then
conv(A), ext(A), int(A), A, [A] and A⊥ denote the convex hull of A, the set of all extreme
points of A, the interior of A, the closure of A in X, the closed linear span of A in X
and the annihilator of A in X∗, respectively. If A ⊂ X∗, then by A

∗
we denote the weak∗

closure of A, and by A′ the set of all weak∗ cluster points of A:

A′ =
{
x∗ ∈ X∗ : x∗ ∈ (A \ {x∗})

∗}
.

We say that a linear subspace Y of X is 1-complemented in X if there exists a linear
projection P from X onto Y with ‖P‖ = 1. If f ∈ X∗, then ker f stands for the kernel of
functional f , that is, ker f = {x ∈ X : f(x) = 0}. If X contains an isometric copy of Y ,
then we write Y ⊂ X. Whenever X is isometrically isomorphic to Y , we write X = Y .

E. Michael and A. Pe lczyński [64] and A. J. Lazar and J. Lindenstrauss [51] proved that
a separable Banach space X satisfies X∗ = L1(µ) for some measure µ if and only if X has
a monotone basis {xi}∞i=1 such that for every n ∈ N the subspace [{xi}ni=1] is isometric to
`n∞ (i.e. the space Rn with the norm ‖x‖ = ‖(x(1), x(2), . . . , x(n))‖ = max1≤i≤n |x(i)|).
Although this result fully characterizes Lindenstrauss spaces for the class of separable
Banach spaces, in many situations it is more convenient to use a concrete model of such
a space.

The space c0 with the standard maximum norm is the classical example of `1-predual.
Here, the duality mapping φ : `1 → c∗0 is given by

(φ(y))(x) =
∞∑
j=1

x(j)y(j)

for y = (y(1), y(2), . . . ) ∈ `1 and x = (x(1), x(2), . . . ) ∈ c0.

We will begin our considerations with a summary of the known results on `1-preduals
hyperplanes in the space c0:

Theorem 2.1 ([CMP2015], Theorem 1.1). Let f ∈ `1 = c∗0 be such that ‖f‖`1 = 1.
Consider a hyperplane Vf = ker f ⊂ c0. The following properties are equivalent:

(1) Vf is 1-complemented,
(2) V ∗f is isometric to `1,

(3) there exists j0 such that |f(j0)| ≥ 1
2
,

(4) Vf is isometric to c0.

The equivalence (1) ⇔ (3) was proved by J. Blatter and E. W. Cheney [11]. The
implication (1) ⇒ (4) follows from the fact that 1-complemented infinite-dimensional
subspaces of c0 are isometric to c0 (see, for example, [59]). Clearly, (4) ⇒ (2). We show
now the proof of the implication (2) ⇒ (1). Observe first that V ∗f is isometric to the

quotient space `1/[f ], and so V ∗∗f = [f ]⊥ = {x∗∗ ∈ `∞ : x∗∗(f) = 0}. The space V ∗∗f is
isometric to `∞ because V ∗f is isometric to `1. Therefore, V ∗∗f is 1-complemented in `∞
([23], Proposition 5.13). It is enough now to apply the result of M. Baronti ([6], Corollary
2) stating that V ∗∗f is 1-complemented in `∞ if and only if Vf is 1-complemented in c0.
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The space c of converging sequences with the supremum norm is another commonly
known example of an `1-predual. In this case the duality mapping φ : `1 → c∗ is defined
by

(φ(y))(x) =
∞∑
j=0

x(j)y(j + 1)

for y = (y(1), y(2), . . . ) ∈ `1, x = (x(1), x(2), . . . ) ∈ c and x(0) = lim
j→∞

x(j).

We have already seen that all `1-preduals hyperplanes in c0 are actually isometric to c0.
As we will see in a moment, the structure of `1-predual hyperplanes in c is much richer.
We begin with the following result which can be seen as a counterpart of Theorem 2.1:

Theorem 2.2 ([CMP2015], Theorem 1.2). Let f ∈ `1 be such that ‖f‖`1 = 1 and let
Wf = ker f ⊂ c. Consider the following properties:

(1) Wf is 1-complemented;
(2) Wf is isometric to c;
(3) there exists j0 ≥ 2 such that |f(j0)| ≥ 1

2
;

(4) W ∗
f is isometric to `1;

(5) there exists j0 ≥ 1 such that |f(j0)| ≥ 1
2
;

(6) Wf is isometric to c0;
(7) infP ‖P‖ = 2 (where P : c→ Wf is a linear projection of c onto Wf);
(8) |f(1)| = 1, f(j) = 0 for every j ≥ 2.

Then the following implications hold:

(1)⇔ (2)⇔ (3)⇒ (4)⇔ (5)⇐ (6)⇔ (7)⇔ (8).

The above theorem follows from the series of technical results proved in Sections 2 and
3, as well as in Section 4 (Proposition 4.1) in [CMP2015].

As a consequence, the set of all hyperplanes Wf in c satisfying W ∗
f = `1 can be divided

into three distinct classes:

• Wf is isometric to c (equivalently, there exists j0 ≥ 2 such that |f(j0)| ≥ 1
2
);

• Wf is isometric to c0 (equivalently, |f(1)| = 1);
• Wf is isometric neither to c nor c0 (equivalently, 1

2
≤ |f(1)| < 1 and |f(j)| < 1

2
for

every j ≥ 2).

It turns out that the most interesting situation is when Wf is isometric neither to c0
nor c. For this class of spaces we study the behavior of the σ(`1,Wf )-cluster points of
the standard basis in `1 and we give an explicit formula for the isometrical isomorphism
φ from `1 onto W ∗

f .

Theorem 2.3 ([CMP2015], Theorem 4.3). Let Wf ⊂ c be such that 1
2
≤ |f(1)| < 1 and

|f(j)| < 1
2

for every j ≥ 2. Then the mapping φ : `1 → W ∗
f given by

(φ(y))(x) =
+∞∑
j=1

x(j)y(j)

for y = (y(1), y(2), . . . ) ∈ `1 and x = (x(1), x(2), . . . ) ∈ Wf is an isometrically isomor-
phism from `1 onto W ∗

f . Moreover, if (e∗n) denotes the standard basis in `1, then

e∗n
σ(`1,Wf )−→ e∗,

where e∗ =
(
−f(2)
f(1)

,−f(3)
f(1)

,−f(4)
f(1)

, . . .
)
.
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The above theorem has a very interesting consequence. Namely, for every point e∗ =
(e∗(1), e∗(2), . . . ) ∈ B`1 we can choose a predual X of `1 such that

e∗n
σ(`1,X)−→ e∗.

Indeed, it is enough to consider X = Wf with f = (f(1), f(2), ...) ∈ `1 satisfying the
following condition:

f(1) =
1

1 +
∑∞

n=1 |e∗(n)|
, f(n) = − e∗(n− 1)

1 +
∑∞

n=1 |e∗(n)|
for every n ≥ 2.

Moreover, the above choice of a predual space is unequivocal, that is, if X is an `1-predual

such that e∗n
σ(`1,X)−→ e∗, then X must be isometric to Wf (see Corollary 4.4 in [CMP2015]).

Reassuming, all `1-preduals for which the standard basis in `1 is weak∗-convergent are
located among the hyperplanes in the space c.

The last part of the paper [CMP2015] refers to the result of W. B. Johnson and M.
Zippin [41] stating that every separable L1-predual is isometric to a quotient of C(4),
where 4 denotes the Cantor set. The question whether for any `1-predual X there exists
a countable and compact metric space K such that X is isometric to a quotient of C(K)
was settled by Alspach [3]. Namely, he gave an example of an `1-predual hyperplane in
the space c, which is not isometric to a quotient of any space C(α), where α denotes a
countable ordinal number and by C(α) we mean, as usual, the space of all continuous
functions on the set of ordinals less than or equal to α with the order topology. Let’s
recall here the classical Mazurkiewicz and Sierpiński’s result [63] which says that every
space C(K), where K is a countable and compact metric space, is isometric to C(α) for
some α.

The following result, which can be seen as an extension of Alspach’s example, charac-
terizes all `1-preduals hyperplanes in c having this property.

Corollary 2.4 ([CMP2015], Corollary 4.5). There exists a countable ordinal number α
such that Wf is isometric with a quotient of C(α) if and only if one of the following two
conditions hold:

(1) there exists j0 ≥ 2 such that |f(j0)| ≥ 1
2
;

(2) 1
2
≤ |f(1)| ≤ 1 and |f(j)| < 1

2
for all j ≥ 2 and f = (f(1), f(2), . . . , f(n), 0, 0, . . . )

for some n ∈ N.

3. The weak∗ fixed point property in `1

Let X be an infinite-dimensional Banach space. We say that a nonempty bounded
closed and convex subset C of X has the fixed point property (briefly, FPP) if every
nonexpansive mapping T : C → C (i.e. ‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ C) has a
fixed point. The space X has the fixed point property (briefly, FPP) if every nonempty
bounded closed and convex subset C of X has the FPP. The space X has the weak fixed
point property (briefly, w-FPP) if every nonempty, weakly compact, convex set C ⊂ X
has the FPP. The dual space X∗ has the weak∗ fixed point property (briefly, w∗-FPP or
σ(X∗, X)-FPP) if every nonempty, convex, σ(X∗, X)-compact set C ⊂ X∗ has the FPP.

Clearly, for every Banach space X the following implication holds:

X has the FPP ⇒ X has the w-FPP.

Moreover, for the dual space X∗ we have:

X∗ has the FPP ⇒ X∗ has the w∗-FPP ⇒ X∗ has the w-FPP.
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If X is reflexive, then the above three properties are equivalent.
Metric Fixed Point Theory is widely studied in the book of K. Goebel and W. A. Kirk

[31] and Handbook [44]. Here, we will only cite those of the known results that concern
the classical Banach spaces.

• Lp(µ) has the FPP for p ∈ (1,∞) (F. E. Browder, [17], [18], D. Göhde [36], W. A.
Kirk [43]).
• L1(0, 1) fails the w-FPP (D. E. Alspach, [2]). Consequently, the spaces C[0, 1], `∞

and L∞(0, 1) fail the w-FPP.
• L1-preduals fail the FPP. This is due to Zippin’s claim [78] that every such

space contains an isometric copy of c0 (the space c0 fails the FPP; indeed, it
is easy to observe that a mapping T : Bc0 → Bc0 defined by T (x(1), x(2), . . . ) =
(1, x(1), x(2), . . . ) is a fixed point free isometry).
• c0 and c enjoy the w-FPP (B. Maurey, [61]).
• C(ωn + 1) has the w-FPP, where n ∈ N and ω is the first infinite ordinal number

(J. Elton, P. K. Lin, E. Odell, S. Szarek, [22]).
• If X is a separable Lindenstrauss space such that X∗ is nonseparable, then X lacks

the w-FPP. Indeed, Lazar and Lindenstrauss [52] proved that every such space X
contains an isometric copy of C(∆), where ∆ is the Cantor set. Consequently,
X contains an isometric copy of L1(0, 1), and so, by Alspach’s result, X fails the
w-FPP.
• `1 has the w-FPP; moreover, by Schauder’s fixed point theorem [73] and the fact

that `1 satisfies Schur’s property, every continuous self-mapping on a nonempty,
weakly compact and convex set in `1 has a fixed point.
• `1 has the σ(`1, c0)-FPP (L. A. Karlovitz, [42]).
• `1 lacks the σ(`1, c)-FPP. Indeed, the set

S+ =

{
(x(1), x(2), . . . ) ∈ `1 :

∞∑
i=1

x(i) = 1, x(i) ≥ 0, i = 1, 2, . . .

}
is convex, σ(`1, c)-compact and the mapping T : S+ → S+ given by

T (x(1), x(2), . . . ) = (0, x(1), x(2), . . . )

is a fixed point free isometry.
• C(K)∗ fails the w∗-FPP, when K is an infinite, compact Hausdorff space (M.

Smyth, [75]).
• Let τ be a locally convex topology in the space `1 coarser than the weak topology

on the unit ball. Assume that the standard basis (en) converges to some e ∈ `1
with respect to τ . Then `1 has the τ -FPP if and only if one of the following
conditions holds:
(1) ‖e‖ < 1;
(2) ‖e‖ = 1 and the set N+ = {n ∈ N : e(n) ≥ 0} is finite.

The above result was proved by M. A. Japón-Pineda and S. Prus ([39], Theorem
8) and it includes those among the weak∗ topologies in `1 for which the standard
basis (e∗n) is weak∗ convergent. Recall that all `1-preduals having this property
have been characterized in the previous chapter. As a result, we get the following:

Proposition 3.1 ([CMP2017], Proposition 2.2). Let f ∈ `1 = c∗ be such that ‖f‖ = 1,
1
2
≤ |f(1)| ≤ 1 and |f(j)| ≤ 1

2
for all j ≥ 2. The space `1 has the σ(`1,Wf )-FPP if and

only if one of the following conditions holds:

(1) |f(1)| > 1
2
,

(2) |f(1)| = 1
2

and the set N+ = {n ∈ N : f(1)f(n+ 1) ≤ 0} is finite.
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Remark 1 ([CMP2017], Remark 2.6). In the case of a particular family of sets in the
space `1, a characterization of those for which the FPP holds was given by K. Goebel and
T. Kuczumow [32]. Consider the positive part of the unit sphere in `1:

S+ = conv {e∗i : i ∈ N} =

{
∞∑
i=1

αie
∗
i : αi ≥ 0, i = 1, 2, . . . ,

∞∑
i=1

αi = 1

}
.

Let (ai) be a bounded sequence of nonnegative numbers. Put a = inf ai and N0 =
{i : ai = a}. Modify now the set S+ by moving its vertexes along half-lines emanating
from the origin:

C = conv {(1 + ai)e
∗
i : i ∈ N} =

{
∞∑
i=1

αi(1 + ai)e
∗
i : αi ≥ 0, i = 1, 2, . . . ,

∞∑
i=1

αi = 1

}
.

Sets of this form are nowadays called Goebel-Kuczumow sets. In [32] the authors proved
that a set C has the FPP if and only if N0 is nonempty and finite.

It turns out that many sets of this type are weak∗ compact with respect to appropriately
chosen weak∗ topology that have the FPP. To illustrate this, for every ε ∈ (0, 1) define
the set

Cε =

{
α1(1− ε)e∗1 +

∞∑
i=2

αie
∗
i : αi ≥ 0,

∞∑
i=1

αi = 1

}
.

The set Cε is convex, bounded and closed. Moreover, it has the FPP because 1
1−εCε has

the FPP. Obviously, Cε is neither σ(`1, c)-compact nor σ(`1, c0)-compact. Nevertheless,
for f =

(
1

2−ε ,−
1−ε
2−ε , 0, 0, . . .

)
, W ∗

f = `1 and

e∗n
σ(`1,Wf )−→ (1− ε)e∗1.

Therefore Cε is σ(`1,Wf )-compact. By Proposition 3.1, `1 has the σ(`1,Wf )-FPP.

The main purpose of this chapter is to characterize all separable Lindenstrauss spaces
X with X∗ failing the σ(X∗, X)-FPP. We will begin our consideration by analyzing the
role played here by the space c.

Theorem 3.2 ([CMP2017], Theorem 3.2). If a separable Banach space X contains an
isometric copy of c, then X∗ fails the σ(X∗, X)-FPP.

The above theorem extends aforementioned result of Smyth, and its proof is based on
the following observation:

Proposition 3.3 ([CMP2017], Proposition 3.1). If a separable Banach space X contains
an isometric copy of c, then X contains a subspace Y isometric to c and 1-complemented
in X.

Indeed, if c ⊂ X, then by the above proposition there exists a subspace Y isometric
to c and a linear projection P : X → Y with ‖P‖ = 1. Then the adjoint operator
P ∗ : Y ∗ = c∗ → X∗ is a weak∗ continuous isometry from c∗ into X∗. Therefore, P ∗(S+)
is a convex, σ(X∗, X)-compact set which lacks the FPP.

Remark 2 ([CMP2017], Remark 3.3). C. Lennard ([74], see Examples 3.2-3.3, p. 41-43)
gave an example of convex, weak∗ compact set C ⊂ c∗ and a fixed point free contractive
mapping T : C → C (i.e. ‖T (x) − T (y)‖ < ‖x − y‖ for all x, y ∈ C, x 6= y). Therefore,
under the assumptions of the previous theorem, X∗ fails the σ(X∗, X)-FPP for contractive
mappings.



 LUKASZ PIASECKI 9

Remark 3 ([CMP2017], Remark 3.5). Let X be a separable Banach space. Suppose
that there exists a quotient X/Y isometric to c. Theorem 3.2 shows that Y ⊥ fails the
σ(Y ⊥, X/Y )-FPP and it follows easily that also X∗ fails the σ(X∗, X)-FPP.

Observe that considering a quotient is a significant weakening of the assumption in
Theorem 3.2. Indeed, in view of Proposition 3.3 every separable Banach space containing
an isometric copy of the space c has a quotient isometric to c. Moreover, the space X = `1
does not contain any copy of c but it has a quotient isometric to c.

Let us now return to the case of L1-preduals. As we have already mentioned, Lazar
and Lindenstrauss [52] proved that every separable L1-predual whose dual is nonseparable
contains a subspace isometric to C(∆), the space of continuous functions on the Cantor
set ∆ and equipped with the standard sup norm. Since C(∆) is a universal space for
separable Banach spaces, it follows that it contains an isometric copy of c. We therefore
obtain the following:

Corollary 3.4 ([CMP2017], Corollary 3.4). Let X be a separable Lindenstrauss space
such that X∗ is nonseparable. Then X∗ lacks the σ(X∗, X)-FPP.

It is known that if X is a Lindenstrauss space such that X∗ is separable, then X∗ = `1.
Therefore, the only case of interest to us is the class of `1-preduals, and in the context of
the above-discussed results the following questions seem to be natural:

Suppose that X is an `1-predual such that `1 fails the σ(`1, X)-FPP. Does X contain
an isometric copy of the space c? Does X have a quotient that contains an isometric copy
of the space c?

It turns out that the answer to the above questions is negative. The key result in this
matter is the following

Proposition 3.5 ([CMP2017], Proposition 2.1). Let f ∈ `1 = c∗ be such that ‖f‖ = 1
and |f(1)| ≥ 1

2
. Then the following statements are equivalent:

(1) Wf contains a subspace isometric to c.
(2) |f(1)| = 1

2
, the set {n ∈ N : f(1)f(n+ 1) > 0} is finite, and {n ∈ N : f(n+ 1) = 0}

is infinite.

Example 1 ([CMP2017], Example 2.4). Consider the hyperplane Wf , where

f =

(
1

2
,−1

4
,
1

8
,− 1

16
, . . .

)
∈ `1.

Then

• W ∗
f = `1 (see Theorem 2.3);

• Wf does not contain an isometric copy of c (see Proposition 3.5);
• `1 lacks the σ(`1,Wf )-FPP (see Proposition 3.1).

This hyperplane has yet another feature that is important in the context of the main
result of this chapter (Theorem 3.7). Namely,

• Wf does not have a quotient that contains an isometric copy of c.

The following example shows that to consider a quotient of X is a true extension of
Theorem 3.2, even in the restricted framework of `1-preduals.
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Example 2 ([CMP2017], Example 3.6). Consider the space Wf where

f =

(
−1

2
,
1

4
, 0,−1

8
, 0,

1

16
, 0, . . .

)
∈ `1.

Then:

• W ∗
f = `1 (see Theorem 2.3);

• Wf does not contain an isometric copy of c (see Proposition 3.5).

Nevertheless, there exists a quotient of Wf isometric to c. Indeed, consider the subspace

Y = {y ∈ Wf : y(2k) = 0 for all k ∈ N}
and the map T : c −→ Wf/Y defined by

T (x) =

(
7

3
x(0), x(1), x(0), x(2), x(0), . . .

)
+ Y

for every x ∈ c. One can show that T is an isometrically isomorphism.

The above examples suggest that the solution of our main problem is one of a very
delicate nature. Because the spacesWf whose duals fail the w∗-FPP will play an important
role in our considerations, we introduce the following:

Definition 1 ([CMP2017], Definition 2.3). We say that a space Wf is bad with respect
to w∗-FPP” (briefly bad) if f ∈ `1 is such that ‖f‖ = 1, |f(1)| = 1

2
and the set N+ =

{n ∈ N : f(1)f(n+ 1) ≤ 0} is infinite.

The next result is a more subtle version of Theorem 3.2:

Theorem 3.6 ([CMP2017], Theorem 3.7). Let X be a separable Banach space. If X
contains an isometric copy of bad Wf , then X∗ lacks the σ(X∗, X)-FPP.

Remark 4 ([CMP2017], Remark 3.8). Let X be a separable Banach space and suppose
that a bad Wf is a subspace of a quotient X/Y of X. By Theorem 3.6 Y ⊥ fails the
σ(Y ⊥, X/Y )-FPP. Consequently, X∗ lacks the σ(X∗, X)-FPP.

We will now characterize the `1-preduals X such that `1 fails the σ(`1, X)-FPP. This is
the main result in [CMP2017]. The proof of implication (1)⇒ (4) is crucial here because
it allows us to delete the restrictive assumption on the w∗-convergence of the standard
basis of `1 used in the paper by M. A. Japón-Pineda and S. Prus ([39], Theorem 8).

Theorem 3.7 ([CMP2017], Theorem 4.1). Let X be a predual of `1. Then the following
are equivalent:

(1) `1 lacks the σ(`1, X)-FPP for nonexpansive mappings.
(2) `1 lacks the σ(`1, X)-FPP for isometries.
(3) `1 lacks the σ(`1, X)-FPP for contractive mappings.
(4) There is a subsequence (e∗nk

)k∈N of the standard basis (e∗n)n∈N in `1 which is σ(`1, X)-
convergent to a norm-one element e∗ ∈ `1 with e∗(nk) ≥ 0 for all k ∈ N.

(5) There is a quotient of X isometric to a bad Wf .
(6) There is a quotient of X that contains a subspace isometric to a bad Wg.

Remark 5 ([CMP2017], Remark 4.2). Recall that bad Wf and Wg in statements (5) and
(6) of Theorem 3.7 cannot be replaced by c (see Example 1).

It is not known whether the lack of the σ(`1, X)-FPP implies that X contains an
isometric copy of a bad Wf .
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4. Polyhedrality in Lindenstrauss spaces

Considerations regarding the weak∗ fixed point property, in particular Proposition 3.5,
led us to a surprising discovery in the polyhedral theory.

Recall that a real Banach space X is called polyhedral if the closed unit ball of every
finite-dimensional subspace of X is a polytope (i.e. it has a finite number of extreme points
or, equivalently, it arises as the intersection of a finite number of closed half-spaces).
This definition was introduced by Klee [47] who extended the notion of convex finite-
dimensional polytope to the case of the closed unit ball BX of an infinite-dimensional
Banach space X. The space c0 is a classical example of a polyhedral Lindenstrauss
space (see [47], Proposition 4.7). Moreover, Lindenstrauss [57] proved that the dual of
every infinite-dimensional Banach space is not polyhedral. In particular, every infinite-
dimensional reflexive Banach space and the space `1 are not polyhedral. The space c is
an example of another space which is not polyhedral. An elementary proof of this fact
was given by Libor Veselý (see [38]).

We will give now an example of `1-predual whose closed unit ball has an extreme point
but this space does not contain an isometric copy of c. This example disproves a result
stated by Zippin in a paper [78] published in 1969. Let us remind the following

Fact 1. In Remark A of Section 4 of the paper [M. Zippin, On some subspaces of Banach
spaces whose duals are L1 spaces, Proc. Amer. Math. Soc. 23 (1969), 378-385 ] the
author stated that every separable Lindenstrauss space with an extreme point contains
an isometric (1-complemented) copy of c.

We will now give a necessary condition for the presence of an isometric copy of c in a
separable Banach space:

Theorem 4.1 ([CMPV2016], Theorem 2.1). Let X be a separable Banach space. If
X contains a subspace linearly isometric to c, then there exist x ∈ X and a sequence
(v∗n) ⊂ ext (BX∗) such that (v∗n) is w∗-convergent to v∗, v∗n(x) = v∗(x) = ‖v∗‖ = ‖x‖ = 1
and ‖v∗n ± v∗‖ = 2 for every n ∈ N.

Let us emphasize that the justification of Theorem 4.1 required using a completely
different technique than the one in the proof of Proposition 3.5. If X is a predual of `1,
we obtain the following

Corollary 4.2 ([CMPV2016], Corollary 2.2). Let X be a predual of `1. If X contains a
subspace isometric to c then there exist x ∈ BX and a subsequence (e∗nk

)k∈N of the standard
basis (e∗n)n∈N in `1 such that

(1) e∗nk

σ(`1,X)−→ e∗ and supp e∗nk
∩ supp e∗ = ∅ for every k ∈ N, where for x∗ ∈ `1 = X∗

we put supp x∗ := {i ∈ N : x∗(i) 6= 0},
(2) e∗nk

(x) = e∗(x) = 1 for every k ∈ N.

Example 3 ([CMPV2016], Section 3). Consider the following hyperplane in c:

W =

{
x = (x(1), x(2), . . . ) ∈ c : lim

i
x(i) =

∞∑
i=1

x(i)

2i

}
.

By Theorem 2.3, W ∗ = `1 and

e∗n
σ(`1,W )−→ e∗ =

(
1

2
,

1

22
,

1

23
, . . .

)
.

Therefore, by applying Corollary 4.2 (see also Proposition 3.5) we conclude that W does
not contain an isometric copy of c. But x = (1, 1, . . . , 1, . . . ) is an extremal point of BWf
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(because it is an extremal point of Bc). This shows that Zippin’s result is false (see Fact
1).

It was this unexpected discovery that led us to the completely unknown to us polyhedral
theory. It should be emphasized here that the main result in Zippin’s paper is correct and
states that every infinite-dimensional L1-predual contains an isometric copy of the space
c0. On the other hand, the result described in Fact 1 is only one of the final comments in
his work. The problem is that soon after, this result was used by others. Let’s start from
the beginning. In 1964, Lindenstrauss formulated the following

Theorem 4.3 (J. Lindenstrauss, [58]). Let X be a Banach space. Consider the following
properties.

(1) X∗ = L1(µ) and X is a polyhedral space.
(2) For any Banach spaces Y ⊂ Z and every compact operator T : Y → X there exists

a compact extension T̃ : Z → X with
∥∥∥T̃∥∥∥ = ‖T‖.

Then the following implication holds: (2)⇒ (1).

J. Lindenstrauss posed the question whether (1) ⇒ (2)? The answer was given a few
years later by A. J. Lazar [50]. He used for this purpose the geometric characterization
of this property based on the concept of w∗-closed face of the ball: recall that a closed
and convex subset F of BX is named a face, if (1 − λ)x + λy ∈ F with x, y ∈ BX and
λ ∈ (0, 1) imply x, y ∈ F . Moreover, we say that a face F is proper if F 6= BX .

Fact 2. In the paper [A. J. Lazar, Polyhedral Banach spaces and extensions of compact
operators, Israel J. Math. 7 (1969), 357-364.] Theorem 3 states that for every Linden-
strauss space X the following properties are equivalent:

(1) X is a polyhedral space;
(2) X does not contain an isometric copy of c;
(3) there are no infinite-dimensional w∗-closed proper faces of BX∗ ;
(4) for any Banach spaces Y ⊂ Z and every compact operator T : Y → X there exists

a compact extension T̃ : Z → X with
∥∥∥T̃∥∥∥ = ‖T‖.

The property of X described in (4) will be called the compact norm-preserving extension
property for compact operators. The proof of the above theorem ran as follows: (1) ⇒
(2)⇒ (3)⇒ (4)⇒ (1), and the result of Zippin mentioned earlier was used in the proof
of the implication (2)⇒ (3).

Remark 6 ([CMPV2016], Section 3). The set

S+ =

{
(x(1), x(2), . . . ) ∈ `1 :

∞∑
i=1

x(i) = 1, x(i) ≥ 0, i = 1, 2, . . .

}
is an infinite-dimensional, σ(`1,W )-compact proper face of B`1 . Therefore, the implication
(2)⇒ (3) is false.

Lazar’s result was then used by A. Gleit and R. McGuigan [26]:

Fact 3. In the paper [A. Gleit, R. McGuigan, A note on polyhedral Banach spaces, Proc.
Amer. Math. Soc. 33 (1972), 398-404.], Theorem 1.2 states that for every Lindenstrauss
space X the following properties are equivalent:

(1) x∗(x) < 1 for every x ∈ SX and x∗ ∈ (ext(BX∗))′ (property (GM));
(2) X is a polyhedral space;
(3) X does not contain an isometric copy of c.
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The proof of the above theorem was as follows: (1)⇒ (2)⇒ (3)⇒ (1), and the proof
of the implication (3) ⇒ (1) was based on the (false) implication (2) ⇒ (3) in Lazar’s
theorem.

Remark 7 ([CMPV2016], Section 3). The space W fails property (GM). Indeed, in view
of Theorem 2.3, for x = (1, 1, . . . , 1, . . . ) ∈ SW and x∗ = e∗ =

(
1
2
, 1
22
, 1
23
, . . .

)
∈ (ext(BW ∗))′

we have x∗(x) = 1. This shows that the implication (3)⇒ (1) is false.

Fact 4. In the paper [A. Gleit, R. McGuigan, A note on polyhedral Banach spaces, Proc.
Amer. Math. Soc. 33 (1972), 398-404.], Corollary 2.7 states that for every simplex space
A(K), i.e. the space of all affine continuous functions on a Choquet simplex K with the
supremum norm, the following properties are equivalent:

(1) there is no x∗ ∈ (ext(BX∗))′ with ‖x∗‖ = 1;
(2) X is a polyhedral space;
(3) X does not contain an isometric copy of c.

The proof of the above corollary ran as follows: (1)⇒ (2)⇒ (3)⇒ (1).

Remark 8 ([CMPV2016], Section 3). The space W is isometrically isomorphic to A(S+).
This proves that the implication (3)⇒ (1) is false.

Remark 9 ([CMPV2016], Section 3). The space W is a polyhedral space. To prove this
assertion, it is enough to check that W enjoys the following condition:

sup {x∗(x) : x∗ ∈ ext(BX∗) \D(x)} < 1

for every x ∈ SX , where D(x) = {x∗ ∈ SX∗ : x∗(x) = 1}. This condition was introduced
by B. Brosowski and F. Deutsch [15]. Afterwards, R. Durier and P. L. Papini proved that
it implies polyhedrality in the general case of Banach spaces ([21], Theorem 1).

By Remark 9 and Remark 7, the proof of the implication (3)⇒ (2) in Fact 3 is incorrect.
It turns out, however, that the implication is true. Let us start with the `1-preduals case:

Theorem 4.4 ([CMPV2016], Theorem 4.1). Let X be a predual of `1. The following
properties are equivalent:

(1) X is a polyhedral space;
(2) X does not contain an isometric copy of c;
(3) sup {x∗(x) : x∗ ∈ ext (BX∗) \D(x)} < 1 for every x ∈ SX (property (BD)).

Clearly, it is enough to prove that (2) ⇒ (3). The main tool in the proof of this
implication is a result of I. Gasparis ([25], Theorem 1.1).

In the general case of Lindenstrauss spaces, we have the following

Theorem 4.5 ([CMPV2016], Theorem 4.3). Let X be a Lindenstrauss space. The fol-
lowing properties are equivalent:

(1) X is a polyhedral space;
(2) X does not contain an isometric copy of c;
(3) X has the property (BD).

The proof of the above theorem is based on Theorem 4.4, the paper [77], and a series
of other known results that can be found in the book of Lacey [49].

Recall that the chain of implications in Lazar’s theorem (see Fact 2) was interrupted.
Therefore, the question posed by Lindenstrauss whether polyhedrality implies the compact
norm-preserving extension property for compact operators still remains open. The answer
is included in the following theorem:
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Theorem 4.6 ([CMPV2016], Theorem 5.1). Let X be a Banach space. Suppose that there
exists x ∈ SX such that D(x) is not norm-compact. Then there exist a separable Banach
space Z, a complemented subspace Y ⊂ Z, and a compact operator T : Y → X such that
T does not admit any compact extension T̃ : Z → X of the same norm.

Remark 10 ([CMPV2016], Section 5). For the space W and x = (1, 1, . . . , 1, . . . ) ∈ SW
we have D(x) = S+ (see Theorem 2.3). Therefore, by Theorem 4.6, W fails the compact
norm-preserving extension property for compact operators. By Remark 9 we conclude
that the implication (1) ⇒ (4) in Lazar’s theorem is false. It means that the answer to
the question posed by Lindenstrauss is negative.

The following result gives a necessary and sufficient condition for a Banach space to
have the compact norm-preserving extension property for compact operators.

Theorem 4.7 ([CMPV2016], Theorem 5.3). Let X be an infinite-dimensional Banach
space. The following properties are equivalent.

(1) X is a Lindenstrauss space such that each set D(x) (x ∈ SX) is finite-dimensional
(property ∆ in [24]).

(2) For any Banach spaces Y ⊂ Z, every compact operator T : Y → X admits a
compact norm-preserving extension T̃ : Z → X.

It turns out that unlike polyhedrality, the property (3) in Lazar’s theorem as well as the
property (GM) in Gleit and McGuigan’s theorem are equivalent to the compact norm-
preserving extension property for compact operators and it is a simple consequence of
another result of Lazar (Proposition 1 in [50]). We will return to this issue in Chapter 6.

Note. It is worth mentioning here that Professor Mordecay Zippin in [Correction to
“On some subspaces of Banach spaces whose duals are L1 spaces”, Proc. Amer. Math.
Soc. (2018) DOI: 10.1090/proc/14196] has recently presented two correct versions of that
Remark A and a short proof of his 1969 main result. The hyperplanes in c play the key
role in his considerations.

5. Stability of the weak∗ fixed point property in `1

In this chapter we will characterize all separable Lindenstrauss spaces X such that X∗

has the stable weak∗ fixed point property. In addition, for each of them we give the exact
value of the stability constant for the weak∗ fixed point property.

Generally speaking, the issue of stability of the fixed point property deals with the
following question: suppose that a Banach space X has the fixed point property; is this
property preserved for spaces with “small” Banach-Mazur distance from X? Recall that
the Banach-Mazur distance between isomorphic Banach spaces X and Y is defined by

d(X, Y ) = inf
{
‖φ‖

∥∥φ−1∥∥ : φ is an isomorphism from X onto Y
}
.

We will now quote some known results devoted to the stability of fixed point property.

• The spaces Lp(µ) have the stable fixed point property for p ∈ (1,∞). The first
result of this type comes from K. Goebel and W. A. Kirk [30] and it concerns the
fixed point property for uniformly lipschitzian mappings : recall that a mapping
T : C → C defined on a nonempty subset C of X is called uniformly k-lipschitzian
if

‖T nx− T ny‖ ≤ k ‖x− y‖
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holds for all x, y ∈ C and for all n ∈ N. The authors proved that if X is a uniformly
convex Banach space with the modulus of convexity δX , C is a nonempty bounded
closed and convex subset of X, and γ is the constant satisfying the equation

γ

(
1− δX

(
1

γ

))
= 1,

then for every k < γ, every uniformly k-lipschitzian mapping T : C → C has a
fixed point in C. Clearly, for every uniformly convex Banach space we have γ > 1,

and in the case of Hilbert spaces γ =
√
5
2

. Later this result has been improved
and generalized to the case of metric spaces by E. A. Lifshitz [53]. He proved
that in the case of a Hilbert space the thesis of the above theorem remains true
for the constant k <

√
2. It is not known whether this estimate is sharp. The

well-known example of J. B. Baillon [5] shows that it can not exceed π
2
. Observe

that if for some γ > 1 a Banach space X has the fixed point property for uniformly
k-lipschitzian mappings with k < γ, then Y has the FPP whenever d(X, Y ) < γ.

• If X is a Banach space such that d(X, `p) <
(

1 + 2
1

p−1

) p−1
p

for some 1 < p < ∞,

then X has the FPP (T. Domı̀nguez Benavides, [9]). In particular, if p = 2, then
we obtain estimate d(X, `2) <

√
3. This result has been improved by Pei-Kee Lin

[55]. He proved that if X is a Banach space isomorphic to a Hilbert space H such

that d(X,H) <
√

5+
√
13

2
, then X has the FPP. Subsequently, this estimate has

been slightly improved by E. Mazcuñán-Navarro [62]. The author showed that the
conclusion of the above theorem remains true under the assumption d(X,H) <√

5+
√
17

2
. However, the fundamental question about the existence of a reflexive

space not having the FPP is still open.
• If X is a Banach space such that d(X, c0) < 2 or d(X, c) < 2, then X has the
w-FPP (J. Borwein, B. Sims, [13]). It is not known if the above estimates are
sharp.
• If Y is a Banach space such that d(`1, Y ) < 2, then Y has the w∗-FPP (P. M.

Soardi, [76]). Moreover, the example of T. C. Lim [54] shows that this estimate is
exact.

Although in Soardi’s theorem mentioned above it is not clearly emphasized, the author
assumes that the space `1 as well as Y are endowed with the weak∗ topology generated
by c0. Since Y is not necessary a dual space, the above approach does not allow one to
consider a true w∗-FPP. In order to avoid this undesirable feature we decided to introduce
a different definition of stability for the w∗-FPP (see [CMPP2018], Definition 3.2): we
say that the dual space X∗ has the stable σ(X∗, X)-FPP if there exists γ > 1 such that
Y ∗ has the σ(Y ∗, Y )-FPP whenever d(X, Y ) < γ.

Recall that separable Lindenstrauss spaces whose duals enjoy the weak∗ fixed point
property have been characterized in Theorem 3.7. We will quote it here in a slightly
changed form that is more suitable in the context of polyhedral properties to which we
will come back in the next chapter:

Theorem 5.1 ([CMPP2018], Theorem 2.1). Let X be a separable Lindenstrauss space.
Then the following are equivalent:

(i) X∗ has the σ(X∗, X)-FPP.

(ii) There is no infinite set C ⊂ ext(BX∗) such that conv(C)
∗
⊂ SX∗.



16  LUKASZ PIASECKI

We know that if X is a separable Lindenstrauss space such that X∗ is nonseparable,
then X∗ fails the w∗-FPP. Therefore, the only case we are interested in are preduals of
`1. The main result in article [CMPP2018] is the following

Theorem 5.2 ([CMPP2018], Theorem 3.5). Let X be a predual of `1. Then the following
are equivalent:

(i) `1 has the stable σ(`1, X)-FPP.
(ii) (ext(B`1))

′ ⊂ rB`1 for some 0 ≤ r < 1.

It should be noted here that the proofs of Theorems 5.2 and 3.7 required using two
completely different techniques.

The main idea in the proof of the implication (i) ⇒ (ii) in Theorem 5.2 is modeling
the shape of the ball in a way such that, without an explicit formula for a norm, we are
able to conclude that some fixed point free mapping is nonexpansive. The main tools in
the proof of the implication (ii) ⇒ (i) are some techniques developed by Soardi in [76]
and the following

Lemma 5.3 ([CMPP2018], Lemma 3.3). Let X be a predual of `1.

(a) For every sequence {x∗n} ⊂ `1 coordinatewise converging to x∗0 and such that
limn→∞ ‖x∗n − x∗0‖ exists, we have

lim
m→∞

lim
n→∞

‖x∗n − x∗m‖ = 2 lim
n→∞

‖x∗n − x∗0‖ .

If, in addition, (ext(B`1))
′ ⊂ rB`1 for some 0 ≤ r < 1, then

(b) for every sequence {x∗n} ⊂ `1 that is σ(`1, X)-convergent to x∗ and coordinatewise
convergent to 0, we have

‖x∗‖ ≤ r lim inf
n→∞

‖x∗n‖ ;

(c) for every sequence {x∗n} ⊂ `1 that is σ(`1, X)-convergent to x∗, up to a subsequence
we have

lim
n→∞

‖x∗n − x∗‖ ≤
1 + r

2
lim
m→∞

lim
n→∞

‖x∗n − x∗m‖ .

We will now discuss the quantitative aspects of the stable weak∗ fixed point property.
For this purpose, for every Banach space X such that X∗ has the σ(X∗, X)-FPP, we
introduce the following stability constant:

γ∗(X) = sup {γ > 0 : d(X, Y ) ≤ γ ⇒ Y ∗ has the σ(Y ∗, Y )-FPP } .
As we will see in a moment, for a given predual X of `1 the value of the constant γ∗(X)

depends only on the radius r∗(X) of the smallest ball containing all σ(`1, X)-cluster points
of the set of extreme points of B`1 :

r∗(X) = inf
{
r > 0 : (ext(B`1))

′ ⊂ rB`1

}
.

The proof of the implication (ii) ⇒ (i) in Theorem 5.2 shows that if d(Y,X) < 2
1+r

,
then Y ∗ has the σ(Y ∗, Y )-FPP. Consequently,

γ∗(X) ≥ 2

1 + r∗(X)
.

Moreover, if r∗(X) = 1, then, using the implication (i)⇒ (ii) in Theorem 5.2, we obtain
γ∗(X) = 1. If r∗(X) = 0, then X is isometric to c0. Therefore, the example of T. C. Lim
[54] shows that in this case γ∗(X) = 2.
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As we did in the paper [CMPP2017] we will now change the notation for hyperplanes
in the space c. Namely, for every e∗ = (e∗(1), e∗(2), . . . ) ∈ B`1 we put

We∗ =

{
x = (x(1), x(2), . . . ) ∈ c : lim

i→∞
x(i) =

∞∑
i=1

e∗(i)x(i)

}
.

The set We∗ is a hyperplane in c,

We∗ = {x ∈ c : f(x) = 0} =

{
x ∈ c : f(1) lim

i→∞
x(i) +

∞∑
i=1

f(i+ 1)x(i) = 0

}
,

where

f =

(
− 1

1 + ‖e∗‖`1
,

e∗(1)

1 + ‖e∗‖`1
,

e∗(2)

1 + ‖e∗‖`1
, . . . ,

e∗(i)

1 + ‖e∗‖`1
, . . .

)
∈ S`1 .

By Theorem 2.3,

e∗n
σ(`1,We∗ )−→ e∗.

The main result in the paper [CMPP2017] are Propositions 5.4, 5.5, and 5.6 presented
below. Here ‖·‖∞ and |·|`1 denote the standard norm in c and `1, respectively.

Proposition 5.4 ([CMPP2017], Proposition 2.2). Let e∗ = (e∗(1), . . . , e∗(n), 0, 0, . . . ) ∈
`1 and rn := |e∗|`1 ∈ (0, 1). For all x ∈ We∗, define

‖x‖n =
(∥∥Rnx

+
∥∥
∞ ∨ rn

∥∥Rnx
−∥∥
∞ +

∥∥Rnx
−∥∥
∞ ∨ rn

∥∥Rnx
+
∥∥
∞

)
∨ (1 + rn) ‖Pnx‖∞ .

Then

(We∗ , ‖·‖n)∗ = (`1, |·|n),

where

|f |n = max

{
rn |Rnf

+|`1 + |Rnf
−|`1

1 + rn
,
|Rnf

+|`1 + rn |Rnf
−|`1

1 + rn

}
+
|Pnf |`1
1 + rn

,

and a duality map φ : (`1, |·|n)→ (We∗ , ‖·‖n)∗ is defined by:

(φ(f))(x) =
+∞∑
j=1

x(j)f(j),

where f = (f(1), f(2), . . . ) ∈ `1 and x = (x(1), x(2), . . . ) ∈ We∗.

Proposition 5.5 ([CMPP2017], Proposition 2.3). Let e∗ = (e∗(1), . . . , e∗(n), 0, 0, . . . ) ∈
`1 with rn := |e∗|`1 ∈ (0, 1). Then (We∗ , ‖·‖n)∗ = (`1, |·|n) lacks the w∗-FPP.

Proposition 5.6 ([CMPP2017], Proposition 2.4). If X is a predual of `1 with r∗(X) ∈
(0, 1), then γ∗(X) ≤ 2

1+r∗(X)
.

In the proof of the main result, the following technical lemma, resulting from the
Ostrovskiy̆’s paper [67], was also useful (it allowed us to shorten the proof of the main
result by omitting the explicit formulas for isomorphisms):

Lemma 5.7 ([CMPP2017], Lemma 2.1). Let {x∗n} ⊂ X∗ be a sequence norm convergent
to x∗. Then

lim
n→∞

d(kerx∗, kerx∗n) = 1.

Finally, taking into account Theorem 5.2 and Proposition 5.6 (in tandem with Propo-
sitions 5.4 and 5.5), we obtain the exact value of the constant γ∗(X):
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Theorem 5.8 ([CMPP2018], Theorem 3.5 oraz [CMPP2017], Proposition 2.4). Let X be
a predual of `1. If `1 has the σ(`1, X)-FPP, then

γ∗(X) =
2

1 + r∗(X)
.

It should be emphasized here that the technique used in the proof of the implication
(i)⇒ (ii) in Theorem 5.2 is completely different from the one presented in the proofs of
Propositions 5.4-5.6.

In the further part of the paper [CMPP2017] we consider stability of the weak∗ fixed
point property in the restricted framework of `1-preduals. Namely, for a predual X of `1
that has the σ(`1, X)-FPP, we are interested in the estimate of the following constant:

η∗(X) = sup {η > 0 : Y ∗ = `1, d(X, Y ) ≤ η ⇒ Y ∗ has the σ(`1, Y )-FPP} .
We obtained the exact value of the constant η∗(X) in the case when X = c0. Let

us notice first that η∗(c0) ≤ 3, which is an immediate consequence of the result of M.
Cambern [19] which states that d(c0, c) = 3. Since for every `1-predual X we have
γ∗(X) ≤ η∗(X), it follows that 2 ≤ η∗(c0) ≤ 3. It turns out that η∗(c0) = 3:

Theorem 5.9 ([CMPP2017], Theorem 3.7). Let X be a predual of `1 isomorphic to c0.
Suppose that X∗ fails the w∗-FPP. If T : X → c0 is an isomorphism with ‖T−1‖ = 1,
then ‖T‖ ≥ 3.

In the proof of the above result, we used Theorem 3.7, Proposition 3.5 and the following

Proposition 5.10 ([CMPP2017], Prop. 3.4). Let X be a Banach space containing an
isometric copy of c and let T : c0 → X be an onto linear operator with ‖T‖ = 1. If
T̃ : X/kerT → Y denotes a mapping defined by T = T̃ π, where π : X → X/kerT is the
quotient map, then ‖T̃−1‖ ≥ 3.

Furthermore, in the proof of Proposition 5.10 a key role was played by the result of D.
E. Alspach [1] and Y. Gordon ([37], Theorem 2.1).

There are many `1-preduals X such that `1 has the σ(`1, X)-FPP and d(X, c0) = 3. In
the example we will present here, we will use the following technical result:

Proposition 5.11 ([CMPP2017], Prop. 3.8). If α ∈ S`1, then d(c0,Wα) = 3.

Example 4. Let α =
(
−1

2
,−1

4
,−1

8
, . . .

)
∈ S`1 . Then the space Wα is an `1-predual and

d(c0,Wα) = 3 (Proposition 5.11). Moreover, `1 enjoys the σ(`1,Wα)-FPP (Proposition
3.1).

Analysis of the proof of Proposition 5.11 shows that d(Wα, c0) ≤ 1 + 2 |α|`1 for every
α ∈ B`1 . This inequality, Proposition 5.11 and Theorem 5.2 allow us to characterize the
stability constant γ∗(Wα) in terms of the Banach-Mazur distance d(Wα, c0):

Corollary 5.12 ([CMPP2017], Corollary 3.10). Let α ∈ B`1 be such that `1 has the
σ(`1,Wα)-FPP. Then γ∗(Wα) > 1 if and only if d(Wα, c0) < 3.

6. Geometric equivalences for polyhedral properties in the setting of
`1-preduals

After the publication of Klee’s work, polyhedrality was extensively studied and several
different definitions have been stated. In the framework of Lindenstrauss spaces X we
can distinguish the following:
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• (pol-i): (ext(BX∗))′ ⊂ {0} ([60]);
• (pol-ii): (ext(BX∗))′ ⊂ rBX∗ for some 0 < r < 1 ([24]);
• (pol-iii): (ext(BX∗))′ ⊂ int(BX∗) ([24]);

• (pol-iv): there is no infinite set C ⊂ ext(BX∗) such that conv(C)
∗
⊂ SX∗ (property

(pol-iii) in [CMPP2018]);
• (pol-v): there is no infinite-dimensional w∗-closed proper face of BX∗ ([50]);
• (pol-vi): x∗(x) < 1 whenever x ∈ SX and x∗ ∈ (ext(BX∗))′ ([26]);
• (pol-vii): ext(D(x)) is finite for each x ∈ SX (property (∆) in [24]);
• (pol-viii): sup {x∗(x) : x∗ ∈ ext(BX∗) \D(x)} < 1 for each x ∈ SX ([15]);
• (pol-K): the unit ball of every finite-dimensional subspace of X is a polytope ([47]).

In addition, we will consider the following properties of X and its dual X∗:

• w∗-NS: X∗ has the weak∗ normal structure (briefly, σ(X∗, X)-NS or w∗-NS) if
every convex, σ(X∗, X)-compact set C ⊂ X∗ with positive diameter contains a
point which is not diametral, that is, there exists x∗ ∈ C such that

sup {‖x∗ − y∗‖ : y∗ ∈ C} < diam(C) := sup {‖x∗ − y∗‖ : x∗, y∗ ∈ C}
(see [14] and [72]).
• w∗-KK: X∗ has the weak∗ Kadec-Klee property (briefly, σ(X∗, X)-KK or w∗-KK)

if for every sequence (x∗n) in SX∗ which is σ(X∗, X)-convergent to x∗ ∈ SX∗ , we
have lim

n→∞
‖x∗n − x∗‖ = 0.

• w∗-UKK: X∗ has the uniform weak∗ Kadec-Klee property (briefly, σ(X∗, X)-UKK
or w∗-UKK) provided that for every ε > 0 there exists δ > 0 such that if a sequence
(x∗n) in BX∗ is σ(X∗, X)-convergent to x∗ and

sep {x∗n} := inf {‖x∗n − x∗m‖ : n 6= m} > ε,

then ‖x∗‖ < 1− δ.
• w∗-GGLD: X∗ has the weak∗ Generalized Gossez-Lami Dozo property (briefly,
σ(X∗, X)-GGLD or w∗-GGLD) if

lim
n→∞

‖x∗n‖ < lim
n,m;n6=m

‖x∗n − x∗m‖

for every σ(X∗, X)-null sequence (x∗n) in X∗ such that both limits exist and
lim
n→∞

‖x∗n‖ 6= 0 (see [40] and [[10], Definition 3]).

• w∗-O: X∗ satisfies the weak∗ Opial property (briefly, σ(X∗, X)-O or w∗-O) if

lim inf
n→∞

‖x∗n‖ < lim inf
n→∞

‖x∗ + x∗n‖

for every σ(X∗, X)-null sequence (x∗n) in X∗ and every x∗ 6= 0 (see [66] and [72]).
• w∗-UO: X∗ has the uniform weak∗ Opial property (briefly, σ(X∗, X)-UO or w∗-

UO) if for every c > 0 there exists r > 0 such that

1 + r ≤ lim inf
n→∞

‖x∗ + x∗n‖

for each x∗ ∈ X∗ with ‖x∗‖ ≥ c and each σ(X∗, X)-null sequence (x∗n) in X∗ such
that lim inf

n→∞
‖x∗n‖ ≥ 1 (see [71] and [72]).

• F.N.E.P.: X has the finite-dimensional norm-preserving extension property for
bounded operators with a finite-dimensional range (briefly, F.N.E.P.) if for any
Banach spaces Y ⊂ Z and every bounded operator T : Y → X with dim(T (Y )) <

∞ there exists an extension T̃ : Z → X with
∥∥∥T̃∥∥∥ = ‖T‖ and dim(T̃ (Z)) < ∞

(see [58]).
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• C.N.E.P.: X has the compact norm-preserving extension property for compact
operators (briefly, C.N.E.P) if for any Banach spaces Y ⊂ Z and every compact

operator T : Y → X there exists a compact extension T̃ : Z → X with
∥∥∥T̃∥∥∥ = ‖T‖

(see [58]).

Let X be a predual of `1. The diagram below shows all the relations between different
polyhedral properties of X, C.N.E.P, F.N.E.P. as well as the w∗-NS, the w∗-FPP, the
w∗-GGLD, the w∗-KK, the stable w∗-FPP, the w∗-UKK, the w∗-O and the w∗-UO in the
dual space.

σ(`1, X)-O
KS

��

stable σ(`1, X)-FPP
KS

��

σ(`1, X)-GGLD
KS

��

σ(`1, X)-FPP
KS

��

C.N.E.P.KS

��

F.N.E.P.KS

��
(pol-i) +3 (pol-ii) +3 (pol-iii) +3 (pol-iv) +3 (pol-v) +3 (pol-viii)

σ(`1, X)-UO
��

KS

σ(`1, X)-UKK
��

KS

σ(`1, X)-KK
��

KS

σ(`1, X)-NS
��

KS

(pol-vi)
��

KS

(pol-K)
��

KS

X = c0

��

KS

(pol-vii)
��

KS

c * X
��

KS

The implications (X = c0) ⇒ σ(`1, X)-UO ⇒ σ(`1, X)-O ⇒ (pol-i) ⇒ (pol-ii) ⇒
(pol-iii)⇒ (pol-iv)⇒ (pol-v) and (pol-vi)⇒ (pol-vii) are easy to prove. The implication
(pol-i)⇒ (X = c0) follows from ([21], Proposition 2). The implication (pol-K)⇒ (c * X)
follows from the fact that c is not a polyhedral space. The equivalence F.N.E.P.⇔ (pol-K)
is proved in ([58], Proposition 2). The implication (pol-v)⇒ C.N.E.P. is proved in ([50],
Theorem 3). The implication (pol-viii) ⇒ (pol-K) holds for any Banach space (see [21],
Theorem 1). The implication (pol-v) ⇒ (pol-vi) follows from ([26], Theorem 1.2). The
implication C.N.E.P. ⇒ (pol-K) is proved in [58]. The implication σ(`1, X)-FPP ⇒
(pol-iv) follows from [39].

The implication (pol-iv) ⇒ σ(`1, X)-FPP holds by Theorem 3.7 (see also Theorem
5.1). The equivalence stable σ(`1, X)-FPP⇔ (pol-ii) holds by Theorem 5.2 and Theorem
5.8. The implications (c * X) ⇒ (pol-K) and (pol-K) ⇒ (pol-viii) hold by Theorem
4.4. The implication (C.N.E.P.) ⇒ (pol-vii) follows from Theorem 4.7. The implication
(pol-vii)⇒ (pol-v) follows easily from the following lemma.

Lemma 6.1 ([CMPP2018], Lemma 4.3). Let X be a Lindenstrauss space and let F be a
w∗-closed proper face of BX∗. Then there exists x ∈ SX such that F ⊂ D(x).

The equivalences σ(`1, X)-UKK⇔ (pol-ii), σ(`1, X)-NS⇔ (pol-iv) and σ(`1, X)-KK⇔
(pol-iii) ⇔ σ(`1, X)-GGLD hold by Propositions 6.2-6.3 and Theorem 6.4 presented be-
low.

Proposition 6.2 ([P2018], Proposition 2.1). Let X be a predual of `1. Then the following
are equivalent:

(1) `1 has the σ(`1, X)-UKK property.
(2) (ext(B`1))

′ ⊆ rB`1 for some 0 < r < 1.

Proposition 6.2 and Theorem 5.2 show that for the space `1 with predual X, the stable
σ(`1, X)-FPP is equivalent to the σ(`1, X)-UKK.
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Proposition 6.3 ([P2018], Proposition 2.2). Let X be a predual of `1. Then the following
are equivalent:

(1) `1 has the σ(`1, X)-NS.

(2) There is no infinite set C ⊂ ext(B`1) such that conv(C)
∗
⊂ S`1.

Proposition 6.3 and Theorem 3.7 (see also Theorem 5.1) show that for the space `1 with
predual X, the σ(`1, X)-FPP is equivalent to the σ(`1, X)-NS.

Theorem 6.4 ([P2018], Theorem 2.3). Let X be a predual of `1. Then the following are
equivalent:

(1) `1 has the σ(`1, X)-KK property.
(2) `1 has the σ(`1, X)-GGLD property.
(3) (ext(B`1))

′ ⊂ int(B`1).
(4) For every sequence (x∗n) in `1 that is σ(`1, X)-convergent to x∗ and coordinatewise

convergent to 0, and lim inf
n→∞

‖x∗n‖ > 0, we have

‖x∗‖ < lim inf
n→∞

‖x∗n‖ .

Theorem 6.4 will play an important role in the examples 9-10 discussed in Chapter 7.

We will end this chapter with examples showing that none of the one-way implications in
our diagram can be reversed. For this purpose, we will use the hyperplanes in c discussed
earlier: for α = (α(1), α(2), . . . ) ∈ B`1 let

Wα =

{
x = (x(1), x(2), . . . ) ∈ c : lim

i→∞
x(i) =

∞∑
i=1

α(i)x(i)

}
.

Example 5 ([CMPP2018], Example 4.7). Let α = (r/2, r/2, 0, 0, . . . ) ∈ `1 for 0 < r < 1.
Then (e∗n) is σ(`1,Wα)-convergent to α. This shows that [(pol-ii) ; (pol-i)].

Example 6 ([CMPP2018], Example 4.8). Let α = (−1/2,−1/4,−1/8, . . . ) ∈ `1. Then
Wα has property (pol-iv), but (e∗n) is σ(`1,Wα)-convergent to α ∈ S`1 . Therefore,
[(pol-iv) ; (pol-iii)].

Example 7 ([CMPP2018], Example 4.9). Let α = (1/2,−1/4, 1/8,−1/16, . . . ) ∈ `1.
Then Wα satisfies property (pol-v). However, by considering the set C = {e∗1, e∗3, e∗5, . . . },
it is easy to see that Wα fails property (pol-iv). Consequently, [(pol-v) ; (pol-iv)].

Example 8 ([CMPV2016], Section 3). Let α = (1/2, 1/4, 1/8, . . . ) ∈ `1. Then Wα has
property (pol-viii) but it lacks (pol-v). Therefore, [(pol-viii) ; (pol-v)].

Moreover, Examples 9 and 10 in Chapter 7 show that [(pol-iii) ; (pol-ii)].

7. On `1-preduals distant by 1

Recall that the dual X∗ of X fails the stable σ(X∗, X)-FPP if for every ε > 0 there
exists a Banach space Y such that Y ∗ lacks the σ(Y ∗, Y )-FPP and d(X, Y ) ≤ 1 + ε.
Clearly, the w∗-FPP is isometrically invariant, that is, if X∗ has the σ(X∗, X)-FPP, then
the same is true for any dual Banach space Y ∗ whenever Y is isometric to X. However, the
fact that d(X, Y ) = 1 does not mean that X and Y are isometric and the first example of
such spaces was given by Czes law Bessaga and Aleksander Pe lczyński in [68]. Therefore,
the following question arises:

Are there Banach spaces X and Y such that X∗ has the σ(X∗, X)-FPP, Y ∗ fails the
σ(Y ∗, Y )-FPP and d(X, Y ) = 1?
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In fact, this problem has initiated a new research path associated with a more subtle
approach to the general problem of lack of stability of geometric properties of Banach
spaces (see [P2018]). Namely, we will say that a given property P is not invariant under
the Banach-Mazur distance 1 if there exist two Banach spaces X and Y such that X enjoys
property P , Y fails this property and d(X, Y ) = 1. Moreover, we will say that a given
property P is invariant under the Banach-Mazur distance 1 if for each pair of Banach
spaces X and Y with d(X, Y ) = 1, X has property P if and only if Y has property P .

The main results of [P2018] concern the case of separable Lindenstrauss spaces. First, in
the framework of `1-preduals, we give some geometric equivalence for polyhedral properties
(see Propositions 6.2-6.3 and Theorem 6.4 in Chapter 6). Then, we show that, even in
the restricted setting of `1-preduals, most of the notions of polyhedral Banach spaces
(labelled (pol-iii)-(pol-viii) and (pol-K)) and their geometric equivalences (see the diagram
in Chapter 6) fail to be invariant under the Banach-Mazur distance 1 (see Examples 9-10).

In this context, the following will be useful

Lemma 7.1 (Lemma 3.1 in [P2018]). Let (Xn)n∈N be a sequence of Banach spaces that
are isomorphic to a given Banach space X and satisfy limn→∞ d(Xn, X) = 1. Let

Y =

(
∞∑
n=1

Xn

)
c0

and Z =

(
X ⊕

∞∑
n=2

Xn−1

)
c0

.

Then d(Y, Z) = 1. Moreover, the same conclusion holds if we replace the c0-direct sum by
the `p-direct sum with 1 ≤ p ≤ ∞.

Example 9 ([P2018], Example 3.2). Let x∗ = (1, 0, 0, . . . ) ∈ `1. We define the spaces X
and Y as a c0-direct sums of appropriate hyperplanes in the space c:

X =

(
∞∑
n=1

W n
n+1

x∗

)
c0

, Y =

(
Wx∗ ⊕

∞∑
n=2

Wn−1
n
x∗

)
c0

.

Then X∗ = (
∑∞

n=1 `1)`1 = `1, Y
∗ = (`1 ⊕

∑∞
n=2 `1)`1 = `1 and

(ext(BX∗))′ = {(0, 0, . . . )} ∪
∞⋃
n=1

±(0, . . . , 0︸ ︷︷ ︸
n−1

,
n

n+ 1
x∗, 0, 0, . . . )

 ⊂ int(B`1).

Therefore, by Theorem 3.7, `1 has the σ(`1, X)-FPP. However, we can say more. Namely,
Theorem 6.4 shows that `1 has the σ(`1, X)-KK property. Consequently, by using ([39],
Theorem 5), `1 enjoys the σ(`1, X)-FPP for mappings of asymptotically nonexpansive
type; recall that a mapping T : C → C is of asymptotically nonexpansive type if TN is
continuous for some N ∈ N and

lim sup
n→∞

(sup {‖T n(x)− T n(y)‖ − ‖x− y‖ : y ∈ C}) ≤ 0

for every x ∈ C. Clearly, every nonexpansive map is of asymptotically nonexpansive
type. On the other hand, Wx∗ is isometrically isomorphic to c and so Y fails the property
(pol-K). Moreover, by Theorem 3.7, `1 lacks the σ(`1, Y )-FPP for contractive mappings.

We will show now that d(X, Y ) = 1. For this purpose, for every n ∈ N we define the
mapping ψn : W n

n+1
x∗ → Wx∗ by

ψn (x(1), x(2), . . . ) =

(
n

n+ 1
x(1), x(2), x(3), . . .

)
.
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It is easy to check that every ψn is an isomorphism, limn→∞ ‖ψn‖ ‖ψ−1n ‖ = 1, and therefore
limn→∞ d(W n

n+1
x∗ ,Wx∗) = 1. Consequently, by Lemma 7.1, we get d(X, Y ) = 1.

Example 10 ([P2018], Example 3.3). Let x∗1 = (1, 0, 0, . . . ), x∗2 =
(
1
2
, 1
4
, 1
8
, . . .

)
, x∗3 =(

1
2
,−1

4
, 1
8
,− 1

16
, . . .

)
and x∗4 =

(
1
2
,−1

4
,−1

8
,− 1

16
, . . .

)
. For i = 1, 2, 3, 4 we define

Xi =

(
∞∑
n=1

W n
n+1

x∗i

)
c0

and X̃i =

(
Wx∗i
⊕
∞∑
n=2

Wn−1
n
x∗i

)
c0

.

Then X∗i = (
∑∞

n=1 `1)`1 = `1 and X̃i

∗
= (`1 ⊕

∑∞
n=2 `1)`1 = `1 for i = 1, 2, 3, 4. Next, for

every n ≥ 1 we define the mapping ψi,n : W n
n+1

x∗i
→ Wx∗i

by

ψ1,n (x(1), x(2), . . . ) =

(
n

n+ 1
x(1), x(2), x(3), . . .

)
and for i = 2, 3, 4

ψi,n (x(1), x(2), . . . ) =

(
x(1)− 2

n
lim
i→∞

x(i), x(2), x(3), . . .

)
.

Then every mapping ψi,n is an onto isomorphism, limn→∞ ‖ψi,n‖
∥∥ψ−1i,n∥∥ = 1, and therefore

limn→∞ d(W n
n+1

x∗i
,Wx∗i

) = 1. Consequently, by Lemma 7.1, d(Xi, X̃i) = 1. Furthermore,

for i = 1, 2, 3, 4 we have

(
ext(BX∗

i
)
)′

= {(0, 0, . . . )} ∪
∞⋃
n=1

±(0, . . . , 0︸ ︷︷ ︸
n−1

,
n

n+ 1
x∗i , 0, 0, . . . )

 ,

(
ext(B

X̃i
∗)
)′

= {(0, 0, . . . )} ∪ {± (x∗i , 0, 0, . . . )} ∪
∞⋃
n=2

±(0, . . . , 0︸ ︷︷ ︸
n−1

,
n− 1

n
x∗i , 0, 0, . . . )

 .

Let

Y1 =
(
X̃1 ⊕X2 ⊕X3 ⊕X4

)
∞
, Y2 =

(
X1 ⊕ X̃2 ⊕X3 ⊕X4

)
∞
,

Y3 =
(
X1 ⊕X2 ⊕ X̃3 ⊕X4

)
∞
, Y4 =

(
X1 ⊕X2 ⊕X3 ⊕ X̃4

)
∞
,

Y5 = (X1 ⊕X2 ⊕X3 ⊕X4)∞ .

It is easy to check that the following statements are true (see the diagram in Chapter
6):

• Y ∗i = `1 and d(Yi, Yj) = 1 for i, j = 1, 2, 3, 4, 5.
• Y1 fails the property (pol-K) because Wx∗1

is isometric to c.
• By Theorem 4.1 (see also Corollary 4.2), the space Y2 does not contain an isometric

copy of c. Therefore, Y2 has the property (pol-K). However, Y2 lacks the property
(pol-v).
• Y3 satisfies (pol-v) but it lacks (pol-iv).
• Y4 satisfies (pol-iv) but it lacks (pol-iii).
• Y5 satisfies (pol-iii).
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The second part of the article [P2018] is devoted to the general case of Banach spaces.
We indicate there some other geometric properties that are not invariant under the
Banach-Mazur distance 1 and play an important role in Mathematical Analysis, in par-
ticular Metric Fixed Point Theory. Among them are: uniform convexity in every di-
rection (UCED), locally uniform rotundity (LUR), smoothness, (weak∗) Opial property,
Kadec-Klee property, normal structure and the weak fixed point property for nonexpan-
sive mappings. On the other hand, uniform convexity, uniform smoothness, uniform
Opial property, and uniform Kadec-Klee property are invariant under the Banach-Mazur
distance 1.

Moreover, since uniform weak∗ Opial property and uniform weak∗ Kadec-Klee property
are invariant under the Banach-Mazur distance 1, therefore, in the restricted setting
of preduals of `1, the polyhedral properties (pol-i) and (pol-ii) are invariant under the
Banach-Mazur distance 1 (see the diagram in Chapter 6).

8. Discussion of other scientific and research achievements

My remaining scientific achievements are 11 papers and a book.
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8.1. The optimal retraction and minimal displacement problems. In 1912, L. E.
J. Brouwer [16] proved that every bounded, closed and convex set C in a finite-dimensional
Banach space X has the topological fixed point property i.e. every continuous mapping
T : C → C has a fixed point. It is well known that this result has an equivalent form
saying that the unit sphere SX in a finite-dimensional Banach space X is not a retract of
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the closed unit ball BX i.e. there is no continuous map R : BX → SX (a retraction) such
that Rx = x for all x ∈ SX . The most popular and useful result extending Brouwer’s
Fixed Point Theorem to the case of infinite-dimensional Banach spaces was formulated in
1930 by J. P. Schauder [73] and states that every convex, compact subset C of a Banach
space X has the topological fixed point property. Already at this very stage, a natural
question arises. What happens if C is noncompact? A full answer to this question came
in 1953 and 1955 V. Klee’s papers [45], [46]. Indeed, he proved that for every noncompact,
closed, and convex subset C of a Banach space X, there exists a continuous, fixed point
free mapping T : C → C. In view of Schauder’s and Klee’s results, we conclude that a
closed and convex set C in a Banach space X has the topological fixed point property if
and only if it is compact.

Another approach to this issue was initiated by Kazimierz Goebel in his work from 1973
[27], in which he gave examples of lipschitzian mappings T : C → C with the minimal
displacement

d(T ) = inf {‖x− Tx‖ : x ∈ C} > 0.

Further research led to the formulation of theorems much stronger than Klee’s result.
Indeed, in 1979, Nowak [65] proved that for a certain class of Banach spaces X the
sphere is a lipschitzian retract of the ball, that is, there exists a retraction R : BX → SX
satisfying with a certain constant k the following condition: ‖Rx−Ry‖ ≤ k ‖x− y‖ for
all x, y ∈ BX . Then, four years later, Benyamini and Sternfeld [7] proved that this is
true for any infinite dimensional Banach space X. The strongest result in this matter was
obtained in 1985 by Lin and Sternfeld [56]. Their result states that for every bounded,
closed, convex but noncompact set C in a Banach space X and for every k > 1, there
exists a k-lipschitzian mapping T : C → C (i.e. ‖Tx− Ty‖ ≤ k ‖x− y‖ for all x, y ∈ C)
with d(T ) > 0. In particular, this situation occurs in the special case of the closed unit ball
BX of any infinite-dimensional Banach space X i.e. there exists k-lipschitzian mapping
T : BX → BX with d(T ) > 0, and every such mapping can be applied to construct a
lipschitzian retraction R of BX onto SX (for more details see for e.g. [28]).

Current research in this area is focused on two basic problems: the optimal retraction
problem and the minimal displacement problem.

The optimal retraction problem deals with the following issue: for a given Banach space
X, find the exact value or a good estimate of the optimal retraction constant defined by

k0 (X) = inf {k : there exists k-lipschitzian retraction R of BX onto SX} .
At present, the exact value of k0(X) is not known for any single Banach space X. We

will now present the best of the currently known estimates.
We begin with the first basic estimate from below stating that k0(X) ≥ 3 for every

Banach space X (see [31]). However, for some particular spaces better estimates are
known. For example, K. Bolibok [12] proved that k0(`1) ≥ 4 and in [CP2017] it is shown
that for a Hilbert space H we have k0(H) > 4.58. Much more efforts were devoted to
give a reasonable estimate from above. In 2007, M. Annoni and E. Casini [4] proved
that k0(`1) ≤ 8; the previous estimate was k0(`1) < 9.43 (see [28]). Soon after, the same
estimate was obtained for the space L1(0, 1) by K. Goebel, G. Marino, L. Muglia and R.
Volpe [34]. Yet another simple construction showing that k0(L1(0, 1)) ≤ 8 is presented in
Example 9.17 in [P2013]. M. Baronti, E. Casini and C. Franchetti [8] proved that for a
Hilbert space H we have k0(H) ≤ 28.99; the previous estimates were: k0(H) ≤ 64.25 by
T. Komorowski and J. Wośko [48], and k0(H) ≤ 31.45 by K. Bolibok [12].

In my master’s thesis [69], written under the guidance of Professor Kazimierz Goebel,
I showed that for the spaces c0, c, C[0, 1] and BC(R), we have k0(X) ≤ 4(2 +

√
3) =

14.92 . . . ; the previous estimate for these spaces was k0(X) ≤ 4(1 +
√

2)2 = 23.31 . . . (see
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[28] and [34]). Moreover, in [69], I proved that k0(BCz(M)) ≤ 2(2+
√

2) = 6.828 . . . , where
(M,d) is a connected metric space consisting of more than one point, z ∈ M is a given
point, and BCz(M) denotes the space of all bounded, continuous functions f : M → R
vanishing at z, f(z) = 0, and equipped with the standard sup norm. (The previous
estimates for this space were, consecutively, k0(C0([0, 1])) ≤ 15.82 in [12], k0(BCz(M)) ≤
12 in [33] and k0(BCz(M)) ≤ 7 in [GP2008]). So far, the above estimates are the best
known. Moreover, the estimate k0(BCz(M)) ≤ 2(2 +

√
2) = 6.828 . . . is the minimum of

upper bounds over all the Banach spaces for which the upper bound is known. My master’s
thesis won the award of the Polish Mathematical Society Competition in honour of Józef
Marcinkiewicz (1910-1940) for the best student thesis on any branch of mathematics
(second prize). The results contained therein have been published in Topological Methods
in Nonlinear Analysis and Nonlinear Analysis (see [P2009] and [P2011]).

Very recently, it was proved that k0(l∞) ≤ 12+2
√

30 = 22.95 · · · , and a general estimate
for some subspaces of spaces of continuous functions was given (see [CP2017]).

The optimal retraction problem is closely related to another nontrivial problem posed
by Goebel in 1973. Suppose that C is a bounded, closed, convex and noncompact subset
of a Banach space X. The minimal displacement of a mapping T : C → C is the number

d(T ) = inf {‖x− Tx‖ : x ∈ C} .

Moreover, the function ϕC : [1,+∞)→ [0, diam(C)] defined by

ϕC(k) = sup {d(T ) : T : C → C, T is k-lipschitzian}

is called the characteristic of minimal displacement of C. In the special case, when
C = BX , we write ψX instead of ϕX .

It is known (see [31]) that for any C as above and for every k ≥ 1, ϕC(k) ≤
(
1− 1

k

)
r(C),

where r(C) denotes the Chebyshev radius of C, i.e. r(C) = infz∈C sup {‖z − y‖ : y ∈ C}.
A set C is called extremal if ϕC(k) =

(
1− 1

k

)
r(C) for every k ≥ 1. A space X is named

an extremal space if its unit ball BX is extremal.
The characteristic of minimal displacement can be considered not only for the whole

class of lipschitzian mappings but also for its various subclasses. Among them, the most
interesting are:

ψBX→SX
(k) = sup {d(T ) : T : BX → SX , T is k-lipschitzian}

and

ψSX→{0}(k) = sup {d(T ) : T : BX → BX , T is k-lipschitzian and T (SX) = {0}} .

The minimal displacement problem deals with finding or evaluating the functions men-
tioned above, for concrete sets or spaces. The exact values of these functions are only
known for extremal sets and spaces. Among them are: C[0, 1], C0[0, 1], c0, the positive
face S+ in `1 (see [28]).

In [69] (see also [P2011]), it is proved that the space c is also extremal.
In [GP2014], it is proved that for the space X = C0[0, 1] we have(

1− 1

k

)
min

{
k + 1

4
, 1

}
≤ ψSX→{0}(k) ≤

(
1− 1

k

)
min

{
k

2
, 1

}
.

In particular, ψSX→{0}(k) = 1− 1
k

for all k ≥ 3.

The space `1 is not extremal and we have ψX(k) < ϕ 1
2
S+(k) = 1 − 1

k
for every k > 1

(see [28]). A Hilbert space H is also not extremal but in this case for any set C ⊂ H
with r(C) = 1 we have ϕC(k) = ψH(k) for all k ≥ 1 (see [28]). In particular, Goebel [27]
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proved that

ψH(k) ≤
(

1− 1

k

)√
k

k + 1

and Casini [20] showed that

ψH(k) ≥ 1−
2
√√

2(k + 1)

k
.

Moreover, in 1973 Goebel [27] proved that

ψBH→SH
(k) ≤

(
1− 1

k

)3/2

. (8.1)

Very recently this estimate was improved in [CP2017], where the following upper bound
is given:

ψBH→SH
(k) ≤

(
1− 1

k

)3/2(
2k + 1

2

)√
k − 1

k3 + k −
√
k(3k + 1)

.

Recall that c0 is extremal. Therefore, it is straightforward to see that if X contains
almost isometric copies of c0, then for every ε > 0 there exists a bounded closed and
convex set C in X such that ϕC(k) > 1 − 1

k
− ε for all k > 1. A much more subtle

result can be found in [P2014], where it is proved that if a Banach space X contains an
asymptotically isometric copy of c0, then X contains a bounded closed and convex set C
with r(C) = 1 such that for every k ≥ 1 there exists a k-contractive mapping T : C → C
(i.e. ‖Tx− Ty‖ < k ‖x− y‖ for all x, y ∈ C, x 6= y) satisfying ‖Tx− x‖ > 1 − 1

k
for all

x ∈ C.

8.2. Classification of Lipschitz Mappings. In 2007, Kazimierz Goebel and Maria
Japón Pineda [29] introduced a class of mean nonexpansive mappings and proved some
fixed point theorems for them. Then, this definition was extended in [35]: let (M,ρ) be
a metric space and T : M → M , suppose that α = (α1, . . . , αn), where α1, . . . , αn ∈ R,

αi ≥ 0, α1 > 0, αn > 0 and
n∑
j=1

αj = 1; we say that T is an α-lipschitzian mapping for the

constant k if for each x, y ∈M
n∑
j=1

αjρ(T jx, T jy) ≤ kρ(x, y).

When the multi-index α and the constant k are not specified, we simply say that T is
mean lipschitzian. If k = 1, then we say that T is mean nonexpansive.

The above condition was in my area of interest. Since, at that time, Victor Pérez-Garćıa
held a post-doc position at Maria Curie-Sk lodowska University, I decided to invite him to
a joint project. Below I will briefly recall some main results of our fruitful collaboration.

The mean Lipschitz condition involves only a finite number of iterates. In spite of this,
it turned out that this condition has a serious influence not only on the behavior of the
sequence of Lipschitz constants for consecutive iterates T n of T but also on its asymptotic
behavior (see [PP2011], [PP2012], [PP2013] and [PP2016]).

In [PP2011], we gave a sharp evaluation of the Lipschitz constants for iterates of mean
lipschitzian mappings:

Theorem 8.1 (Theorem 2.1 in [PP2011]). Let (M,ρ) be a metric space, suppose that

α = (α1, . . . , αn) with α1 > 0, αi ≥ 0 and
n∑
j=1

αj = 1, n ≥ 1, and let T : M → M be
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an α-lipschitzian mapping with the constant k. Then k(Tm) ≤ bm, where the sequence
{bm}∞m=0 is defined as follows:

bm =


1 for m = 0,

k
m∑

j=1
αjb

−1
m−j

for m = 1, · · · , n,

k
n∑

i=1
αib

−1
m−i

for m = n+ 1, n+ 2, · · · .

In the same paper we proved that this bound is sharp ([PP2011], Example 2.2). We
used the mapping T : `1 → `1 defined for every x = (x1, x2, . . . ) ∈ `1 by

Tx =

(
b1
b0
x2,

b2
b1
x3, . . . ,

bj
bj−1

xj+1, . . .

)
. (♥)

We also proved similar results for the class of (α, p)-lipschitzian mappings with the
constant k, that is,

∑n
j=1 αjρ(T jx, T jy)p ≤ kpρ(x, y)p (see Theorem 2.3 in [PP2011]).

In [PP2012], we studied the asymptotic behavior of the sequence of Lipschitz constants
for iterates of mean nonexpansive mappings, that is, for k = 1. We defined dm = 1/bm to
obtain the relation:

dm =


1 for m = 0,
m∑
j=1

αjdm−j for m = 1, · · · , n,
n∑
i=1

αidm−i for m = n+ 1, n+ 2, · · · .

We proved one result concerning localization of roots of polynomials (Lemma 2.4. in
[PP2012]). We used this to show that the eigenvalues of a special matrix lie strictly inside
the complex unit disc. Using also a special property of the mapping T (see Lemma 2.1 in
[PP2012]), we finally obtained (see Theorem 2.5 in [PP2012])

lim
m→∞

dm =
1∑n

j=1

(∑n
i=j αi

)
and so

lim
m→∞

bm =
n∑
j=1

(
n∑
i=j

αi

)
.

Consequently, we obtained the following

Theorem 8.2 (Theorem 2.6 in [PP2012]). If T : M →M is (α, p)-nonexpansive, then

lim sup
m→∞

k(Tm) ≤
(

lim
m→∞

bm

) 1
p

=

(
n∑
j=1

(
n∑
i=j

αi

)) 1
p

.

Furthermore, we applied this result to obtain some new fixed point theorems for mean
nonexpansive mappings (see Theorem 3.4 and Corollaries 3.5-3.7 in [PP2012]). Perhaps
the most interesting is the following

Corollary 8.3 (Corollary 3.7 in [PP2012]). Let C be a nonempty, convex, closed and
bounded subset of a Hilbert space H and α = (α1, α2). Then C has the fixed point property
for all (α, 2)-nonexpansive mappings.
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Let T : M →M be a lipschitzian mapping. The formula

k∞(T ) = lim
m→∞

(k(Tm))1/m ,

defines the so-called spectral radius of T , which in the case of nonlinear mappings has the
following interpretation:

k∞(T ) = inf {kd(T ) : d is equivalent to the metric ρ} ,
where kd(T ) means the Lipschitz constant for T with respect to the metric d.

In [PP2013], given α = (α1, . . . , αn) as above and k > 0, we gave a sharp bound for
k∞(T ), where T is any α-lipschitzian mapping with the constant k.

Theorem 8.4 (Theorem 2.1 in [PP2013]). Let α = (α1, . . . , αn) be as our general as-
sumption, k > 0 and {bm}∞m=0 as defined in Theorem 8.1. Let g be the unique positive
solution of the equation

α1t+ α2t
2 + · · ·+ αnt

n = k,

then limm→∞ (bm)1/m = g.

It is worth mentioning that the main trick in the proof of the above theorem was to
define a new norm in `1, given for every x ∈ `1 by

‖x‖T =
(
α1 + α2g + · · ·+ αng

n−1) ‖x‖
+
(
α2 + α3g + · · ·+ αng

n−2) ‖Tx‖
+
(
α3 + α4g + · · ·+ αng

n−3) ‖T 2x‖+ . . .

+ αn‖T n−1x‖,

where T is the mapping given by (♥).
From Theorem 8.4 and Theorem 8.2 we obtained the following

Corollary 8.5. Let (M,ρ) be a metric space and T : M →M an α-lipschitzian mapping
with α = (α1, . . . , αn) and k > 0. Then

k∞(T ) ≤ g,

where g is a unique positive solution of the equation

α1t+ α2t
2 + · · ·+ αnt

n = k.

By following the tricks used in [PP2012], we can easily solve the following moving
average problem: find the limit of the sequence {dm}∞m=0, where d0, . . . , dn−1 are arbitrary
numbers and

dm = α1dm−1 + · · ·+ αndm−n for m ≥ n.

In [PP2016], we solved a more general problem for the so-called generalized moving aver-
ages (or Fibonacci type sequences) in the general case of Banach spaces:

Theorem 8.6 (Theorem 3.3 in [PP2016]). Let α = (α1, . . . , αn) be as before, k > 0, and
g be the unique positive solution of the equation

α1t+ α2t
2 + · · ·+ αnt

n = k.

Let x0, . . . , xn−1 be arbitrary elements of a Banach space X and xm be defined for m ≥ n
by

xm =
n∑
i=1

αi
k
xm−i.



30  LUKASZ PIASECKI

Then

lim
m→∞

gmxm =
1∑n

i=1

∑n
j=i αjg

j

n∑
i=1

(
n∑
j=i

αjg
j

)
gn−ixn−i.

In particular, if k = 1, then we obtain the classical moving averages and the solution
of the problem mentioned before:

lim
m→∞

xm =
1∑n

i=1

∑n
j=i αj

n∑
i=1

(
n∑
j=i

αj

)
xn−i.

In [PPS2017], by applying the techniques developed in [PP2012], [PP2013] and [PP2016],
we gave a new algorithm which is useful to find the unique positive root of a certain class
of polynomials.

Many results presented above constituted an important part of my PhD thesis [70],
written under the guidance of Professor Kazimierz Goebel. Its extended version has
been published in 2013 as a book “Classification of Lipschitz Mappings” CRC Press (see
[P2013]).
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