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Abstract of the doctoral thesis
Properties of asymmetric truncated Toeplitz operators

Let D denote the unit disc, and let T denote the unit circle. By L? := L*(T, %)
we will be denote the space of all Lebesgue measurable functions f : T — C such
that
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H? is the usual Hardy space, the subspace of L? of normalized Lebesgue measure on
T whose negative indexed Fourier coefficients are all zero. H? will interchangably
refer to both the boundary functions and the functions on ID. Let P denote the
projection from L? to H2 Let S denote the shift operator f — zf on H?. Its
adjoint (the backwards shift) is the operator
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A Toeplitz operator is the compression of a multiplication operator on L? to H?2.
In other words, given ¢ € L? (called the symbol of the operator),

Tsof = P(¢f)

is the operator that sends f to P(¢f) for all f € H?. This operator is bounded if
and only if ¢ € L™ (the space of all essentially bounded measurable functions on
T).

Chapter 1 of this dissertation has an introductory character. Moreover, we present
basic properties of Hardy spaces and Toeplitz operators. In [2] A. Brown and P. R.
Halmos describe the algebraic properties of Toeplitz operators. Among other things,
they found necessary and sufficient conditions for a bounded operator on H? be a
Toeplitz operator, namely a bounded operator T : H? — H? is a Toeplitz operator
if and only if S*T'S =T.

Let H* be the algebra of bounded analytic functions on D and let « € H* be an
arbitrary inner function, that is, |o| = 1 a.e. on T. By the theorem of A. Beurling
(see, for example, [10, Thm. 17.21]), every nontrivial, closed S-invariant subspace
of H? can be expressed as aH? for some inner function o. Consequently, every
nontrivial, closed S*-invariant subspace of H? is of the form

K, = H?oc aH?

with o inner. The space K, is called the model space corresponding to a.

In Chapter 2 we deal with the so-called truncated Toeplitz operators. Let P,
denote the orthogonal projection of L? onto K,. Truncated Toeplitz operators are
operators AgZ, ¢ € L?, densly defined on the model spaces K,, by the formula

ASf = Pulf).
The operator A can be seen as a compression to K, of the classical Toeplitz operator

T,.
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The study of truncated Toeplitz operators as a class began in 2007 with D. Sara-
son’s paper [11]. In spite of similar definitions (for example, (A3)* = AZ), there
are many differences between truncated Toeplitz operators and the classical ones.
One of the first results from [11] states that, unlike in the classical case, a truncated
Toeplitz operator is not uniquely determined by its symbol. More precisely, A7 = 0

if and only if ¢ € aH? + aH? ([11, Thm. 3.1]). Moreover, unlike in the classical
case, unbounded symbols can produce bounded truncated Toeplitz operators and
there are bounded truncated Toeplitz operators for which no bounded symbol exists
(see [1]).

The compression of S to K, will be denoted by S,. Its adjoint, S%, is the restric-
tion of S* to K,. The operators S, and S}, are the truncated Toeplitz operators with
symbols z and Z, respectively. The bounded operator A : K, — K, is a truncated
Toeplitz operator if and only if there are functions y, ¥ € K, such that

A-S:AS, =@k + kS ® X,

where Eg“(z) = %)—;0‘—(0) ( ® is rank one operator on Hilbert space, f®g(h) = (h, g) f,
for f, g and h from this space) (see [11, 4.1]). More background about model spaces
and truncated Toeplitz operators can be found in Chapter 2.

If « has distinct zeros {aq,...,an,} and
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then the set Ry, = {k§,..., kS } as well as R = {Egl,...,%gm} is a (non-
orthonormal) basis for K,. In 2008 [6] J.A. Cima, W.T. Ross and W.R. Wogen
considered truncated Toeplitz operators on finite-dimensional model spaces. The
authors in [6] characterized truncated Toeplitz operators in terms of the matrix
representations with respect to each of these bases. They showed that a matrix rep-
resenting a truncated Toeplitz operator on m-dimensional model space is completely
determined by 2m — 1 of its entries, those along the main diagonal and the first row
(and the first row can be replaced by any other row or column). They also proved
a similar result for the so-called Clark bases. Matrix representations of truncated
Toeplitz operators on infinite-dimensional model spaces were considered in [9)].

Recently, the authors in |3, 4, 5] introduced a generalization of truncated Toeplitz
operators, the so-called asymmetric truncated Toeplitz operators. Let «, 5 be two
inner functions and let ¢ € L?. An asymmetric truncated Toeplitz operator Ag’ﬁ is
the operator from K, into Kz given by

ASPf = Ps(of), [ € Ka
The operator Ag’ﬁ is densely defined. Clearly, AZ* = AZ. Let
T (a,8) ={A%° : ¢ € L*(0D) and A% is bounded}
and J (o) = I (a,q).

Chapter 3 describes properties of so-called asymmetric truncated Toeplitz oper-
ators. We describe when an operator from 7 (a, 8) is equal to the zero operator.
The description is given in terms of the symbol of the operator. This was done in
[3] and [4] for the case when 5 divides «, that is, when a/f is an inner function. It

a(z) — a(w)
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was proved in [3] and [4] that A%? = 0 if and only if ¢ € aH?+ BH?. Here we show
that this is true for all inner functions a and /.

We note that if « is a finite Blaschke product of degree m, then K, has dimension
m. By elementary linear algebra, the complex vector space of all linear transforma-
tions on K, has dimension m?. D. Sarason |11, Thm. 3.1] proved that if o is a finite
Blaschke product of degree m > 0, then the dimension of Z () is 2m — 1. We show
that if o and /8 are finite Blachke products of degree m > 0 and n > 0, respectively,
then the dimension of .7 (a, 5) is m+mn—1. We also give some examples of rank-one
asymmetric truncated Toeplitz operators.

In chapter 4 we generalize the results from [6] concerning matrix representations.
We characterize matrix representations of asymmetric truncated Toeplitz operators
acting between finite-dimensional model spaces. We prove theorem

Theorem. Let the function a be a finite Blaschke product with m distinct zeros
ai,...,am, let B be a finite Blaschke product with n distinct zeros by, ..., b, and
assume that o and B have precisely | zeros in common: a; = b; for i <1 (1 =0
if there are no zeros in common). Let A be any linear transformation from K,
mto Kg. If Mg = (rs,) is the matriz representation of A with respect to the bases

={ke,..., k& } and RE = {k,....k} }, and
(a) [ =0, then A € T (a,B) if and only if
(1) A = B'(b)(@ —b $)Ts1+ B B/(br) (b1 — 6612 1,1
' B'(bs) (@, — bs)
foralll<p<mandl <s<n;
(b) I >0, then A € I («, ) if and only if
@) oy = PON@ ~Ee)r10 + P By
| B'(bs)(@p — bs)
for all p,s such that 1 <p<m,1<s<I, s#p, and
) o, = P@)(@ = braa + Bl @ = Bi)ry
’ B'(bs) (@, — bs)

forall p,s such that 1 <p<m,l<s<n.

B'(by)(@, — 51)7’1,17

We also consider matrix representations with respect to bases: ﬁf‘n and 7%5, Clark
bases V2 and V2, modified Clark bases £2 and £°, R® and ﬁﬁ 7%“ and RP, Clark
base V2 and R?, Clark base V¢ and Rﬁ Ra and Clark base V/3 and base R, and
Clark base V7.

We also characterize matrix representations of asymmetric truncated Toeplitz
operators acting between infinite-dimensional model spaces.
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