Let \mathbb{D} denote the unit disc, and let \mathbb{T} denote the unit circle. By $L^{2}:=L^{2}\left(\mathbb{T}, \frac{d \theta}{2 \pi}\right)$ we will be denote the space of all Lebesgue measurable functions $f: \mathbb{T} \rightarrow \mathbb{C}$ such that

$$
\|f\|_{L^{2}}=\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(e^{i \theta}\right)\right|^{2} d \theta\right)^{\frac{1}{2}}<\infty
$$

H^{2} is the usual Hardy space, the subspace of L^{2} of normalized Lebesgue measure on \mathbb{T} whose negative indexed Fourier coefficients are all zero. H^{2} will interchangably refer to both the boundary functions and the functions on \mathbb{D}. Let P denote the projection from L^{2} to H^{2}. Let S denote the shift operator $f \mapsto z f$ on H^{2}. Its adjoint (the backwards shift) is the operator

$$
\left(S^{*} f\right)(z)=\frac{f(z)-f(0)}{z}
$$

A Toeplitz operator is the compression of a multiplication operator on L^{2} to H^{2}. In other words, given $\varphi \in L^{2}$ (called the symbol of the operator),

$$
T_{\varphi} f=P(\varphi f)
$$

is the operator that sends f to $P(\varphi f)$ for all $f \in H^{2}$. This operator is bounded if and only if $\varphi \in L^{\infty}$ (the space of all essentially bounded measurable functions on \mathbb{T}).

Chapter 1 of this dissertation has an introductory character. Moreover, we present basic properties of Hardy spaces and Toeplitz operators. In [2] A. Brown and P. R. Halmos describe the algebraic properties of Toeplitz operators. Among other things, they found necessary and sufficient conditions for a bounded operator on H^{2} be a Toeplitz operator, namely a bounded operator $T: H^{2} \rightarrow H^{2}$ is a Toeplitz operator if and only if $S^{*} T S=T$.

Let H^{∞} be the algebra of bounded analytic functions on \mathbb{D} and let $\alpha \in H^{\infty}$ be an arbitrary inner function, that is, $|\alpha|=1$ a.e. on \mathbb{T}. By the theorem of A. Beurling (see, for example, [10, Thm. 17.21]), every nontrivial, closed S-invariant subspace of H^{2} can be expressed as αH^{2} for some inner function α. Consequently, every nontrivial, closed S^{*}-invariant subspace of H^{2} is of the form

$$
K_{\alpha}=H^{2} \ominus \alpha H^{2}
$$

with α inner. The space K_{α} is called the model space corresponding to α.
In Chapter 2 we deal with the so-called truncated Toeplitz operators. Let P_{α} denote the orthogonal projection of L^{2} onto K_{α}. Truncated Toeplitz operators are operators $A_{\varphi}^{\alpha}, \varphi \in L^{2}$, densly defined on the model spaces K_{α}, by the formula

$$
A_{\varphi}^{\alpha} f=P_{\alpha}(\varphi f)
$$

The operator A_{φ}^{α} can be seen as a compression to K_{α} of the classical Toeplitz operator T_{φ}.

The study of truncated Toeplitz operators as a class began in 2007 with D. Sarason's paper [11]. In spite of similar definitions (for example, $\left(A_{\varphi}^{\alpha}\right)^{*}=A_{\varphi}^{\alpha}$), there are many differences between truncated Toeplitz operators and the classical ones. One of the first results from [11] states that, unlike in the classical case, a truncated Toeplitz operator is not uniquely determined by its symbol. More precisely, $A_{\varphi}^{\alpha}=0$ if and only if $\varphi \in \overline{\alpha H^{2}}+\alpha H^{2}$ ([11, Thm. 3.1]). Moreover, unlike in the classical case, unbounded symbols can produce bounded truncated Toeplitz operators and there are bounded truncated Toeplitz operators for which no bounded symbol exists (see [1]).

The compression of S to K_{α} will be denoted by S_{α}. Its adjoint, S_{α}^{*}, is the restriction of S^{*} to K_{α}. The operators S_{α} and S_{α}^{*} are the truncated Toeplitz operators with symbols z and \bar{z}, respectively. The bounded operator $A: K_{\alpha} \rightarrow K_{\alpha}$ is a truncated Toeplitz operator if and only if there are functions $\chi, \psi \in K_{\alpha}$ such that

$$
A-S_{\alpha}^{*} A S_{\alpha}=\psi \otimes \widetilde{k}_{0}^{\alpha}+\widetilde{k}_{0}^{\alpha} \otimes \chi
$$

where $\widetilde{k}_{0}^{\alpha}(z)=\frac{\alpha(z)-\alpha(0)}{z}(\otimes$ is rank one operator on Hilbert space, $f \otimes g(h)=\langle h, g\rangle f$, for f, g and h from this space) (see [11, 4.1]). More background about model spaces and truncated Toeplitz operators can be found in Chapter 2.

If α has distinct zeros $\left\{a_{1}, \ldots, a_{m}\right\}$ and

$$
k_{w}^{\alpha}(z)=\frac{1-\overline{\alpha(w)} \alpha(z)}{1-\bar{w} z}, \quad \widetilde{k}_{w}^{\alpha}(z)=\frac{\alpha(z)-\alpha(w)}{z-w}, w \in \mathbb{D}
$$

then the set $\mathcal{R}_{m}^{\alpha}=\left\{k_{a_{1}}^{\alpha}, \ldots, k_{a_{m}}^{\alpha}\right\}$ as well as $\widetilde{\mathcal{R}}_{m}^{\alpha}=\left\{\widetilde{k}_{a_{1}}^{\alpha}, \ldots, \widetilde{k}_{a_{m}}^{\alpha}\right\}$ is a (nonorthonormal) basis for K_{α}. In 2008 [6] J.A. Cima, W.T. Ross and W.R. Wogen considered truncated Toeplitz operators on finite-dimensional model spaces. The authors in [6] characterized truncated Toeplitz operators in terms of the matrix representations with respect to each of these bases. They showed that a matrix representing a truncated Toeplitz operator on m-dimensional model space is completely determined by $2 m-1$ of its entries, those along the main diagonal and the first row (and the first row can be replaced by any other row or column). They also proved a similar result for the so-called Clark bases. Matrix representations of truncated Toeplitz operators on infinite-dimensional model spaces were considered in [9].

Recently, the authors in $[3,4,5]$ introduced a generalization of truncated Toeplitz operators, the so-called asymmetric truncated Toeplitz operators. Let α, β be two inner functions and let $\varphi \in L^{2}$. An asymmetric truncated Toeplitz operator $A_{\varphi}^{\alpha, \beta}$ is the operator from K_{α} into K_{β} given by

$$
A_{\varphi}^{\alpha, \beta} f=P_{\beta}(\varphi f), \quad f \in K_{\alpha} .
$$

The operator $A_{\varphi}^{\alpha, \beta}$ is densely defined. Clearly, $A_{\varphi}^{\alpha, \alpha}=A_{\varphi}^{\alpha}$. Let

$$
\mathscr{T}(\alpha, \beta)=\left\{A_{\varphi}^{\alpha, \beta}: \varphi \in L^{2}(\partial \mathbb{D}) \text { and } A_{\varphi}^{\alpha, \beta} \text { is bounded }\right\}
$$

and $\mathscr{T}(\alpha)=\mathscr{T}(\alpha, \alpha)$.
Chapter 3 describes properties of so-called asymmetric truncated Toeplitz operators. We describe when an operator from $\mathcal{T}(\alpha, \beta)$ is equal to the zero operator. The description is given in terms of the symbol of the operator. This was done in [3] and [4] for the case when β divides α, that is, when α / β is an inner function. It
was proved in [3] and [4] that $A_{\varphi}^{\alpha, \beta}=0$ if and only if $\varphi \in \overline{\alpha H^{2}}+\beta H^{2}$. Here we show that this is true for all inner functions α and β.
We note that if α is a finite Blaschke product of degree m, then K_{α} has dimension m. By elementary linear algebra, the complex vector space of all linear transformations on K_{α} has dimension m^{2}. D. Sarason [11, Thm. 3.1] proved that if α is a finite Blaschke product of degree $m>0$, then the dimension of $\mathscr{T}(\alpha)$ is $2 m-1$. We show that if α and β are finite Blachke products of degree $m>0$ and $n>0$, respectively, then the dimension of $\mathscr{T}(\alpha, \beta)$ is $m+n-1$. We also give some examples of rank-one asymmetric truncated Toeplitz operators.

In chapter 4 we generalize the results from [6] concerning matrix representations. We characterize matrix representations of asymmetric truncated Toeplitz operators acting between finite-dimensional model spaces. We prove theorem
Theorem. Let the function α be a finite Blaschke product with m distinct zeros a_{1}, \ldots, a_{m}, let β be a finite Blaschke product with n distinct zeros b_{1}, \ldots, b_{n} and assume that α and β have precisely l zeros in common: $a_{i}=b_{i}$ for $i \leq l(l=0$ if there are no zeros in common). Let A be any linear transformation from K_{α} into K_{β}. If $M_{A}=\left(r_{s, p}\right)$ is the matrix representation of A with respect to the bases $\mathcal{R}_{m}^{\alpha}=\left\{k_{a_{1}}^{\alpha}, \ldots, k_{a_{m}}^{\alpha}\right\}$ and $\mathcal{R}_{n}^{\beta}=\left\{k_{b_{1}}^{\beta}, \ldots, k_{b_{n}}^{\beta}\right\}$, and
(a) $l=0$, then $A \in \mathscr{T}(\alpha, \beta)$ if and only if

$$
\begin{equation*}
r_{s, p}=\frac{\overline{\beta^{\prime}\left(b_{s}\right)}\left(\bar{a}_{1}-\bar{b}_{s}\right) r_{s, 1}+\overline{\beta^{\prime}\left(b_{1}\right)}\left(\bar{b}_{1}-\bar{a}_{1}\right) r_{1,1}+\overline{\beta^{\prime}\left(b_{1}\right)}\left(\bar{a}_{p}-\bar{b}_{1}\right) r_{1, p}}{\overline{\beta^{\prime}\left(b_{s}\right)}\left(\bar{a}_{p}-\bar{b}_{s}\right)} \tag{1}
\end{equation*}
$$

for all $1 \leq p \leq m$ and $1 \leq s \leq n$;
(b) $l>0$, then $A \in \mathscr{T}(\alpha, \beta)$ if and only if

$$
\begin{equation*}
r_{s, p}=\frac{\overline{\beta^{\prime}\left(b_{1}\right)}\left(\bar{a}_{1}-\bar{b}_{s}\right) r_{1, s}+\overline{\beta^{\prime}\left(b_{1}\right)}\left(\bar{a}_{p}-\bar{b}_{1}\right) r_{1, p}}{\overline{\beta^{\prime}\left(b_{s}\right)}\left(\bar{a}_{p}-\bar{b}_{s}\right)} \tag{2}
\end{equation*}
$$

for all p, s such that $1 \leq p \leq m, 1 \leq s \leq l, s \neq p$, and

$$
\begin{equation*}
r_{s, p}=\frac{\overline{\beta^{\prime}\left(b_{s}\right)}\left(\bar{a}_{1}-\bar{b}_{s}\right) r_{s, 1}+\overline{\beta^{\prime}\left(b_{1}\right)}\left(\bar{a}_{p}-\bar{b}_{1}\right) r_{1, p}}{\overline{\beta^{\prime}\left(b_{s}\right)}\left(\bar{a}_{p}-\bar{b}_{s}\right)} \tag{3}
\end{equation*}
$$

for all p, s such that $1 \leq p \leq m, l<s \leq n$.
We also consider matrix representations with respect to bases: $\widetilde{\mathcal{R}}_{m}^{\alpha}$ and $\widetilde{\mathcal{R}}_{n}^{\beta}$, Clark bases \mathcal{V}_{m}^{α} and \mathcal{V}_{n}^{β}, modified Clark bases \mathcal{E}_{m}^{α} and $\mathcal{E}_{n}^{\beta}, \mathcal{R}_{m}^{\alpha}$ and $\widetilde{\mathcal{R}}_{n}^{\beta}, \widetilde{\mathcal{R}}_{m}^{\alpha}$ and \mathcal{R}_{n}^{β}, Clark base \mathcal{V}_{m}^{α} and \mathcal{R}_{n}^{β}, Clark base \mathcal{V}_{m}^{α} and $\widetilde{\mathcal{R}}_{n}^{\beta}, \widetilde{\mathcal{R}}_{m}^{\alpha}$ and Clark base \mathcal{V}_{n}^{β}, and base \mathcal{R}_{m}^{α} and Clark base \mathcal{V}_{n}^{β}.

We also characterize matrix representations of asymmetric truncated Toeplitz operators acting between infinite-dimensional model spaces.

References

[1] A. Baranov, I. Chalendar, E. Fricain, J. E. Mashreghi and D. Timotin, Bounded symbols and reproducing kernel thesis for truncated Toeplitz operators, J. Funct. Anal. 259 (2010), no. 10, 2673-2701.
[2] A. Brown, P. R. Halmos, Algebraic properties of Toeplitz operators, J. Reine Angew. Math. 213 (1963/1964), 89-102.
[3] C. Câmara, K. Kliś-Garlicka, J. Jurasik, M. Ptak, Characterizations of asymmetric truncated Toeplitz operators, Banach J. Math. Anal. 11 (2017), no. 4, 899âĂŞ922.
[4] M. C. Câmara, J. R. Partington, Asymmetric truncated Toeplitz operators and Toeplitz operators with matrix symbol, J. Oper. Theory 77 (2017), no. 2, 455-479.
[5] M. C. Câmara, J. R. Partington, Spectral properties of truncated Toeplitz operators by eqvivalence after extension, J. Math. Anal. Appl. 433 (2016), no. 2, 762-784.
[6] J. A. Cima, W. T. Ross, W. R. Wogen, Truncated Toeplitz operators on finite dimensional spaces, Oper. Matrices 2 (2008), no. 3, 357-369.
[7] J. Jurasik, B. Łanucha, Asymmetric truncated Toeplitz operators equal to the zero operator, Ann. Univ. Mariae Curie-SkAĆodowska Sect. A 70 (2016), no. 2, 51-62.
[8] J. Jurasik, B. Łanucha, Asymmetric truncated Toeplitz operators on finite-dimensional spaces, Oper. Matrices 11 (2017), no. 1, 245-262.
[9] B. ÅĄanucha, Matrix representations of truncated Toeplitz operators, J. Math. Anal. Appl. 413 (2014), 430-437.
[10] W. Rudin, Analiza Rzeczywista i Zespolona, PWN, Warszawa 1998.
[11] D. Sarason, Algebraic properties of truncated Toeplitz operators, Operators and Matrices 1 (2007), no. 4, 491-526.

$$
\begin{aligned}
& \text { 19.06. } 2018 \text { r. } \\
& \text { joomma jurasik }
\end{aligned}
$$

