
JołNNł JuRłstx
Abstract of the doctoral thesis

Propert,ies of asymmetri,c truncated Toepl,itz operators

Let D denote the unit disc, and let ]f denote the unit circle.By L',: L'(T,#)
we will be denote the space of all Lebesgue measurable functions / : 1l -+ C such
that
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H2 is the usual Hardy space, the subspace of L2 of normalized Lebesgue measure on
]f whose negative indexed Fourier coefficients are all zero. H2 wlII interchangably
refer to both the boundary functions and the functions on D. Let P denote the
projection from L2 to H2. Let.9 denote the shift operator f ,+ ,f on H2. Its
adjoint (the backwards shift) is the operator

(^9-/)(r) : f(,)-f(0)
z

A Toeplitz operator is the compression of a multiplication operator on L2 to H2.
In other words, given ę ę L2 (called the symbol of the operator),

Trf : P(ęf)
is the operator that sends f to P(ęf) for all f ę H'. This operator is bounded if
and only if ę e i- (the space of all essentially bounded measurable functions on
T,).

Chapter 1 of this dissertation has an introductory character. Moreover, we present
basic properties of Hardy spaces and Toeplitz operators. In [2] A. Brown and P. R.
Halmos describe the algebraic properties of Toeplitz operators. Among other things,
they found necessary and sufficient conditions for a bounded operator on H2 be a
Toeplitz operator, namely a bounded operator T : H2 --+ H2 is a Toeplitz operator
if and only if S*T S : T.

Let ,Fl- be the algebra of bounded analytic functions on D and let a € l1- be an
arbitrary inner function, that is, lal : t a.e. on 1l. By the theorem of A. Beurling
(see, for example, [10, Thm. 17.2I1), every nontrivial, closed S-invariant subspace
of. H2 can be expressed as aH2 for some inner function o. Consequently, every
nontrivial, closed ^9*-invariant subspace of, H2 is of the form

Ko: H2 e aH2

with a inner. The space Ko is called the model space corresponding to a,
In Chapter 2 we deal with the so-called truncated Toeplitz operators. Let Po

denote the orthogonal projection of L2 onto K.. Tluncated Toeplitz operators are
operators A$, ę € L2, densly defined on the model spaces Ko, by the formula

A\f : P.(ęf).
The operator A$ can be seen as a compression to K. of the classical Toeplitz operator
T,".Y1



2

The study of truncated Toeplitz operators as a class began in 2007 with D. Sara-
son's paper [11]. In spite of similar definitions (for example, (A$)- : Aa), there
are many differences between truncated Toeplitz operators and the classical ones.
One of the first results from [11] states that, unlike in the classical case, a truncated
Toeplitz operator is not uniquely determined by its symbol. More precisely, AZ: O

if and only if 9 €aP l aH2 ([11, Thm. 3 1l) Moreover, unlike in the classical
case, unbounded symbols can produce bounded truncated Toeplitz operators and
there are bounded truncated Toeplitz operators for which no bounded symbol exists
(see [1]).

The compression of ,9 to K, will be denoted bv ,S". Its adjoint, ,Sj, is the restric-
tion of S* to Ko. The operators Ę and .9j are the truncated Toeplitz operators with
symbols z and Z, respectively. The bounded operator A: Koł Ko is a truncated
Toeplitz operator if and only if there are functioTls X,ł € Ko such that

A - S:AS.: ł 8ńg +i3 a x,

where kQ) : ulTg ( o is rank one operator on Hilbert space, f ag(h) : (h, g) l,
for f , g and h from this space) (see [11, a.1]). More background about model spaces
and truncated Toeplitz operators can be found in Chapter 2.

If a has distinct zeros {a1, . . . , a-} and

kż(r) : 1- a@o(z) ń?,ę): a(z) - cr(tr,,)
)ll + |lDl-wz ) z-u

then the set?lcfl: {kł,,,..,kt-} as well u"ńi: {ńł,,...,Tł-} is a (non-
orthonormal) basis for Ko. In 2008 [6] J.A. Cima, W.T. Ross and W.R. Wogen
considered truncated Toeplitz operators on finite-dimensional model spaces. The
authors in [6] charactertzed truncated Toeplitz operators in terms of the matrix
representations with respect to each of these bases. They showed that a matrix rep-
resenting a truncated Toeplitz operator on rn-dimensional model space is completely
determined by 2m - 1 of its entries, those along the main diagonal and the first row
(and the first row can be replaced by any other row or column). They also proved
a similar result for the so-called Clark bases. Matrix representations of truncated
Toeplitz operators on infinite-dimensional model spaces were considered in [9].

Recently, the authors in [3, 4, 5] introduced a generalization of truncated Toeplitz
operators, the so-called asymmetric truncated Toeplitz operators. Let a, B be two
inner functions and let ę e L2 , An asymmetric truncated Toeplitz operator Ał,' l"
the operator from Ko into KB given by

l,pf:pB@f), f €K..
The operator Ao,0 is densely defined. Clearly, A|p : A$. Let

9(*, P) : {Ał,B : ę e L2@D) and, A$,P is bounded}

and ?(a): !(a,a).
Chapter 3 describes properties of so-called asymmetric truncated Toeplitz oper-

ators. We describe when an operator from T(., §) is equal to the zero operator.
The description is given in terms of the symbol of the operator. This was done in
[3] and [a] for the case when P divides a, that is, when alP is an inner function. It
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was proved in [3] and [a] that Ał,' :0 if and only if ę e aF + PH2. Here we show
that this is true for all inner functions a and B.

We note that if o is a finite Blaschke product of degree m, then Kohas dimension
m, By elementary linear algebra, the complex vector space of all linear transforma-
tions on Ko has dimension m2 . D . Sarason [11, Thm. 3.1] proved that if o is a finite
Blaschke product of degree m ż 0, then the dimension ot 9(a) is 2m- 1. We show
that if a and B are finite Blachke products of degree m>0 andn > 0, respectively,
then the dimension of. 9(a, P) is młn- 1. We also give some examples of rank-one
asymmetric truncated Toeplitz operators.

In chapter 4 we generalize the results from [6] concerning matrix representations.
We characterize matrix representations of asymmetric truncated Toeplitz operators
acting between finite-dimensional model spaces. We prove theorem

Theorem. Let the functi,on a be a fini,te Blaschke product with m di,sti,nct zeros
a1l.,.,a*, let P be a fi,ni,te Blaschke product w,ith n di,sti,nct zeros b1,,...,bn and
assume that a and B haue prec,isely l zeros źn comn,Lon: al : bl for i, < l (t : 0
i,f there aTe no zeros,in common). Let A be ang li,near transformati,on from Ko
i,nto KB. ł Me: (r",p) i,s the matri,r representati,on of A wi,th respect to the bases

Rh : {k:,,. . .,kł^} and RĘ : {kf,,,,.,,,kf_}, and,

(a) l : 0, then A e 9(a, B) i,f and only i,f

B'ląla, - b")r",, + g(ą(bI - ar)rl,t * preJ
(1) T",P:

for all I
P'ęąla, - t1,1

1pśmandllsln;

(b) l > 0, then Ae 9(a,P) if and orily if

rr) r __'t'(bl)(al-b"\rl ,-B'(bl)(ap_bt)rl.p
\-l '".p

for all p,,s such that I 1 p 1 m, I { s 1 l, s f p, and

(3)

for all p,,s such that I 1 p 1 m, l t s 1 n.

We also consider matrix representations with respect to bases: fri anańĘ,, CtarŁ
bases Vft and Vf , modified Clark bases tft and €E, Rk and ńĘ, ń7 and Rf, Clark
base Vft and, RĘ, Clark base Vft and ńfl, ńi and Clark base Yf , and base Rfl and,
Clark base Vf .

We also characteńze matrix representations of asymmetric truncated Toeplitz
operators acting between infinite-dimensional model spaces.
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