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Singular stochastic control is a class of problems in which one is allowed to change the drift
of a Markov process (usually a diffusion) at a price proportional to the variation of the control
used. Admissible controls do not have to be absolutely continuous with respect to the Lebesgue
measure and they may have jumps. This setup is natural for many problems of practical interest,
including portfolio selection in finance, control of queueing networks and spacecraft control.

One-dimensional singular stochastic control problems are well understood by now. In this
case, if the running cost is convex, the optimal control makes the underlying process a diffusion
reflected at the boundary of the so-called nonaction region D. In the case of a diffusion with
time-independent coefficients and discounted cost on the infinite time horizon, D is just an
interval and the value function enjoys C? regularity (smooth fit). Both C?-regularity of the
value function and the characterization of the optimally controled process have been extended
to the case of singular control for the two-dimensional Brownian motion [7]. In n > 3 dimensions
only partial results are known. For example, for optimal control of the Brownian motion on
the infinite time horizon, regularity of the boundary of D away from some "corner points" was
shown in [8] and a characterization of the optimal control as a solution of the corresponding
modified Skorokhod problem was given in [4]. .

In this thesis we consider an n-dimensional singular stochastic control problem on a finite
time horizon in which state is governed by a linear stochastic differential equation with time-
dependent coefficients, the running cost is convex and controls may act in any direction. More
precisely, let 7" > 0 be a fixed number representing our time horizon and let W = (W,,t > 0)
be a standard n-dimensional Brownian motion relative to a filtration (F,,¢ > 0) satisfying the
usual conditions, defined on a complete probability space (€2, F, P). Denote by V the set of all
admissible controls v which are left-continuous, adapted to the filtration (F,t € [0,77) random
processes acting from [0,77] into R™, with P-almost surely bounded variation and such that
vg =0 P-almost surely. As it is customary in singular stochastic control theory, for v € V we
write v; = joi Vsd&s, where || = 1 for every t € [0,T] and € is nondecreasing and left-continuous.

Consider the state process described by the stochastic integral equation
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where ¢t € [0,7] is an initial time, z € R" is an initial position, b : [0,7] — R»
and a,0 : [0,T] — M™" stand for the drift and the covariance terms. With each control
v € V, we associate a cost given by the payoff functional
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where f, o and c are respectively the running cost, the discount factor and the instantaneous
cost per unit of “fuel”. We assume that f(z,t¢) is convex in x.
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Our purpose is to characterize the optimal cost, the so called value function

u(z,t) = inf{Ju(v) : v € V}.

If this infimum is attained for some v* € V, we say that v* is an optimal policy (for given ¢ and

In the first part of the dissertation, under suitable assumptions, we prove estimates for the
value function. These estimates imply that the value function has locally bounded generalized
derivatives of the second order with respect to the space variable and of the first order with
respect to the time variable. Consequently, the spatial gradient Du of the value function is
Hélder continuous in both variables. These properties are needed to consider the value function
as a solution of the corresponding fully nonlinear parabolic Hamilton-Jacobi-Bellman equation

max {Au((l:,t) — flz,t) , (z,t)] — c(t)} =1

in some generalized sense. Here A is a parabolic partial differential operator given by

Au(z,t) = — =B(t) o D*u(zx,t) — (a(t)r(: + b(t)) o Du(z,t) + a(t)u(z,t),
where o denotes the scalar product of vectors or matrices respectively and (t) = o(t)o7 (t). We
also prove existence and uniqueness of an optimal control v*. The above results have already
been published in [1].

The second part of the thesis is devoted to a characterization of the optimal policy for
an n-dimensional Brownian motion in the parabolic case as a unique solution to the modified
Skorokhod problem for the nonaction region D = {(z,¢) € R" x [0,T] : |Du(z,t)| < 1}, having
time dependent (moving) boundary. More precisely, we define a vector field T'y(-) = —Du(-, t).
Let (z0,0) € D. We say that a process v € V, v, = jg vsd€s, is a solution to the modified
Skorokhod problem for a Brownian motion +/2W, in D starting at zy with reflection direction
I if

(a) the process X; = zo + v2W, + v, satisfies (X, t) € Dfort € [0,T] as.,
(b) for every t € [0,T], & = jo [( X5, 8) € 8D, +, = D(Xe)|dEs,

(c) with probability 1, for each ¢ € [0, 7], a possible jump of the process X at time t occurs
on some interval I C R™ parallel to the vector field I'; on I (i.e. for all z € I T(x) is
parallel to I) and such that 7 x {t} C &*D N (R" x {t}). If X, encounters such an interval
I, it instantaneously jumps to its endpoint in the direction I'; on I.

Here 0"D denotes “the lateral boundary” of D - it is the parabolic boundary of D without the
“bottom”.

The main theorem of this thesis states that for every initial position z, € R” such that
(z0,0) € D, the optimal policy v* for our singular stochastic control problem is a solution
to the modified Skorokhod problem for the Brownian motion /2W, in D starting from z, at
time O with reflection direction I'. This result is an analog of the main theorem from [4]. It
resolves a long-standing open problem on the structure of the optimal control in the case under
consideration.

The Skorokhod problem for domains with time-dependent boundaries has been considered,
inter alia, in [2, 3, 5, 6]. In these papers, restrictive assumptions on regularity of the boundary
of the domain and the directions of reflection are necessary for existence of a solution to the
problem. In our case, explicit regularity results for D are not available and the assumptions
on D are hidden in the very nature of our stochastic control problem. Therefore, we use a direct



probabilistic, control theoretic approach, similar to the one applied in [4]. Our problem, how-
ever, is notably more difficult than the elliptic one, considered in [4], because time-dependence
in the value function and the nonaction region creates serious problems, which have to be
overcome in our analysis.
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